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Abstract: Oceanic targets, including ripples, islands, vessels, and coastlines, display distinct sparse
characteristics, rendering the ocean a significant arena for sparse Synthetic Aperture Radar (SAR)
imaging rooted in sparse signal processing. Deep neural networks (DNNs), a current research empha-
sis, have, when integrated with sparse SAR, attracted notable attention for their exceptional imaging
capabilities and high computational efficiency. Yet, the efficiency of traditional unfolding techniques
is impeded by their architecturally inefficient design, which curtails their information transmission
capacity and consequently detracts from the quality of reconstruction. This paper unveils a novel
Memory-Augmented Deep Unfolding Network (MADUN) for SAR imaging in marine environments.
Our methodology harnesses the synergies between deep learning and algorithmic unfolding, en-
hanced with a memory component, to elevate SAR imaging’s computational precision. At the heart
of our investigation is the incorporation of High-Throughput Short-Term Memory (HSM) and Cross-
Stage Long-Term Memory (CLM) within the MADUN framework, ensuring robust information flow
across unfolding stages and solidifying the foundation for deep, long-term informational correlations.
Our experimental results demonstrate that our strategy significantly surpasses existing methods in
enhancing the reconstruction of sparse marine scenes.

Keywords: sparse SAR imaging; maritime environment; memory-augmented deep unfolding network

1. Introduction

Synthetic Aperture Radar (SAR) plays an extremely important role in marine obser-
vation. SAR is a high-resolution radar system that possesses all-weather and all-time
capabilities, enabling it to observe the ocean under cloud cover, at night, and in adverse
weather conditions [1]. Its applications are vital and diverse, ranging from dynamic ocean
monitoring (such as surface wind, waves, and ocean currents) and ship detection, to marine
pollution surveillance, sea ice observation, and the mapping of coastlines and islands [2].
However, despite the significant potential applications of SAR systems in oceanic obser-
vation, the imaging process encounters challenges related to data processing and image
quality, especially regarding the demands for data intensity and image reconstruction
precision in large-scale marine environments.
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In this context, the integration of sparse signal processing theory into SAR imaging
algorithms represents a key enhancement in the capabilities of SAR systems. By breaking
through the limitations imposed by the Nyquist sampling theorem, sparse SAR imaging
technology reduces data acquisition requirements [3]. This approach treats SAR imaging
as an inverse problem, addressing it through regularization methods that simplify system
complexity, reduce data rates, and enhance image quality. Ocean scenes that are inherently
sparse in nature, such as ships, oil spills, icebergs, and islands, become the primary focus
for the application of sparse SAR imaging technology [4,5].

With the rapid advancement of deep learning, the fusion of Deep Neural Networks
(DNNs) with sparse signal processing for SAR imaging has emerged as a cutting-edge
research domain. The incorporation of DNNs offers enhanced computational efficiency and
eliminates the need for extensive parameter tuning. Among the myriad approaches that
combine deep neural networks with sparse signal processing for SAR imaging, methods
based on Deep Unfolding Networks (DUNs) [6] represent a key innovation, bolstering tra-
ditional iterative model-driven imaging techniques. Diverging from end-to-end networks
that aim to directly learn from echo data to final imagery, DUNs employ a sophisticated
strategy that amalgamates model-driven and data-driven approaches, adeptly navigating
the challenges of interpretability often associated with the opaque nature of conventional
end-to-end networks and thereby elevating imaging precision [7]. DUNs have found
widespread application in the field of SAR imaging, as demonstrated in [8–12].

However, the performance of SAR imaging algorithms based on DUNs is compro-
mised by the high demand for information throughput, primarily due to the single-channel
transmission mode for inputs and outputs at each stage of DUN, which leads to the loss of
multi-channel information constructed during feature extraction, transformation, and inter-
stage operations. This not only results in a reduction in details but also impairs imaging
accuracy. Moreover, the inherent sequential cascading structure of DUN stage modules
facilitates the transition from the output of one stage to the input of the next, limiting the
comprehensive utilization of information from earlier stages and thus diminishing the
quality of reconstruction results achieved by DUN-based SAR imaging algorithms. The
intrinsic architecture of DUNs impedes the smooth exchange of multi-channel and cross-
stage information, thereby reducing the efficacy of DUN-based algorithms in capturing the
intricate details of sparse scenes.

