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Abstract: Remote sensing satellite imagery consistently provides valuable and frequent information,
enabling the exploration of mineral resources across immense, remote and harsh domains. Recent
developments in spaceborne hyperspectral remote sensing have opened avenues to support diverse
remote sensing applications, particularly in the realm of mineral exploration. This study evaluates
the capabilities of the PRecursore IperSpettrale della Missione Applicativa (PRISMA) hyperspectral
satellite data for mapping alteration minerals using the Matched Filtering Unmixing (MFU) approach
in the Sar-e-châh-e-shur, Birjand, Iran. Minerals such as richterite, augite, psilomelane, ilmenite,
kaolinite, smectite, mirabilite, muscovite, and chlorite were identified using the vertex component
analysis (VCA) technique. Subsequently, alteration mineral maps of the study area were generated
using a matched filtering technique. Additionally, through the integration of X-ray diffraction
(XRD) analysis, thin section examination, geochemical study of stream sediments, and interpretation
of geological maps, potential alteration mineralization zones were delineated in the study area.
Ultimately, the validation process, which included comparing the maps with the findings derived
from the PRISMA remote sensing study, was conducted using the normal score equation. Thus,
our results yielded a normalized score of 3.42 out of 4, signifying an 85.71% agreement with the
regional geological characteristics of the study area. The results of this investigation highlight
the substantial potential of the PRISMA dataset for systematic alteration mineral mapping and
consequent exploration of ore minerals, specifically in challenging and inaccessible terrains.

Keywords: PRISMA; hyperspectral remote sensing imagery; alteration minerals; vertex component
analysis; match filtering unmixing; normalized score; mineral exploration

1. Introduction

Hyperspectral remote sensing imagery has an exceptional ability to capture both the
visual image and spectral details of targeted objects, simultaneously. The images contain
numerous closely arranged and narrow spectral bands in the visible near-infrared (VNIR) to
short-wave infrared (SWIR) regions [1,2]. Alteration mineral mapping is a crucial stage for
ore mineral exploration and cost-effective management of mineral exploration campaigns.
Alteration minerals exhibit distinctive spectral properties determined by their unique
chemical bonding and physical attributes within the spectral span of 0.4 to 2.5 µm [3].
The pixels within hyperspectral images represent a spectral vector containing reflectance
values within a particular wavelength region. This enables the extraction of spectral
attributes of the mineral objects within the corresponding image pixel. On the other hand,
multispectral remote sensing captures reflected energy across a wider but limited number of
spectral bands [4]. Consequently, various minerals might exhibit similar spectral attributes
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using multispectral imagery. Thus, hyperspectral imagery, encompassing contiguous and
comprehensive spectral capabilities, provides a more precise characterization of alteration
minerals compared to multispectral remote sensing [2].

Recently, various hyperspectral sensors have been operating in the realm of mineral
exploration, including (i) airborne hyperspectral sensors (e.g., the airborne visible/infrared
imaging spectrometer next generation), (ii) spaceborne hyperspectral sensors (e.g., Hyper-
ion and PRISMA), (iii) hyperspectral sensors integrated onto unmanned aerial vehicles, and
(iv) handheld spectral sensors like analytical spectral devices [5]. The PRISMA spaceborne
hyperspectral sensor, developed by the Italian Space Agency (ASI), was launched on 22
March 2019 and operates within a sun-synchronous orbit with a 29-day relook period [6].
It enables the capture of images with a superior signal-to-noise ratio (SNR) compared to
the Hyperion sensor. Essentially, it serves as a satellite-based earth observation mission
designed to provide spectroscopic imagery, fostering the development of innovative meth-
ods and applications for the management and analysis of ore mineral resources [2,7–10].
The coexistence of minerals with similar spectral properties often leads to spectral mixing,
resulting in overlapping absorption regions and highly correlated spectra [11,12]. Light
scattering effects further complicate spectral signatures [13]. These challenges, includ-
ing diverse spectral features and limited ground samples, hinder the function of image
processing algorithms and remote sensing sensors. Addressing these issues, the use of
PRISMA hyperspectral imagery in mineral exploration across various geographic and
geological settings highlights the adaptability and effectiveness of PRISMA imagery in
overcoming challenges posed by spectral mixing, light scattering effects, and intricate
spectral patterns [2,7–10].

The Principal Component Analysis (PCA), Minimum Noise Fraction (MNF), Indepen-
dent Component Analysis (ICA), Adaptive Coherence Estimator (ACE), Random Forest
(RF), XGboost (XGB), Support Vector Machine (SVM) and many other machine-learning-
based classification algorithms were used for processing PRISMA data in mapping alter-
ation minerals, identifying economic mineralization prospects, delineating dolomitization,
obtaining high-quality reflectance estimations and achieving high-accuracy lithological
mapping [2,7–10,14–19]. Additionally, novel approaches and algorithms such as the spectral
hourglass, iterative informed spectral unmixing technique, fuzzy logic approach, GIS-based
algorithm, and informed linear mixing model were implemented to PRISMA data to deter-
mine the potential of the dataset for automated alteration mineral identification in diverse
environments [20–25]. The use of different algorithms and techniques further enhances
the potential of the PRISMA dataset in various applications. These studies exclusively
highlighted the versatility and effectiveness of PRISMA hyperspectral imagery in various
geological applications from ore mineral exploration to lithological mapping.

The Sistan zone of eastern Iran, particularly in the Sar-e-châh-e-shur region (Figure 1A,B),
exhibits significant potential for various ore mineralizations, including copper, zinc, and
asbestos. Despite its geological richness, there exists a conspicuous absence of hyperspectral
remote sensing analysis, explicitly tailored for alteration mineral mapping in this area. This
research, therefore, endeavors to bridge this critical gap by pioneering the utilization of
hyperspectral PRISMA imagery for mineral exploration in the Sar-e-châh-e-shur region
by harnessing the capabilities of the PRISMA hyperspectral sensor. Therefore, the main
objectives of this study include: (i) to detect alteration minerals utilizing the VNIR and SWIR
bands of PRISMA imagery by applying the Matched Filtering Unmixing (MFU) approach,
(ii) to assess the accuracy and reliability of alteration mineral mapping through comparisons
with (XRD) analysis, thin section examination, geochemical study of stream sediments,
and interpretation of geological maps, and (iii) to delineated the spatial distribution and
abundance of potential alteration mineralization zones in the study area. By achieving these
aims, this study seeks to enhance comprehension of the mineral resources available and
enable well-informed decision making in the context of mineral exploration and resource
management initiatives specific to the Sar-e-châh-e-shur region.
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2. Geology of the Study Area

The Sar-e-châh-e-shur region is situated within Birjand, east of Iran, encompassing ge-
ographical coordinates spanning from 32.14◦ to 32.46◦N and 58.66◦ to 59.04◦E (Figure 1A,B).
This region is part of the Sistan Structural Zone within the Lut Block, which is marked
by significant geological shifts, widespread volcanic activities, and a high potential for
ore mineralization, especially copper mineralization [26]. Figure 1B shows the simplified
geological map of the study area. Predominantly, the geological formations comprise
Eocene–Oligocene volcanic rocks, intermingled with semi-deep acidic to intermediate
alkali calc-alkaline rocks exhibiting porphyritic textures. These volcanic formations include
dacite, diorite, granite, dolerite dikes, diabase, gabbro, and olivine basalt. Additionally,
sedimentary rocks such as shale, sandstone, oolitic limestone, limestone, and conglomerate,
as well as metamorphic rock types like gneiss, metagabbro, metadiabase, amphibolite schist,
chlorite schist, and phyllite, contribute to the geological composition. The intrusion of these
bodies has induced varying degrees of metamorphism in the adjacent rocks, ranging from
low to high levels [27].