To overcome these limitations, we introduce the Memory-Augmented Deep Unfolding
Network (MADUN) [13] and propose a sparse SAR imaging algorithm leveraging MADUN,
specifically designed for reconstructing sparse marine scenes. MADUN represents a
significant advancement in deep learning by incorporating both short-term and long-term
memory enhancement mechanisms—where inter-stage multi-channel information transfer
is considered short-term memory, and cross-stage information interaction exemplifies long-
term memory—thereby addressing the inherent memory transmission challenges within the
DUN’s structural design. Notably, MADUN has demonstrated considerable effectiveness in
complex imaging applications, including MRI. Architecturally, MADUN consists of two key
modules: a gradient descent module and a proximal mapping module. In [13], MADUN is
a real-valued network, whereas SAR images are complex-valued data. To accommodate
this difference, in the gradient descent module, we adopt a method of splitting the data
into real and imaginary components. This separation provides tailored inputs for the
proximal mapping module, enabling it to more effectively process complex-valued data in
subsequent stages. The proximal mapping module integrates dual mechanisms for memory
enhancement: High-throughput Short-term Memory (HSM) and Cross-stage Long-term
Memory (CLM) [13]. The HSM introduces a parallel channel for the transmission of multi-
channel information, markedly boosting the volume of data conveyed between successive
stages of DUN. Meanwhile, the CLM mechanism accounts for long-range dependencies
by establishing connections across stages. This feature substantially improves the ability
of later stages to utilize information from earlier stages, facilitating a harmonious balance
between past and present signal states. Collectively, our method enriches the quality of
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marine sparse SAR images, enhancing the performance of SAR image reconstruction. The
main contributions of this paper are:

(1) A sparse SAR imaging algorithm designed specifically for reconstructing sparse
maritime scenes is introduced, employing the Memory-Augmented Deep Unfold-
ing Network (MADUN). This architecture is characterized by two key modules—a
gradient descent module and a proximal mapping module;

(2) A gradient descent module tailored to meet MADUN’s requirements for processing
complex-valued signals is proposed. This is achieved by dividing the data into
its real and imaginary components, thus enabling the more effective processing of
complex-valued radar signals;

(3) By integrating High-throughput Short-term Memory (HSM) and Cross-stage Long-
term Memory (CLM) enhancement mechanisms into the SAR imaging algorithm
based on DUN, enhancing the proximal mapping module by improving the efficiency
of multi-channel information transmission and strengthening the processing of long-
distance dependencies between stages is achieved;

(4) Extensive experiments have validated that our proposed MADUN-based sparse
SAR imaging algorithm significantly outperforms traditional sparse reconstruction
algorithms like ISTA and deep unfolding imaging methods such as ISTA-Net+ in
reconstructing sparse marine scenes.

The structure of this paper is outlined as follows: Section 2 provides an overview of
the sparse SAR imaging model and introduces our novel sparse SAR imaging approach,
which leverages the MADUN algorithm. Section 3 details the outcomes of both simulated
experiments, ablation studies and measured experiments, showcasing the efficacy of our
method. Section 4 delves into a comprehensive discussion of the findings and the limitations
of our approach. Finally, Section 5 concludes the paper and outlines future work.

2. Materials and Methods
2.1. Sparse Imaging Model for SAR

In the operation of SAR, the data acquisition phase entails the collection of echo
data from the target area, which include two-dimensional data across the range and
azimuth dimensions, represented as Y ∈ CP×Q. The objective of sparse SAR imaging is to
utilize the echo data to reconstruct the imaging scene’s scattering coefficients, represented
by X ∈ CM×N . To accurately describe the correlation between SAR echo data and the
scattering distribution of the imaging scene, it is possible to model this relationship through
a sparse SAR imaging model. This model can be expressed as a linear observation model,
represented by the equation:

y = Φx + n (1)

where y ∈ CPQ×1 is the vectorized echo signal Y. Similarly, x ∈ CMN×1 is the vectorized
complex-valued scattering coefficient X, Φ ∈ CPQ×MN is the measurement matrix, and
n ∈ CPQ×1 represents the additive noise introduced during measurement.

In sparse SAR imaging challenges, regularization algorithms play a crucial role, and
can be expressed as follows:

x̂ = min
x

1
2
∥y − Φx∥2

2 + λR(x) (2)

where x̂ approximates the true vectorized complex-valued scattering coefficient x, R(x) is
the regularization term, and λ > 0 is a scalar regularization parameter.

To achieve a sparse solution within the framework of compressive sensing, it is
common to employ the L1 norm as the regularization term, which leads to the formulation,

x̂ = min
x

1
2
∥y − Φx∥2

2 + λ∥x∥1 (3)
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Equation (3) is also recognized in the field of statistics as the Least Absolute Shrinkage
and Selection Operator (LASSO) problem [14]. Techniques such as the Iterative Shrinkage-
Thresholding Algorithm (ISTA) [15] and the Alternating Direction Method of Multipliers
(ADMM) [16] are capable of resolving the LASSO problem effectively.

2.2. Deep Unfolding Network Based on ISTA

ISTA, when integrated with deep neural networks, becomes a potent tool for ad-
dressing the reconstruction of scene scattering coefficients. This synergy has led to the
development of an ISTA-based deep unfolding network, known as ISTA-Net+ [17]. Figure 1
depicts the overarching architecture of ISTA-Net+, which is segmented into two principal
components: the gradient descent part and the proximal mapping part. The formulation
for the gradient descent component is given by:

r(k) = x(k−1) − ρ(k)ΦT
(

Φx(k−1) − y
)

(4)

where k denotes the iteration step, and ρ(k) is the step size for the k-th stage. The result
of the gradient descent process, r(k), serves as a residual representation at the k-th stage.
Therefore, the proximal mapping phase aims to reintegrate these high-frequency elements.
The formula for the proximal mapping stage is expressed as:

x̂(k) = r(k) + P
(

Ṽ
(

so f t
(

V
(

U
(

r(k)
))

, θ(k)
)))

(5)

where P(·) and U(·) signify linear convolution operations, V(·) represents a nonlinear
transformation, and its pseudo-inverse Ṽ(·) satisfies Ṽ ◦ V = I (I is the identity operator).
so f t

(
·, θ(k)

)
is a soft thresholding operator, and θ(k) is the threshold. The application

of these operators in combination enables the effective extraction and restoration of the
desired target [17].

Figure 1. Illustration of the ISTA-Net+ framework.

2.3. Sparse SAR Imaging Algorithm Based on Memory-Augmented Deep Unfolding Network

The deep unfolding network inspired by ISTA exhibits a sequential, stage-by-stage
architecture. However, this design, characterized by single-channel information flow
between stages, inadvertently leads to the omission of critical information, mirroring a
shortfall in short-term memory capabilities. Moreover, the linear, cascaded structure that
links the output of one stage directly to the input of the next can cause a progressive
attenuation of information transfer. This effect hampers the effective transmission of vital
features identified in earlier stages to later ones, indicative of a lack of a robust long-term
memory mechanism. To address these limitations and bolster the network’s capacity for
information retention across stages, the introduction of a memory enhancement mechanism
is imperative. Such a mechanism is designed to amplify the network’s ability to leverage
data correlations, thereby elevating the quality of SAR imaging outcomes.
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In response to this need, we introduce an innovative sparse SAR imaging algorithm
embodied in a MADUN. Rooted in the ISTA-based deep unfolding framework, MADUN
incorporates a novel memory enhancement feature. This algorithm enhances the traditional
ISTA algorithm’s performance by integrating a deep learning framework and incorporating
a memory augmentation mechanism. It represents an advanced hybrid method that
synergizes convex optimization theory with deep learning techniques [18]. As depicted
in Figure 2, the architecture of MADUN is composed of two core components: a gradient
descent module and a proximal mapping module. The gradient descent module is tasked
with independently processing the real and imaginary components of the radar signal.
Concurrently, the proximal mapping module is designed to fortify both short-term and
long-term memory through dual pathways. These pathways are intricately woven into
the primary information flow, ensuring dynamic interaction at each stage. The short-term
memory pathway aims to mitigate the loss of information during the transition between
adjacent stages, whereas the long-term memory pathway is devoted to overcoming the
absence of inter-stage connectivity. This approach, integrating dual memory enhancement
mechanisms, not only preserves the integrity of information through successive stages,
but also enhances the algorithm’s capacity to reconstruct high-fidelity SAR images by
effectively utilizing the inherent correlations within the data.

Figure 2. Illustration of sparse SAR imaging algorithm based on MADUN.

2.3.1. Gradient Descent Module

Given the inherently complex-valued nature of radar signals, adept handling of
these complex signals is imperative. Consequently, the data are bifurcated into their
real and imaginary components, effectively partitioning Equation (4) into two segments:
r(k) = Re

(
r(k)
)
+ jIm

(
r(k)
)

. Here, Re(·) signifies the real part, and Im(·) the imaginary
part of the matrix. By adhering to complex arithmetic principles, the formulation for the
gradient descent module can be deduced as follows:

Re
(

r(k)
)
= Re

(
x̂(k−1)

)
+ ρ(k)

{
Re
(
ΦH)Re(y)

−Im
(
ΦH)Im(y)

}
− ρ(k)

 Re
(
ΦHΦ

)
Re
(

x̂(k−1)
)

−Im
(
ΦHΦ

)
Im
(

x̂(k−1)
) (6)

Im
(

r(k)
)
= Im

(
x̂(k−1)

)
+ ρ(k)

{
Re
(
ΦH)Im(y)

+Im
(
ΦH)Re(y)

}
− ρ(k)

 Re
(
ΦHΦ

)
Im
(

x̂(k−1)
)

+Im
(
ΦHΦ

)
Re
(

x̂(k−1)
) (7)

Therefore, the configuration of the gradient descent module for the k-th stage is
illustrated in Figure 3.



Remote Sens. 2024, 16, 1289 6 of 21

Figure 3. Illustration of the k-th stage in MADUN. “©” denotes concatenation along the channel
dimension. “dCom” represents the decomposition of a complex number into its real and imaginary
parts, while “Com” represents the inverse operation of “dCom”.