The majority of rock formations in the area exhibit syncline and anticlinal folds, with
the northern and northeastern sectors of the region displaying the highest concentration
of faults and fractures. Notably, the rocks in the northeastern segment of the map have
undergone significant alteration, ranging from moderate to intense. Regarding mineral
indicators within this study area, prominent copper mineralizations include Chah-e-Tuni,
Homich, and Fasson [28].

3. Materials and Methods
3.1. PRISMA Data Characteristics

The PRISMA satellite was launched by the Italian Space Agency (ASI) on 22 March
2019 and is expected to remain operational for 5 years [6]. PRISMA is categorized as a
small-size satellite, encompassing both hyperspectral imaging capabilities and a medium-
resolution panchromatic imager. The PRISMA hyperspectral sensor, which shares the same
name as the satellite mission, utilizes prisms to capture the dispersion of incoming energy
using the “Pushbroom” image scanning technique. The captured hyperspectral images
comprise 239 bands ranging from visible/near-infrared (VNIR) to shortwave infrared
(SWIR), with 66 bands within the VNIR range and 173 bands within the SWIR range.
Additionally, nine bands are captured in the overlapping wavelength region of VNIR and
SWIR. These images offer a spatial coverage of 30 km × 30 km with a spatial resolution
of 30 m. The spectral separation among the bands is less than 12 nm. Furthermore, the
panchromatic imagery is provided at a 5 m spatial resolution [26,27,29]. For this study,
a cloud-free level 2D PRISMA (PRS_L2D_STD_20210213065351_20210213065356_0001)
dataset for the Sar-e-châh-e-shur region was obtained from ASI’s eoPortal on 13 February
2021. Detailed specifications of the PRISMA dataset are outlined in Table 1.

Table 1. Specifications of the PRISMA dataset [6].

PRISMA
(PRecursore IperSpettrale Della Missione Applicativa)

Orbit Altitude 614 km

Swath Width 30 km

Field of View (FOV) 2.77◦

Spatial Resolution Hyperspectral—30 m
Panchromatic—5 m

Pixel Size Hyperspectral—30 µm × 30 µm
PAN—6.5 µm × 6.5 µm
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Table 1. Cont.

PRISMA
(PRecursore IperSpettrale Della Missione Applicativa)

Spectral Range
VNIR—0.400–1.01 µm (66 bands)
SWIR—0.92–2.5 µm (173 bands)

PAN—0.4–0.7 µm

Spectral Resolution ≤12 nm

Radiometric Resolution 12 bits

Signal-to-noise ratio (SNR)
VNIR —> 200:1
SWIR —> 100:1
PAN —> 240:1

Lifetime 5 years

Repeat interval 29 days

3.2. Methodology

In this analysis, the methodology involves a series of stages that are meticulously
designed to reveal significant spectral information from the PRISMA dataset. Each step
is crafted to ensure accuracy and reliability in the analysis, fostering a comprehensive
understanding of hydrothermal alteration minerals in the Sar-e-châh-e-shur region. The
sequential steps undertaken in this analysis are depicted in Figure 2. The processing of
PRISMA datasets involved the use of several software tools. Specifically, ENVI (Envi-
ronment for Visualizing Images) version 5.6 (http://www.exelisvis.com (accessed on
22 July 2020), Harris Geospatial Solutions), ArcGIS Pro version 3.0.1 (Esri, Redlands,
CA, USA), and Anaconda 3-2023.09 were utilized for data analysis and processing. The
methodological stages are summarized as follows. (1) Pre-processing: this stage begins
with rigorous pre-processing, where essential corrections are applied and bad bands are
removed. This foundational step lays the cornerstone for subsequent analyses, ensur-
ing data integrity and quality. (2) Segregation and demarcation of spectral signatures
using vertex component analysis (VCA) algorithm: the VCA algorithm is used to extract
endmembers from hyperspectral data through unsupervised analysis [28]. It leverages
the geometry of the simplex formed by the mixing of spectral signatures to efficiently
identify endmembers and their abundance fractions. (3) Determination of endmember
types: spectral characteristics gleaned from the VCA algorithm were used to determine
endmember types, unveiling the diverse components inherent to the geological back-
ground. (4) Mineral distribution mapping: leveraging the unmixing match filtering
(MF) technique, mineral distribution maps are meticulously crafted, illuminating the
presence and abundance of specific minerals across the region. (5) Using geological and
geochemical data for validation: the used methodology was validated using precise
ICP-OES laboratory analysis on stream sediments and geological data. The obtained
results were integrated with the map generated using remote sensing techniques. The
evaluation of the findings was meticulously conducted by applying the normalized
score equation, guaranteeing the strength and dependability of the conclusions. The
validation process ensured the robustness and reliability of the research outcomes. The
details of each stage were deliberated in the following subsections.

http://www.exelisvis.com
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3.2.1. Pre-Processing

The essence of remote sensing lies in the intricate journey of solar radiation through
the atmosphere before reaching the sensor, leading to remotely sensed images containing
both atmospheric and surface data. Achieving precise surface reflectance measurements
demands diligent pre-processing, necessitating a deep understanding of variables such as
atmospheric effects and sensor limits.

Given the utilization of L2D PRISMA data, significant processing steps have been
undertaken on this dataset. However, owing to the specific nature of these data and the
necessity to assess the Earth’s surface reflection, certain bands within this dataset prove
unsuitable for mineral remote sensing studies [30,31]. These bands exhibit heightened
sensitivity to water vapor, resulting in substantial absorptions within the spectral profile.
Notably, the absorption characteristics spanning (913 nm to 979 nm), (1078 nm to 1185 nm),
(1317 nm to 1491 nm), and (1775 nm to 2044 nm) diminish the efficacy of absorption ranges
crucial for mineralogical investigations [31]. Hence, the primary course of action entails
the exclusion of these bands from further analysis. Figure 3 illustrates the spectral profile
of a pixel in the PRISMA images before and after the removal of bad bands. It showcases
how the adjustments in the spectral profile enhanced the effectiveness of absorption
ranges [32,33].
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bad bands.