2.3.2. Proximal Mapping Module Combined with Memory Enhancement Mechanisms

Considering the gradient mapping module’s role in bifurcating radar signals into their
real and imaginary components, it is imperative for the subsequent proximal mapping
module to individually process these constituents. The architecture of the proximal map-
ping module, endowed with dual memory augment strategies, is depicted in Figure 3. The
nonlinear transformation V(·) is conceptualized as the synergy of two linear convolution
operations and a ReLU function, specifically V(·) = C2(ReLU(C1(·))), where both linear
convolution operators C1(·) and C2(·) can be implemented by filter banks. Analogously,
Ṽ(·) is represented as Ṽ(·) = C̃2

(
ReLU

(
C̃1(·)

))
. The operators C1(·) and C2(·) denote a

series of N f filters, each with dimensions 3 × 3 × N f . U(·) is facilitated by a filter sized
3 × 3 × N f , and P(·) pertains to a collection of N f filters, each measuring 3 × 3. Short-term
memory is integrated prior to U(k), being captured and stored before engagement with P(k).
Long-term memory leverages a ConvLSTM [19] mechanism, necessitating the inclusion of
a ConvLSTM unit subsequent to the so f t

(
·, θ(k)

)
. The default setting for N f is 32.

A. High Throughput Short-term Memory
The short-term memory enhancement mechanism introduced, denoted as Ms

(k−1),
features dimensions H × W × C. This facilitates the storage of multi-channel information,
where H and W denote the image’s height and width, respectively. Initially, the short-term
memory mechanism generates feature maps from SAR echo data. Specifically, the echo
data y, after being processed through the measurement matrix Φ, are passed through a
single convolution layer to produce a C-channel feature map, Ms

(0), as follows:

Ms
(0) = C0

(
ΦTy

)
(8)

where C0(·) is a single convolution layer with a filter kernel size of 3 × 3.
The HSM facilitates multi-channel information transmission across nearly every stage

of the proximal mapping module. Its primary function at the current stage is to capture and
preserve multi-channel feature information. Though information transmission between
two adjacent stages remains single-channel, the feature information saved earlier is rein-
troduced at the next stage. This process ensures continuous high-throughput information
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transmission and significantly enhances the network’s short-term memory capabilities. As
shown in Figure 3, for stage k as an example, Ms

(k) can be represented as

Ms,Re
(k) = Ṽ(k)

[
ConvLSTM

(
so f t

(
V(k)

(
U(k)

(
Re
(

r(k)
)∣∣∣∣∣∣Ms,Re

(k−1)
))

, θ(k)
))]

(9)

Ms,Im
(k) = Ṽ(k)

[
ConvLSTM

(
so f t

(
V(k)

(
U(k)

(
Im
(

r(k)
)∣∣∣∣∣∣Ms,Im

(k−1)
))

, θ(k)
))]

(10)

where “||” denotes feature concatenation. Ms
(k−1) transmits high-throughput information

from the previous level to the current one, where short-term memory Ms
(k−1) is concate-

nated with r(k) along the channel dimension. After memory integration is completed,
it passes through the deep unfolding network’s hierarchy in coordination with r(k) and,
after passing through the nonlinear transformation Ṽ(k)(·), generates high-throughput
information for stage k, used in memory integration for stage k + 1.
B. Cross-stage Long-term Memory

Since the ConvLSTM model can maintain continuity of information across cascaded
stages, balancing past stored information with the current state, it establishes long-range
cross-stage connections through ConvLSTM within CLM. Specifically, as depicted in
Figure 3, a ConvLSTM layer is interposed between the soft thresholding operation
so f t

(
·, θ(k)

)
and the nonlinear transformation Ṽ(k)(·). Here, the output from the soft

thresholding operation feeds into the ConvLSTM network, generating a combination of
hidden states and memory cells,

[
h(k), c(k)

]
:

[
hRe

(k), cRe
(k)
]
= ConvLSTM

(
so f t

(
V(k)

(
U(k)

(
Re
(

r(k)
)))

, θ(k)
)

,
[
hRe

(k−1), cRe
(k−1)

])
(11)

[
hIm

(k), cIm
(k)
]
= ConvLSTM

(
so f t

(
V(k)

(
U(k)

(
Im
(

r(k)
)))

, θ(k)
)

,
[
hIm

(k−1), cIm
(k−1)

])
(12)

We employed the ConvLSTM(·) architecture, where ∗ denotes convolution and ◦
represents the Hadamard product, with Wsi, Whi,. . ., Who as filter weights, bi, b f ,. . ., bo as
biases, and σ(·) and tanh(·) representing the sigmoid and tanh functions, respectively.