The spectral smile, also known as spectral curvature or shadow effect, poses a common
challenge in push-broom sensor instruments. This distortion originates from variations
in the depression angle relative to the field position, causing a deviation in wavelength
from the designated central wavelength across the spectral domain. This deviation cor-
relates with the pixel position along the swath. Essentially, the central wavelength of the
bands gradually changes across the width of the image, forming a smooth curve that often
peaks at the midpoint, resembling a smile, hence the name [34]. Despite appearing minor,
these shifts, ranging from 2.6 to 3.6 nm in the visible and near-infrared (VNIR) range and
approximately 1 nm in the short-wave infrared (SWIR) range, can significantly impact
the diagnostic absorption and reflection. Hence, addressing the spectral smile effect is
crucial when interpreting hyperspectral imagery data, particularly in applications involv-
ing mineral identification and other detailed spectral analyses [35,36]. For this reason,
implementing column mean adjustments in the Minimum Noise Fraction (MNF) space
technique has been proposed as a solution to mitigate this issue. The MNF adjustment
method is especially noteworthy for its effective noise reduction capabilities, making it a
suitable approach for correcting the smile effect, as employed in this study [35].

In the final step, given the scarcity of direct measurements for atmospheric prop-
erties, diverse techniques, including Quick Atmospheric Correction (QUAC) [37], Fast
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Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) [37], Internal Av-
erage Relative Reflectance (IARR) correction [38], Log Residuals [39], etc. are employed
to infer them from hyperspectral radiance data. These inferred properties serve as in-
puts for accurate models of atmospheric radiation transfer, enabling estimation of true
surface reflectance [40]. According to the explanation provided, the IARR correction was
implemented to the PRISMA datasets used in this study. This calibration serves as a power-
ful means to enhance the strength of reflection and absorption, also known as IARR, by
standardizing images based on the average spectrum of the scene. This approach proves
especially beneficial in converting hyperspectral data to relative reflectance, particularly
in areas where ground measurements are scarce. Its effectiveness is most notable in arid
landscapes without vegetation, where the average scene spectrum serves as the reference
spectrum for division into the spectrum of each pixel in the image. Figure 4 depicts the
spectral signature of a pixel in the PRISMA images before and after applying the IARR
correction. It demonstrates the changes in the pixel’s spectral properties caused by the
correction process.
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3.2.2. Image Processing Techniques
Endmember Extraction

The extraction of a signature matrix involves the process of endmember extraction
and was achieved using a geometric algorithm. Specifically, the vertex component analysis
(VCA) method, which relies on the presence of pure pixels, was utilized for this purpose. It
is an algorithm to separate linear mixtures of endmember spectra [28]. The VCA is an unsu-
pervised algorithm that operates by iteratively projecting data onto a direction orthogonal
to the subspace spanned by the endmembers already determined. It identifies endmembers
as the extreme points of these projections and continues the process until all endmembers
are identified [41]. VCA performs better than the Pixel Purity Index (PPI) algorithm and
is comparable to or better than the N-FINDR algorithm, while requiring significantly less
computational complexity compared to N-FINDR [42]. Using this approach alongside the
Python code, supplied by Nascimento (J) and Dias (J), 8 endmembers were successfully
identified in this analysis.

The spectral signatures extracted were compared against the spectral library supplied
by the United States Geological Survey (USGS) to determine mineral compositions. Two
techniques, the Spectral Angle Mapper (SAM) and Spectral Feature Fitting (SFF) were
employed for this purpose. These methods utilize spectral similarity techniques to assess
the likeness between an unknown spectrum and reference spectra within the library.
SAM measures similarity by calculating the angle between endmembers and reference
spectra [43,44], whereas SFF evaluates similarity by scrutinizing the physical shape of
absorption features in conjunction with band-to-band calculations [45–50]. In addition,
some adjustments were made to the USGS spectral library to align with the wavelengths
of the specified useful PRISMA bands that were identified during the pre-processing
stage. Subsequently, SAM and SFF were employed to compare unknown spectra with
reference spectra, resulting in matching scores ranging from 0 to 1. Minerals exhibiting
the highest SAM + SFF scores, confirmed through visual inspection, were attributed to
the unknown endmembers. Consequently, 8 endmember spectra were extracted from the
PRISMA dataset and identified for the study area. Figure 5 displays the corresponding
comparative spectral curves between the detected endmembers in this analysis and the
mineral spectral library provided by the USGS.

Unmixing

The utilization of matched filtering (MF) typically stands as a pivotal technique for
swiftly and efficiently detecting specific materials within an image scene. This method em-
ploys a partial unmixing approach, strategically maximizing the response of user-defined
end members while concurrently suppressing the signal from the composite unknown
background. The result is a precise matching of known spectral signatures, offering a
rapid means of material identification without the necessity of exhaustive knowledge
about all the end members present in the scene [51]. One of the key advantages of MF is
that it does not require knowledge of all endmembers, which are the pure components
in the image. This makes it a flexible and efficient tool for hyperspectral image analysis.
Moreover, the MF approach can be combined with concepts of convex geometry to improve
its performance. The priority of MF for unmixing hyperspectral images is driven by its
flexibility, efficiency, and ability to handle complex scenarios where the target is frequently
present in the image [51]. To execute this algorithm, the eight identified spectral signatures
are exclusively inputted into the computational framework. Consequently, the algorithm
efficiently identified pixels within the PRISMA data that closely matched these specified
spectra. This selective approach not only streamlined the computational process but also
ensured a targeted and precise analysis of the image scene.
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the corresponding mineral reflectance spectra extracted from the USGS spectral library. (A) Rich-
terite, (B) augite, (C) chlorite, (D) ilmenite, (E) kaolinite–smectite, (F) mirabilite, (G) muscovite, and
(H) psilomelane.
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3.2.3. Geological, Geochemical, and Laboratory Analysis

Geological fieldwork (20 September 2023) was undertaken in the Sar-e-Châh-e-Shur
area to validate the image processing analysis employed in this study. The fieldwork pri-
marily was centered around significant rock exposure sites in the Sar-e-Châh-e-Shur region.
GPS coordinates were obtained using a Garmin Map 64 s handheld GPS device, offering an
average accuracy of 3 m. Detailed field documentation, including photographs capturing
geomorphological features, exposed lithological formations, and weathered rocks, was
compiled. Additionally, rock specimens were gathered from weathered lithological units
for subsequent laboratory analysis. The mineralogical laboratory at Sahand University of
Technology, Tabriz, Iran, facilitated the creation of polished thin sections, which were then
scrutinized using an OLYMPUS CX31P polarizing microscope. Furthermore, a comprehen-
sive geochemical analysis was conducted utilizing the ICP-OES device at the Geological
Survey of Iran (GSI), employing a 19-element package analysis. X-ray diffraction (XRD)
analyses were performed on bulk powder samples at the laboratory of Sahand University of
Technology, Tabriz, Iran, using an X-ray Diffractometer (XRDynamic 500’s TruBeam™ con-
cept model, Anton Paar GmbH, Graz, Austria), aiding in the identification of fine-grained
minerals. Pathfinder elements are recognized as pivotal geochemical indicators utilized to
ascertain the presence of valuable minerals or ores. They are often associated with specific
types of mineralization, and their identification in geological samples serves as a guiding
principle for prospecting and exploration endeavors. The term “Pathfinder” signifies their
role in evaluating expansive areas for mineral potential, thereby excluding potentially
barren regions from potential zones. Exemplary Pathfinder Elements (EPEs) include trace
elements or minerals commonly associated with distinct types of ore deposits. Analyzing
these elements is a widespread practice in the fields of geochemistry and mineral explo-
ration [52–63]. In this investigation, a total of 574 samples of stream sediments spanning the
entire region were meticulously gathered and analyzed. These samples were prepared by
the Geological Survey of Iran (GSI) using the ICP-OES method to scrutinize 19 EPEs. Areas
falling within the range of possible anomalies (x + 2s > x + 3s) are considered indicative
of potential mineralization [64–67]. Here, the (‘x’) denotes the average, and ‘s’ represents
the standard deviation.

4. Results
4.1. Spectral Analysis of Detected Endmembers

Figure 5A–H presents distinct absorption features and trends for each of the identified
endmembers in this analysis, indicating a favorable alignment with the mineral’s spectra
extracted from the USGS spectral library. Figure 5A displays recognizable absorption
features at 1.05 µm and 2.30 µm, showing trends similar to richterite (sodium–calcium
amphiboles: Na(NaCa)Mg5(Si8O22)(OH)2). Figure 5B presents recognizable absorption
features at 1.05 µm and 2.30 µm, along with a noticeable strong reflectance feature at 1.7 µm,
matching augite. Figure 5C exhibits prominent Fe, Mg-OH double absorption features
at 2.30–2.365 µm, along with discernible iron absorption at 0.85–0.97 µm, characterizing
spectral properties associated with chlorite. Figure 5D shows recognizable absorption
features at 0.55 µm, matching trends akin to ilmenite. Figure 5E displays slight iron
absorption at 0.85–0.97 µm and absorption features at 2.25 µm and 2.35 µm, matching
trends similar to kaolinite–smectite. Figure 5F shows recognizable absorption features
at 1.22 µm, 1.50 µm, and 2.05 µm, with trends similar to mirabilite (Na2SO4·10H2O).
Figure 5G illustrates a major Al-OH absorption feature around 2.20 µm, attributable to
muscovite. Figure 5H exhibits trends similar to psilomelane (known as black hematite
Ba(Mn2+)(Mn4+)8O16(OH)4 or as (Ba,H2O)2Mn5O10) [12,68–70].

4.2. Mapping Alteration Minerals

Different lithological formations exhibit typical mineral compositions, which are dis-
tinguishable through the MF rule images derived from PRISMA data. Figure 6A–H shows
the rule images generated using the MF algorithm, which depicts the endmember minerals
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derived from PRISMA spectral bands for the Sar-e-Châh-e-Shur region. The bright pixels
signify a high surface abundance of specific alteration minerals associated with distinct
lithological units. In Figure 6A, richterite is primarily mineral detected in Mica Schist
(Schm) and metagabbro, metadiabase, amphibolite, and gneiss (Met) formations, implying
metamorphic alterations within these lithological units. In Figure 6B, augite is identified as
associated with metagabbro, metadiabase, amphibolite, gneiss (Met), gabbro (gb), Mica
Schist (Schm), Colored mélange (Cm), and andesite (Ea) formations, reflecting its presence
in various metamorphic and igneous contexts. In Figure 6C, chlorite is predominantly
observed within formations such as diabase (Kud), gabbro (gb), Pyroxene Andesite (ap),
Pyroxenite (Px), Amphibole schist (Scha), and green schist (Schg). The presence of chlo-
rite indicates propylitic alteration processes within these lithological units. In Figure 6D,
ilmenite is notably found within formations like Red tuff with chert marker (Et), gran-
ite (g), hornblende andesite (ah), and andesite (Ea), indicating associations with specific
igneous and metamorphic processes. In Figure 6E, kaolin–smectite is distributed across
altered andesite and dacite (EOad), andesite (Ea), gabbro (gb), metagabbro, metadiabase,
amphibolite, and gneiss (Met), granite (g), Colored mélange (Cm), Listvinite (Iv), serpenti-
nite (Sr), and Mica Schist (Schm) formations, indicating argillic alteration processes and
mineralogical transformations within these lithological units. In Figure 6F, mirabilite is
typically confined within salt flats (Sa) formations, indicative of evaporite deposits and
saline environments. In Figure 6G, muscovite is present within andesite (Ea), granite (g),
and gabbro (gd) formations, suggesting occurrences in both igneous and metamorphic
terrains, hinting at phyllic alteration processes within these lithological units. In Figure 6H,
psilomelane is encountered within altered andesite and dacite (EOad), Pyroxene Andesite
(ap), andesite to andesitic basalt (ba), shale and sandstone (Kus), marly tuff (Ngm), and
Pyroxenite (Px) formations, suggesting associations with diverse sedimentary and volcanic
activities and supergene alteration processes.
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The bright pixels within particular lithological units highlight the spatial distribution
of alteration minerals, providing a valuable recognition of hydrothermal alteration zones
associated with potential ore mineralization. In the subsequent analysis, the top 5% of
the statistical community within each pixel was identified, thereby pinpointing the purest
pixels serving as representatives of endmembers for classification purposes on rule images.
Figure 7 shows the MF classification map of the alteration minerals for the study area. In
Figure 7, richterite is linked with granite (g), hornblende andesite (ah), Amphibole schist
(scha), metagabbro, metadiabase, amphibolite, and gneiss (Met), as well as altered andesite
and dacite (Eoad) in the northwestern sector. Augite is linked with gabbro (gb) in the
southwestern sector, while it is associated with metagabbro, metadiabase, amphibolite, and
gneiss (Met) in the southern and central sectors (Figure 7). Additionally, augite is found in
association with Colored mélange (Cm) in the western sector. Chlorite and kaolin/smectite
are correlated with andesite (Ea) and shale with diabasic tuff (Kusd) in the northern sector,
while they are associated with Mica Schist (Schm) and gabbro (gb) in the central and
western sectors. Ilmenite is found in association with altered andesite and dacite (EOad)
and andesite (Ea) in the northwestern sector, as well as hornblende andesite (ah), and marly
tuff (Ngm) in the southern sector. Mirabilite is linked with salt flats (Sa) in the central sector
(Figure 7). Muscovite is correlated with andesite (Ea) in the northeastern sector and with
salt flats (Sa) in the central sector. Psilomelane is found in association with serpentinite (Sr)
in the western sector, with shale and sandstone (kus) in the southeastern sector, and with
drainages in the eastern part of salt flats (Sa).