The input gate i(k) is regulated by the current input s(k), the output from the preceding
ConvLSTM module h(k−1), the module state c(k−1), and bias bi:

i(k) = σ
(

Wsi ∗ s(k) + Whi ∗ h(k−1) + bi

)
(13)

The forget gate f(k) decides which parts of the previous cell state c(k−1) to forget:

f(k) = σ
(

Ws f ∗ s(k) + Wh f ∗ h(k−1) + b f

)
(14)

The cell state c(k), acting as a state information accumulator, updates as follows:

c(k) = f(k) ◦ c(k−1) + i(k) ◦ tanh
(

Wsc ∗ s(k) + Whc ∗ h(k−1) + bc

)
(15)

The output gate o(k) is described by:

o(k) = σ
(

Wso ∗ s(k) + Who ∗ h(k−1) + bo

)
(16)

The module output h(k), determined by the latest cell state c(k) and output gate o(k), is:

h(k) = o(k) ◦ tanh
(

c(k)
)

(17)

This cross-stage long-term memory utilization is aimed at establishing dependencies
from the initial stage through all subsequent stages of information flow, without the
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necessity of introducing additional memory information at the commencement of this path,
allowing for

[
h(0), c(0)

]
to be initialized to zero. The dimensions of h(k) and c(k) are both

H × W × C. The output of the cross-stage long-term memory module for a given stage,
h(k), serves as the input to the nonlinear transformation Ṽ(·) on the main information flow
path, and both h(k) and the latest cell state c(k) progress to stage k + 1 through the long-term
memory mechanism, transmitting high-level features across different stages to bolster deep
information association.

Consequently, the proximal mapping module, augmented with dual memory enhance-
ment mechanisms, is articulated as:

Re
(

x(k)
)
= Re

(
r(k)
)

+P(k)
(

Ṽ(k)
(

ConvLSTM
(

so f t
(

V(k)
(

U(k)
(

Re
(

r(k)
)

Ms,Re
(k−1)

))
, θ(k)

)))) (18)

Im
(

x(k)
)
= Im

(
r(k)
)

+P(k)
(

Ṽ(k)
(

ConvLSTM
(

so f t
(

V(k)
(

U(k)
(

Im
(

r(k)
)

Ms,Im
(k−1)

))
, θ(k)

)))) (19)

where “||” denotes feature concatenation. At the end of the proximal mapping module, the re-
sults from both the real and imaginary components are combined, x(k) = Re

(
x(k)
)
+ jIm

(
x(k)
)

,
to obtain the reconstructed result for that stage.

2.4. Network Parameters and Loss Function

The learnable parameters of the MADUN are denoted as the set Γ =
{

C0(·), ρ(k), θ(k),

U(k), P(k), V(k), Ṽ(k), ConvLSTM(k)
}K

k=1
, where the parameters requiring updates within

V(k) and Ṽ(k) are C1(·), C2(·), and C̃1(·), C̃2(·), and those within ConvLSTM(k) are the filter
weights W∗i and W∗o as well as bias terms bi, b f ,. . ., bo. Their updates can be achieved
through the training process by minimizing the loss function L. Given training data pairs{(

yj, xj

)}J

j=1
, where xj represents the ground truth and yj represents the measured input,

the network generates reconstructed result x̂(K)j . Besides reducing the discrepancy between the

reconstructed result x̂(K)j and the label value xj, constraints on V(·) and Ṽ(·) are also required

to satisfy the symmetry relationship: Ṽ ◦ V = I, and thus the loss function is defined as:

L(Γ) = L1 + γL2 (20)

L1 =
1

JN

J

∑
j=1

∥x̂(K)j − xj∥
2

2
(21)

L2 =
1

2JN

J

∑
j=1

K

∑
k=1

∥Ṽ(k)
(

V(k)
(

Re
(

r(k)j

)))
− Re

(
r(k)j

)
∥

2

2

+
1

2JN

J

∑
j=1

K

∑
k=1

∥Ṽ(k)
(

V(k)
(

Im
(

r(k)j

)))
− Im

(
r(k)j

)
∥

2

2

(22)

where γ = 0.01 is the weight parameters, J represents the total number of training samples,
N is the size of each xj, and K is the total number of stages in MADUN.

3. Results

In this section, we meticulously detail the experimental framework and outcomes
that underscore the efficacy of the MADUN for sparse SAR imaging. Our assessment
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juxtaposes the performance of MADUN against the conventional sparse ISTA algorithm
and the advanced ISTA-Net+-based deep SAR sparse imaging approach in the context of
marine sparse scenes. Our experimental evaluation bifurcates into two segments: analyses
utilizing simulated data and those employing measured data. For the simulated dataset, we
leverage synthetic echoes derived from the publicly accessible AIR-SARShip dataset [20].
Preliminary experiments are conducted to ascertain the optimal configuration of stages
and training iterations for MADUN. Subsequently, we elucidate the imaging outcomes
for marine sparse scenes at varying sampling ratios. Through comparative analysis, the
superior imaging performance of our proposed methodology is vividly demonstrated.
Concurrently, we also conduct an evaluation of the performance of the proposed method
in terms of the reconstruction quality of the phase of the complex scattering coefficient.
Furthermore, we execute ablation studies to validate the pivotal contribution of the HSM
and CLM mechanisms in enhancing the performance of sparse SAR imaging algorithms.
In the measured experiments, we employ authentic echo data from diverse marine sparse
scenes, sourced from Sentinel-1 and GF-3 satellites. The results from these real-world
scenarios emphatically affirm the practical applicability and effectiveness of our proposed
MADUN approach in accurately capturing and imaging sparse marine scenes.