Remote Sens. 2024, 16, 1277 14 of 31 
 

 

 
Figure 7. MF classification map of the alteration minerals for the study area. 

4.3. Fieldwork and Laboratory Analysis 
Following the identification of alteration minerals using the analysis of PRISMA data, 

a field excursion was undertaken in the study area. The presence of alteration minerals 
was verified through field inspections and collecting samples from lithological units for 
petrographic study and XRD analysis. Figure 8A–E shows the exposed lithological units 
containing ore mineralizations and alteration minerals in the study area. 

Figure 7. MF classification map of the alteration minerals for the study area.



Remote Sens. 2024, 16, 1277 14 of 31

4.3. Fieldwork and Laboratory Analysis

Following the identification of alteration minerals using the analysis of PRISMA data,
a field excursion was undertaken in the study area. The presence of alteration minerals
was verified through field inspections and collecting samples from lithological units for
petrographic study and XRD analysis. Figure 8A–E shows the exposed lithological units
containing ore mineralizations and alteration minerals in the study area.
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grained tuff containing phenoclasts of mafic minerals that exhibits sericitization and 
opacification. Additionally, this sample is intersected by quartz veins. It can be described 
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Figure 8. Exposed lithological units and alteration minerals in the study area. (A) Altered silica
rock with mineralization of iron oxide and manganese; (B) propylitic–argillic alteration, the green
parts are chlorite-altered and serpentinized zones; (C) limestone with iron oxide and chlorite (green
color); (D) permead siliceous mass that has intruded into limestone, accompanied by iron oxide and
manganese, is prone to gold mineralization; (E) outcrop shows propylitic and argillic alteration, with
developed mineralization of alunite and kaolinite.

A comprehensive petrographic study on 20 thin sections from various locations and
lithological units was subsequently conducted and shown in Figure 9A–T. Figure 9A–C de-
picts an intergranular-textured diorite–gabbro containing hornblende, plagioclase, clinopy-
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roxene, and a limited amount of plagioclase minerals. The hornblende minerals have
undergone some degree of chloritization and epidotization. Chlorite and epidote minerals
have primarily appeared within the fractures due to the transformation and alteration
of pyroxene, hornblende, and opaque minerals. Figure 9D–F displays a fine-grained tuff
containing phenoclasts of mafic minerals that exhibits sericitization and opacification. Ad-
ditionally, this sample is intersected by quartz veins. It can be described as somewhat
sericitic and argillic. Figure 9G–I exhibits crystallized and silicified limestone comprised
of calcite and quartz minerals. Quartz–feldspar veins traverse the background, and iron
oxide has also formed within the joints. Alterations of both carbonate and oxide types
are evident in this thin section. Figure 9J,K depicts a rhyolite sample containing quartz
phenocrysts with corrosion gulf and alkaline feldspar. The alkaline feldspar has undergone
sericitic and argillization, and iron oxide can be observed in some joints. Figure 9L–N
displays Greywacke sandstone containing fragments of angular to semi-rounded quartz,
lithic, muscovite, and feldspar. Iron oxide has also formed within the joints in this thin
section. Figure 9O–Q represents a harzburgite sample containing remnants of primary
minerals such as olivine, orthopyroxene, and cream spinel, which have undergone strong
serpentinization. Additionally, iron oxide is visible in some joints of the background.
Figure 9R–T illustrates a granite sample consisting of plagioclase and quartz minerals,
along with a mafic mineral that has been significantly chloritized and opacified. Muscovite
is also present in the sample. Plagioclase has undergone some degree of sericitization, and
minor minerals such as zircon and sphene are also observed.

A total of 20 samples were also carefully selected for the XRD analysis. The findings
from the XRD analysis exhibited significant consistency with the outcomes of the PRISMA
remote sensing investigations. Table 2 illustrates the mineral phases identified from the
X-ray diffraction spectrum of the collected samples. The findings obtained through the
petrographic and XRD analysis provided in-depth insights into the mineralogical compo-
sition and diverse alterations evident in the rock samples investigated within the study
area. These discoveries played a pivotal role in facilitating geological interpretation and
validating the geological map showcased in Table 3.

Table 2. Minerals were identified using XRD analysis for 20 selected samples.

No. Sample Lithology Minerals Identified Using XRD

A, B, C Diorite–gabbro Hornblende, plagioclase, clinopyroxene

D, E, F Fine-grained tuff Quartz, phenoclasts, muscovite, hematite, feldspar

G, H, I Limestone Calcite and quartz minerals, quartz-feldspar hematite

J, K Rhyolite Quartz, alkaline feldspar

L, M, N Greywacke sandstone Quartz, lithic, muscovite, and feldspar hematite

O, P, Q Harzburgite Olivine, orthopyroxene, serpentine, and hematite

R, S, T Granite Plagioclase, quartz chlorite, muscovite, zircon

Table 3. Selected mineral groups for enhancing the accuracy of the result’s interpretation.

Mineral Group Minerals

Mica group Muscovite

Pyroxene group Augite

Clay group Kaolinite/smectite–chlorite

Manganese oxide group Psilomelane

Amphibole group Richterite

Oxide group Ilmenite

Sulfate group Mirabilite
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Figure 9. Petrographic study of minerals under OLYMPUS CX31P polarizing microscope. (A–C) In
diorite–gabbro samples, hornblendes have undergone chloritization and epidotization. (D–F) The
fine-grained tuff has been cut by quartz veins. This sample has experienced partial sericitization
and argillization. (G–I) The crystallized and silicified limestone has been intersected by quartz–
feldspar veins, and iron oxide has also developed in the joints. Alterations in both carbonate and
oxide types are observed. (J,K) Rhyolite has undergone sericitization and argillization, with iron
oxide observed in some joints. (L–N) Iron oxide has developed within the joints of the graywacke
sandstone. (O–Q) The harzburgite sample has undergone strong serpentinization, with iron oxide
observed in some joints. (R–T) Granite has been significantly chloritized, muscovite-altered, and
opacified. Abbreviation: Cpx = clinopyroxene, Qtz = quartz, Chl = chlorite, Plg = plagioclase,
Opq = opaque minerals, Ep = epidote, Ca = calcite, Hem = hematite, Fld = feldspar, Ser = sericite,
Ms = muscovite, Lit = lithic, CSpl = chromite spinel, Fe-Ox = iron oxide, Srp = serpentine, Ol = olivine,
Opx = orthopyroxene.
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A total of 574 samples of stream sediments were analyzed using the precise ICP-OES
method to scrutinize 19 EPEs and oxides. The results of the elemental analyses, including
Zn, Au, As, Ni, Cu, Mo, Pb, Cr, Hg, Bi, Ba, Co, Sb, Sn, Ag, W, MnO, TiO, and Fe2O3,
are presented in Figure 10A–S. Regions falling within the scope of a possible anomaly
(x + 2s > x + 3s) are highlighted in red color. These findings offer valuable insights
into element anomalies within the geological units of the region, specifically identifying
areas with potential anomalies. This geochemical analysis significantly contributes to our
understanding of the chemical and geological characteristics inherent to the region. 
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Figure 10. Results of geochemical analysis for stream sediment samples. (A): Zn, (B): Au, (C): As, 
(D): Ni, (E): Cu, (F): Mo, (G): Pb, (H): Cr, (I): Hg, (J): Bi, (K): Ba, (L): Co, (M): Sb, (N): Sn, (O): Ag, 
(P): W, (Q): Fe2O3, (R): TiO, (S): MnO. 