The metrics used to evaluate the reconstruction performance of the algorithms in
this section include: Normalized Mean Square Error (NMSE), Peak Signal-to-Noise Ratio
(PSNR), Structural Similarity Index Measure (SSIM) and Image Entropy (ENT). These are
defined as follows:

NMSE =
∥x̂ − x∥2

F

∥x∥2
F

(23)

where x̂ represents the SAR image reconstructed from sampled echo data, while x represents
the corresponding ground truth.

PSNR = 10 · log10

(
{x̂max}2

∥x̂ − x∥2
F/Nx

)
(24)

where x̂max represents the range of pixel values in the reconstructed image, and Nx is the
total number of pixels in image x.

SSIM =
(2µ1µ2 + c1)(2σ12 + c2)(

µ2
1 + µ2

2 + c1
)(

σ2
1 + σ2

2 + c2
) (25)

where µ1 and µ2 are the mean values of the two images, σ1 and σ2 are the variances of the
two images, σ12 is the covariance of the two images, and c1 and c2 are constants added for
division stability.

ENT = − 1
Ex̂

∑
i,j

(∣∣∣x̂(K)i,j

∣∣∣2 ln
(∣∣∣x̂(K)i,j

∣∣∣2))+ ln(Ex̂) (26)

where Ex̂ = ∥x̂∥2
2, and x̂(K)i,j denotes the value at (i, j) in the reconstructed image x̂.

The system parameters for the simulation and measured experiments are shown in
Table 1.

Table 1. Main parameters for simulation, Sentinel-1 satellite, and GF-3 satellite.

Parameters Simulation Sentinel-1 GF-3

Range FM rate 1.3 MHz/µs 1.93 MHz/µs 1.33 MHz/µs
Center frequency 5.4 GHz 5.4 GHz 5.4 GHz
Signal bandwidth 60.5 MHz 87.71 MHz 60 MHz

Pulse duration 45 µs 45.5 µs 45 µs
Pulse repetition frequency 1200 Hz 1871 Hz 1150 Hz
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3.1. Simulated Experiments

In the simulated experiments conducted within this study, the AIR-SARShip public
dataset was selected as the primary data source. Specifically, marine sparse scenes were
extracted from this dataset to compile the training set. The images sourced from the AIR-
SARShip dataset were cropped and resized to a uniform resolution of 256 × 256 pixels.
These adjusted images served as the basis for generating simulated echo data, which were
then utilized to train the network. The dataset for network training comprised 1000 slices
designated as the training set and an additional 100 slices allocated for the test set. For
the training process, all models underwent training for a total of 150 epochs, adhering
to a consistent training regime. The Adam optimizer was chosen for its effectiveness in
handling sparse gradients on noisy problems, a common characteristic of SAR imaging
tasks. The training was conducted with a batch size of 64, optimizing computational
efficiency while allowing for sufficient gradient approximation. The learning rate was set at
0.0001, a value that balances the need for convergence speed with the risk of overshooting
minimal loss regions. This configuration ensures a thorough exploration of the parameter
space and encourages the models to converge towards optimal solutions for the task of
sparse SAR imaging. The experiments were accelerated using a Quadro RTX 8000 GPU.

3.1.1. Optimization of Network Phases and Training Epochs

To ascertain the optimal configuration for the MADUN network, specifically regarding
the number of stages, it is essential to examine how varying the stage count influences the
reconstruction quality. This study undertook such an investigation by employing data from
the test set and conducting experiments at a 50% sampling ratio. This approach allowed for
a direct comparison between the performance of the proposed MADUN method and that
of ISTA-Net+ under varying conditions. The results of these experiments are illustrated in
Figure 4, which plots the PSNR performance of both methods against the number of stages.
Analysis of the graph reveals a trend where the reconstruction quality for both methods
shows improvement as the number of stages increases. However, a notable distinction is
that the PSNR associated with our proposed MADUN method consistently outperforms
that of ISTA-Net+ across all examined stage counts.

Figure 4. Comparison of average PSNR at different stages between ISTA-Net+ and proposed method.

A critical observation from these experiments is that the increase in reconstruction
quality becomes less pronounced beyond a certain point, particularly when the number
of stages surpasses 9. Beyond this threshold, the PSNR curve begins to level off, indi-
cating diminishing returns in terms of quality enhancement with additional stages. This
plateau suggests that further increases in the number of stages contribute marginally to
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improvement while adding computational burden. Taking into account both the need for
high-quality reconstruction and the practical considerations of computational efficiency,
the decision was made to set the default number of stages for the MADUN network at 9.
This choice represents an optimal balance, ensuring that the network achieves a high level
of reconstruction accuracy without incurring unnecessary computational complexity.

Just as with evaluating the optimal number of network stages, it is crucial to investi-
gate the effect of varying the number of training epochs on the reconstruction quality to
identify the most suitable training duration. This aspect of the study mirrors the approach
taken for assessing the impact of stage count, utilizing a 50% sampling rate and setting
the number of stages to 9 for consistency. The comparative analysis between the proposed
DUN-based method and ISTA-Net+ under these conditions is encapsulated in Figure 5.
This figure demonstrates the evolution of PSNR performance for both methods across dif-
ferent training epochs. A notable observation from Figure 5 is that the DUN-based method
consistently surpasses ISTA-Net+ in terms of PSNR throughout the training process. Fur-
thermore, a key insight is that the PSNR curves for both methods tend to reach a plateau
after approximately 150 epochs, indicating a stabilization in reconstruction quality. The
stabilization of the PSNR curves suggests that extending the training beyond 150 epochs
does not contribute significantly to further improvements in reconstruction quality. Instead,
it could potentially lead to overfitting or unnecessary computational resource expenditure.
Based on these findings, setting the default number of training epochs to 150 represents an
optimal compromise. This decision effectively balances the need for achieving high-quality
reconstruction outcomes against the imperative to manage computational complexity effi-
ciently. Therefore, for practical applications and future experiments within this framework,
150 epochs are recommended as the standard training duration to ensure both effective and
efficient network training.

Figure 5. Comparison of average PSNR at different epochs between ISTA-Net+ and proposed method.

3.1.2. Results under Different Sampling Ratios

In this subsection, we assess the reconstruction capabilities of our proposed algorithm
across a comprehensive range of sampling ratios, extending from 10% to 90%, as well as
considering the scenario of full sampling. We configured the imaging network with 9 stages
and employed the regularized iterative optimization algorithm ISTA, alongside the deep
learning-based ISTA-Net+, as benchmarks for comparative analysis. This experimentation
involved varying sampling ratios, achieved through the random selection of echo data
subsets at predetermined ratios. From the test dataset, we chose two distinct scenes for
evaluation: one featuring only ships and another depicting a dock. In the ships scene, the
targets are relatively isolated and dispersed, offering a clear contrast to the dock scene.
Despite being more densely populated than the ship scene, the dock scene still exhibits
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characteristics of sparsity. In this experiment, we selected results from two sampling ratios,
80% and 50%, where the differences in reconstruction quality were particularly pronounced,
to illustrate the specific outcomes of the reconstruction process.

In our study, we are initially concentrating on maritime targets that are relatively
isolated, and conduct experiments on SAR imaging at various sampling ratios. Figure 6
depicts the SAR imaging outcomes under different sampling ratio scenarios. At an 80%
sampling ratio, the performance of ISTA-Net+ surpasses that of the ISTA algorithm. The
images reconstructed using the ISTA method appear blurred and distorted, whereas those
processed with ISTA-Net+ exhibit significant improvements. In comparison to the first
two methods, our proposed approach produces images of superior quality, characterized
by sharper edges. When the sampling rate was reduced to 50%, there was a noticeable
degradation in the quality of image reconstruction across all methods, marked by an
increase in noise levels. However, our proposed method continued to outperform in terms
of enhanced reconstruction capability, particularly with regard to preserving structural
integrity and reducing noise.

Figure 6. Imaging results for simulated data ships scene. From left to right are the results from the
ISTA-based CS Imaging Algorithm, ISTA-Net+, and the Proposed Method. The first row displays
results with subsampling at η = 80%, and the second row with subsampling at η = 50%.

Table 2 presents a quantitative analysis of the ships scene reconstruction outcomes
across various data sampling ratios. The results demonstrate that the proposed methodol-
ogy yields high performance across both elevated and diminished sampling ratios. Both
PSNR and SSIM metrics reflect the reconstruction’s fidelity. In comparison with con-
ventional approaches such as ISTA and ISTA-Net+, our technique registers a PSNR im-
provement of approximately 3 to 9 dB. Regarding the SSIM metric, our method shows
an incremental enhancement ranging from 3% to 15%. These findings underscore our
method’s ability to not only preserve but also improve the overall image resemblance and
structural integrity, thereby confirming its robustness and reliability under scenarios of
reduced sampling ratios.

Figure 7 illustrates the comparative reconstruction efficacy of the three methodolo-
gies at varied sampling ratios (ranging from 10% to 90%) as well as at full sampling,
depicted through curves representing various averaged metrics. These results elucidate
that the reconstruction quality of all methods escalates as the sampling ratio increases.
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Notably, our proposed method consistently surpasses the performance of both ISTA and
ISTA-Net+ algorithms across the entire range of sampling ratios, indicating its superior
reconstruction capability.

Table 2. Comparison of PSNR and SSIM metrics for imaging of the ships scene in simulated experi-
ments through different methods.

Method
PSNR (dB)/SSIM

η = 50% η = 80%

ISTA 22.61/80.87% 28.87/89.20%
ISTA-Net+ 26.35/87.50% 31.38/94.82%

Proposed Method 32.52/96.53% 34.78/98.46%

Figure 7. Performance curves of SAR image reconstruction in the ships scene by ISTA, ISTA-Net+,
and the proposed method at different sampling ratios. (a) PSNR; (b) SSIM.