Figure 10. Results of geochemical analysis for stream sediment samples. (A): Zn, (B): Au, (C): As,
(D): Ni, (E): Cu, (F): Mo, (G): Pb, (H): Cr, (I): Hg, (J): Bi, (K): Ba, (L): Co, (M): Sb, (N): Sn, (O): Ag,
(P): W, (Q): Fe2O3, (R): TiO, (S): MnO.
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5. Discussion

The capability of PRISMA hyperspectral satellite data was evaluated to map alter-
ation minerals in the in the Sar-e-châh-e-shur, the Sistan zone of eastern Iran. Several
maps of alteration minerals showing spatial distribution of richterite, augite, psilomelane,
ilmenite, kaolinite, smectite, mirabilite, muscovite, and chlorite were generated using
the VCA algorithm and MFU technique. The X-ray analysis, thin section examination,
geochemical study of stream sediments, and interpretation of geological maps were used
to verify the outcomes. Accordingly, alteration mineral maps derived from PRISMA are
specifically inclusive compared to previous studies using ASTER multispectral data in the
study region [71–74]. In addition, some previous studies accentuated that PRISMA datasets
contain great capability providing valuable insights for hydrothermal alteration mapping
of ore mineralizations in metallogenic provinces around the world [2,7–9,14–25,75,76]. The
escalating challenges associated with mineral exploration underscore the critical need for
innovative strategies, particularly in the identification of high-potential zones and subse-
quent campaigns. PRISMA hyperspectral remote sensing emerges as a new technology
in this domain, providing comprehensive hyperspectral data for hydrothermal alteration
mapping with unparalleled precision [75–78]. However, to effectively leverage PRISMA
hyperspectral remote sensing data, rigorous validation processes are indispensable to
ensure the accuracy and reliability of the results before committing substantial resources
to specialized studies. In the broader context of PRISMA hyperspectral remote sensing,
validation assumes paramount significance. It serves multifaceted purposes, including
data accuracy verification, result precision enhancement, method and algorithm evaluation,
and optimization of classification outcomes [79,80].

In this investigation, the initial step aimed to enhance the accuracy of PRISMA results
involved the classification of identified minerals into distinct mineralogy groups based
on mineralogical data. Subsequently, this process notably improved the interpretation of
the abundance maps. Detailed information regarding these mineral groups is outlined
in Table 3. Moreover, anomalies found in stream sediments and detailed petrographic
study and XRD analysis were meticulously correlated with the lithological units prevalent
in the study region. The outcome of this data integration is shown in Table 4. This
exhaustive interpretation enabled the identification of areas prone to containing the detected
mineral groups. Following this, geological maps underwent meticulous scrutiny to identify
potential occurrences of each mineral group and feasible ore mineralization.

In this study, geological information was integrated with PRISMA alteration abun-
dance maps, aiming to assess the correlation between classified alteration minerals and
geological formations. This process significantly deepened our understanding of the ge-
ological aspects while augmenting the accuracy of alteration minerals identification and
feasible ore mineralization. Figures 11A–D and 12A–C show the integration of the PRISMA
alteration abundance maps with the geological map and the information derived from
laboratory analysis. This data integration for the lithologies of amphibole schist (Scha) and
metagabbro, metadiabase, amphibolite, and gneiss (Met) can provide valuable insights into
potential ore mineralization (Figure 11A). In amphibole schist, the presence of elements
like Pb, Co, and Ba suggests a probable association with hydrothermal alteration deposits,
while the presence of MnO hints at the potential for metamorphic deposits. Similarly,
the Met lithologies, which contain elements such as Zn, Co, and Pb, also imply potential
connections to hydrothermal alteration deposits. Additionally, the occurrence of MnO
in Met lithologies suggests an affinity for metamorphic deposits. Given that amphibole
minerals are commonly found in skarn deposits, hydrothermal alteration deposits, and
metamorphic deposits, and that amphibolite and pyroxene are carriers and concentrators of
zinc possibly associated with Pb-Zn and iron ore deposits, it is reasonable to speculate that
both amphibole schist (Scha)and metagabbro, metadiabase, amphibolite, and gneiss (Met)
lithologies may coexist in zones, where Pb-Zn and iron mineralization occur. However,
comprehensive geological investigations and mineralogical analyses are imperative to
confirm the presence and economic feasibility of such mineral deposits in particular zones.
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Table 4. Geological formations and associated mineral groups in the study area.

Legend Geology Unit Description Mineral Group ICP-OES

EOad,
ba,

EOd,
Ea,
da

Altered andesite and dacite, andesit
to andesitic basalt, dacite, andesite,
micrdiorite with andesitic or dacitic

marginal facies

An extrusive volcanic rock formed from basalt and intermediate
rhyolite, typically containing minerals such as plagioclase, along
with pyroxene or hornblende. Hornblende in this rock can easily

alter into chlorite and epidote [81–83].

Clay group,
Oxide group,

Pyroxene group, Mica group

Ag-Zn-W-Sn-Sb-Pb-Mo-Cu-
Co-Ba-Au

Fe2O3-MnO

Et Red tuff with chert marker. Volcanic ashes [84]. Zn-Sn-Pb-Cu-Co

Sch Sericite, chlorite,
schist Hydrothermal alteration [85]. Mica group,

Clay group
Zn-Sb-Pb-Co-Ba-Au-As, MnO,

Fe2O3-TiO

Sr Serpentinite A rock is composed of one or a group of mineral types from the
serpentine group [86].

Serpentine group
(manganese-oxides) Cu-Cr-Ba-Au

Kus Shale and sandstone A sedimentary rock that appears in various colors depending on the
percentage of materials present in it [87].

Mica group,
Clay group,

Manganese oxide group
Zn-Sn-Co-Bi-Ba

Cm Colored mélange A sedimentary rock of volcanic origin typically contains
fine-grained deposits [88]. Clay group Zn-Co-Ba-Fe2O3

Ec Conglomerate A volcaniclastic sedimentary rock typically contains fine-grained
deposits [89]. Clay group

Px Pyroxenite Ultramafic igneous rock that has undergone serpentinization [90]. Pyroxene group

kusd Shale with diabasic tuff Sediments and volcanic ash [84,87]. Clay group,
Manganese oxide group Sb, Co-TiO

ap Pyroxene andesite Andesite igneous rock with pyroxene [90].
Oxide group,

Manganese oxide group,
Pyroxene group

Pb-Ni-Cr-Co-Ba,
Fe2O3-TiO-MnO

ah Hornblende andesite
Hornblende andesite, a frequent rock type in volcanic arcs and

subduction zones, results from magma with medium silica content
solidifying as it cools [91].

Amphibole group As

Eob Tuff breccia
Tuff is a type of rock created from volcanic ash that is ejected from a
vent during a volcanic eruption. Once ejected and settled, the ash

undergoes lithification, converting it into a solid rock [92].
Zeolite group Zn-Sn
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Table 4. Cont.

Legend Geology Unit Description Mineral Group ICP-OES

Ngm Marly tuff
Tuff marl is a sedimentary rock that combines characteristics of both
marl and tuff. It forms through the consolidation and hardening of
volcanic ash mixed with fine-grained sediment rich in clay [84,89].

Clay group

Kud Diabase
Diorite is a fine-grained mafic igneous rock that is typically

composed of minerals such as plagioclase feldspar and
pyroxene [93].

Ba

Met Metagabbro, metadiabase,
amphibolite and gneiss

Metamorphic rocks are rocks that change mineral composition and
texture due to high heat and pressure [93–96].

Mica group,
Amphibole group

Zn-Pb-Hg-Cr-Co-Bi-Ba-MnO-
TiO

gb Gabbro A coarse-grained and intrusive igneous rock with a chemical
composition equivalent to basalt is an ultramafic rock [97].

Oxides group,
Pyroxene group Cu

lv Listvinite (listvenite, listvanite, or
listwaenite)

Low-temperature metamorphic rocks such as beresite are formed as
a result of the alteration in ultramafic rocks like peridotite or

serpentinite. Serpentinite is often associated with hydrothermal
alteration processes, where fluids interact with ultramafic rocks and

lead to mineral replacement, resulting in a distinct metamorphic
rock. It is typically found in areas of intense folding or faulting, as
well as in proximity to mineral deposits associated with ultramafic

rocks [98].

Manganese oxide group,
Oxide group MnO

Ub Ultrabasic rocks in igneous

Ultramafic rocks are a type of igneous rocks that have very low
silica content and are primarily rich in magnesium and iron. These
rocks are often composed of dark-colored mafic minerals that have

a high abundance of magnesium and iron [99].

Oxides group,
Mica group,

Amphibole group,
Pyroxene group

Zn

g Granite

Granite is a coarse-grained, intrusive igneous rock composed
mainly of quartz, feldspar, amphibole, and mica minerals. It forms

deep within the Earth’s crust through the slow cooling of
magma [100].

Mica group,
Oxides group,

Amphibole group
Ba-TiO

Schm Mica Schist The definition by the IUGS is a schistose metamorphic rock with
mica minerals as the only major (>5%) constituent [98]. Mica group TiO-MnO-Fe2O3
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Table 4. Cont.

Legend Geology Unit Description Mineral Group ICP-OES

Scha Amphibole schist

Amphibole schist is a metamorphic rock predominantly composed
of amphibole minerals like hornblende and actinolite, along with

plagioclase feldspar and minimal quartz. It has a dark color, dense
texture, and a foliated or schistose structure, often appearing

banded. The rock may exhibit a salt-and-pepper appearance due to
small black and white mineral flakes. Amphibole schist forms
through the metamorphism of pre-existing rocks under high

pressure and temperature conditions [101].

Amphibole group Fe2O3-MnO

Schg Green schist

Green schist is a metamorphic rock recognized for its green
appearance, mainly attributed to minerals like chlorite, serpentine,
and epidote. It also contains platy minerals such as muscovite and
platy serpentine, contributing to the rock’s schistosity, which makes

it prone to splitting into layers. Additionally, common minerals
found in green schist include quartz, orthoclase, talc, carbonate

minerals, and amphibole, particularly actinolite [101].

Amphibole group,
Mica group,
Clay group

gd Microgranodiorite

Microgranodiorite is an igneous rock that falls within the
granodiorite category but has a finer grain size. It is composed of

minerals such as quartz, plagioclase feldspar, and potassium
feldspar. The term “micro” in micro granodiorite indicates that the
individual mineral grains are smaller, typically in the range of less

than 1 mm. Granodiorite itself is an intermediate intrusive rock,
and microgranodiorite shares similar mineralogical characteristics
but with a more fine-grained texture. This rock type forms through
the slow cooling and crystallization of magma beneath the Earth’s
surface, contributing to its coarse to fine-grained appearance [100].

Pyroxene group,
Micas group

sa Salt flats

Salt flats, also known as salt pans or salt deserts, are extensive flat
terrains characterized by a layer of salt and minerals. Typically

located in arid regions with low rainfall and high evaporation rates,
these areas form through the evaporation of water from former

lakes or seas, leaving concentrated mineral deposits on the surface.
Notable salts present in salt flats include sodium chloride (table

salt), potassium, lithium, and magnesium salts. The resulting
landscape often gives a surreal, otherworldly impression, with large

areas covered in a white or light-colored crust [102].

Sulfate group
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Unveiling the presence of argillic, propylitic, and phyllic hydrothermal alterations
within the study area (Figures 11B and 12C) shows that the argillic and propylitic, are
accurately associated with the clay mineral group, notably observed within the altered
andesite and dacite (EOad) rock unit and the andesite (Ea) rock unit. Additionally, the
acknowledgment of phyllic alteration linked to the mica group within the Ea is duly noted.
Correspondingly, the detection of W, Mo, Cu, and Au geochemical anomalies within the
andesite (Ea) and altered andesite and dacite (EOad) lithological units suggests the potential
of copper and gold mineralization, which is exactly matched with the spatial location of
the Shadan porphyry gold–copper deposit. This deposit, comprising 27 million tons and
containing 0.55 g per ton of gold, is categorized as a porphyry gold–copper deposit owing
to its low copper mineralization content. The mineralization is characterized by a mineral
mass extending several hundred meters and associated with vertically oriented pipe-like
intrusions spanning several hundred meters [103].

A compelling correlation between the oxide group in altered andesite and dacite
(EOad), may reveal a significant Sn (tin) anomaly (see Figure 11C). Similarly, geochemical
anomalies of TiO2 (titanium dioxide), MnO (manganese oxide), and Fe2O3 (iron oxide)
have been identified within the Mica Schist unit (Schm), aligning well with the remote
sensing findings and suggesting the presence of oxide minerals. Consequently, the oxide
group is associated with both altered andesite and aacite (EOad) and Mica Schist (Schm)
lithologies, offering promising prospects for a diverse range of oxide ore mineralization.
The pyroxene minerals group was typically found with pyroxenite (Px), gabbro (gb), and
Ultrabasic (Ub) lithological units and the potential zones of copper and gold mineralization
in the study area (Figure 11D, see Figures 11B and 12C). Generally, in porphyry copper
deposits, skarn deposits, and volcanic-hosted massive sulfide deposits, pyroxene minerals
are commonly found along with the occurrences of copper mineralization [103].

The manganese oxide group is commonly found alongside serpentinite (Sr) as well as
shale and sandstone (kus) in the study area (Figure 12A). These lithological unit formations
were not initially considered as potential single-element anomalies. Field investigations
have confirmed the presence of manganese oxide group as desert varnish in these litho-
logical units. In Figure 12B, the central sector, known as salt flats (Sa), characterized by
arid conditions and high evaporation rates, is conducive to the formation of salt flats. The
presence of sulfate minerals in this part of the study area was further supported by field
checking, which verified the remote sensing identification of the sulfate group.

After interpreting the integrated maps of mineral abundance and perspective geologi-
cal maps illustrated in Figures 11A–D and 12A–C, a critical aspect of this analysis involved
validating the coherence of these maps with relevant geological references. To accomplish
this goal, the scoring system to evaluate the alignment of abundance maps with actual
geological features, the normalized score (NS) equation [71] was implemented, which offers
a quantitative framework derived from qualitative evaluations. This equation facilitates
the conversion of qualitative assessments into numerical metrics, thereby establishing an
objective basis for analysis [71].

Central to the NS equation are two key parameters: “C” represents the coverage
level of desired geological units, while “E” reflects the accuracy level of estimation, these
parameters indicate the degree of alignment between classification algorithm predictions
and actual geological conditions. Notably, specific values for “C” and “E” were referenced
from Table 5, which outlines predefined benchmarks for accuracy assessment. To provide a
comprehensive understanding of the NS, we employed the normalized score percentage
(NSP) formula, elaborating on the outcomes in Table 6.

NS = ∑n
1

Cn × En

N
(1)

NSP = 25 × NS (2)

0 ≤ NS ≤ 4
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0 ≤ NSP ≤ 100

where,
NS = Normal score;
NSP = Normal score percentage;
C = Compliance;
E = Estimate;
n = The class number;
And N = The number of maps used for category classification validation.
This supplementary analysis enhances the interpretability of results, offering insights

into the reliability and fidelity of hyperspectral remote sensing methodologies. Derived
from the data presented in Table 6, the results of the MF algorithm classification yielded a
normalized score of 3.42 out of 4. This indicates an 85.71% agreement with the geological
map that is specific to the area, which is considered to be a satisfactory and commendable
outcome. Consequently, alteration mapping results derived from PRISMA hyperspectral
data are specifically comprehensive and accurate in this study. Hence, PRISMA datasets
have prodigious aptitude supplying applicable information for hydrothermal alteration
mapping and consequent mineral exploration in the Sistan zone of eastern Iran, particularly
in the Sar-e-châh-e-shur region.

Table 5. Conversion of qualitative to quantitative criteria.

Compliance Estimate

Noncompliance: 0 Overestimate: 0

Partial compliance: 1 Partial estimate: 0.25

Semi-compliance: 2 Semi-estimate: 0.5

Almost compliance: 3 Almost estimate: 0.75

Perfect compliance: 4 Perfect estimate: 1

Table 6. The results of validation of classes based on NS.

The Name of the Map Used in the Validation Estimate Compliance NS NSP

Clay group 1 4

3.42 85.71

Amphibole group 0.75 4

Oxide group 1 3

Pyroxene group 1 3

Mica group 1 4

Sulfate group 1 4

Manganese oxide group 1 3

6. Conclusions

This study illustrates the applicability of hyperspectral PRISMA data in alteration
mineral mapping for mineral exploration in the Sar-e-Châh-e-Shur area, Birjand, Iran. By
meticulously adjusting and preprocessing the PRISMA data, the VCA algorithm identified
spectral signatures related to alteration minerals, which were then validated using the
USGS spectral library. The PRISMA data underwent classification using the MFU algo-
rithm. The analysis revealed a diverse spectrum of mineral groups, including the clay
group, amphibole group, oxide group, pyroxene group, mica group, sulfate minerals, and
manganese oxide group. Integration of the PRISMA alteration mapping results with the
geological map and laboratory data discovered feasible ore mineralizations associated with
alteration mineral groups. This integration provides valuable insights for Pb-Zn and iron
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mineralization in amphibole schist and meta-gabbro units, copper and gold deposits associ-
ated with andesite and schist units, diverse mineralization occurrences in altered andesite,
dacite, Mica Schist, gabbro, and Ultrabasic units. However, comprehensive geological (e.g.,
spectroradiometer measurements) and geophysical (e.g., gravity, magnetic, magnetotelluric,
induced polarization (IP) methods) and geochemical (e.g., metal grading) assessments are
essential to confirm the economic feasibility of the ore mineralizations in the identified
high-potential zones. Each identification underwent rigorous validation via the NS equa-
tion, ensuring the precision and reliability of the detected alteration mineral compositions.
The use of the NS equation for validation highlighted its effectiveness as a quantitative
framework for evaluating the accuracy and reliability of PRISMA outputs. This validation
framework showed potential for adaptation and application across diverse geographical
contexts, thereby enhancing the credibility of hyperspectral PRISMA remote sensing analy-
sis. By presenting a comprehensive methodology for alteration mineral identification and
validation, this study illuminates the way for future research aimed at optimizing mineral
resource exploration. In fact, this study represents a pioneering approach to mineral explo-
ration by harnessing the power of PRISMA hyperspectral remote sensing imagery. More
than just a case study, this work has significant implications for global mineral exploration.
It offers a unique integration of PRISMA alteration mapping with geological maps and
laboratory data to uncover potential ore mineralizations, providing invaluable insights
into potential mineral deposits. By demonstrating the potential and versatility of PRISMA
hyperspectral remote sensing imagery, this study paves the path for future research and
innovation in mineral exploration, potentially transforming the field in the years to come.
This contribution emphasizes the transformative role of PRISMA hyperspectral remote
sensing imagery for mineral exploration in metallogenic provinces around the world. It is
recommended to continue to refine and expand the hyperspectral methodologies, and we
can edge closer to unlocking the full potential of PRISMA hyperspectral remote sensing
imagery in addressing the mounting challenges of mineral exploration globally.
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