The subsequent analysis focuses on the dock scene. Figure 8 illustrates the SAR
reconstruction outcomes of the three methodologies at 80% and 50% sampling ratios. It is
evident that, across both higher and lower sampling ratios, the reconstruction quality of the
proposed method surpasses that of both ISTA and ISTA-Net+. The reconstruction results
from the ISTA algorithm display significant speckle noise, compromising the integrity of the
image and obscuring critical features. Although the ISTA-Net+ method offered improved
scene reconstruction quality, its lack of memory enhancement mechanisms led to the loss
of fine details in the reconstructed images. Conversely, the method introduced in this study
excelled in SAR scene reconstruction, adeptly capturing and preserving nuanced details.
Moreover, ISTA and ISTA-Net+ experienced varying levels of edge blurriness at a lower
sampling ratio, a flaw not observed in the method proposed here under identical conditions.
These findings underscore our method’s exceptional ability to maintain reconstruction
accuracy and detail fidelity even at reduced sampling ratios.

Table 3 presents the metrics for the reconstruction outcomes of this scene, with the
study’s proposed method showing higher PSNR and SSIM values in comparison to ISTA
and ISTA-Net+, thereby validating its enhanced accuracy in reconstruction and superior
capability in detail restoration. Similarly, Figure 9 displays the average performance metrics
of the three methods across different sampling ratios (from 10% to 90%) as well as at full
sampling for the dock scene, further evidencing the proposed method’s dominance in
image reconstruction quality. Through imaging experiments conducted in the aforemen-
tioned scenes at varied sampling ratios, our study ascertains that the proposed algorithm
consistently achieves high-quality imaging results in sparse marine environments with
diverse target distribution densities, showcasing remarkable robustness.



Remote Sens. 2024, 16, 1289 14 of 21

Figure 8. Imaging results for simulated data dock scene. From left to right are the results from the
ISTA-based CS Imaging Algorithm, ISTA-Net+, and the proposed method. The first row displays
results with subsampling at η = 80%, and the second row with subsampling at η = 50%.

Table 3. Comparison of PSNR and SSIM metrics for imaging of the dock scene in simulated experi-
ments through different methods.

Method
PSNR (dB)/SSIM

η = 50% η = 80%

ISTA 20.24/78.32% 25.33/85.14%
ISTA-Net+ 24.96/83.31% 29.69/92.63%

Proposed Method 30.11/93.24% 32.86/97.93%

Figure 9. Performance curves of SAR image reconstruction in the dock scene by ISTA, ISTA-Net+,
and the proposed method at different sampling ratios. (a) PSNR; (b) SSIM.

3.1.3. Evaluation of Phase Reconstruction Quality

In addition to focusing on the amplitude and geometric quality of scene reconstruction,
assessing the performance of phase reconstruction in the complex scattering coefficient
is equally critical. In a single SAR image, the phase of each pixel is typically random.
Therefore, while training, we generated simulated echoes with random phases. In the
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experiments conducted in this section, we chose the dock scene used in Section 3.1.2, at a
sampling ratio of 80%, to evaluate the phase reconstruction quality of our proposed method,
comparing it against the ISTA and ISTA-Net+ algorithms.

Figure 10 displays the performances of the three algorithms in phase reconstruction
within the dock scene. It is evident that our proposed method surpasses the other two in
phase reconstruction capability, demonstrating the superior preservation of phase infor-
mation. Conversely, both the ISTA and ISTA-Net+ algorithms experience varying degrees
of phase information loss during the reconstruction process, leading to inferior phase
reconstruction performance.
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3.1.4. Ablation Experiments

In this section, to further elucidate the contributions of the memory enhancement mech-
anism to the task of image reconstruction, we executed ablation studies on the algorithm,
particularly focusing on two pivotal elements of the memory enhancement mechanism
within the algorithm: HSM and CLM. While maintaining the other parameters of the deep
unfolding network, we established a sampling ratio of 50% and training epochs at 150. Our
adjustments were confined to the integration of short-term and long-term memory compo-
nents, facilitating a comparative analysis among sparse SAR imaging algorithms based on
MADUN, ISTA-Net+ alone, ISTA-Net+ augmented with HSM, and ISTA-Net+ enhanced
with CLM. PSNR, SSIM and NMSE were selected as the metrics for evaluation, enabling
the assessment of each algorithm’s reconstruction capability across varying numbers of
unfolding stages.
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Figure 11 and Table 4 illustrate the trends in overall reconstruction quality and the
specific quantitative outcomes for the four algorithms, with the stage count serving as a
variable. The line charts vividly delineate that our proposed methodology excels across
all stages, securing superior reconstruction results even with a reduced number of stages.
Notably, ISTA-Net+ supplemented with HSM and ISTA-Net+ integrated with CLM signifi-
cantly surpassed the performance of ISTA-Net+ devoid of memory enhancement mech-
anisms, as evidenced by their average PSNR and SSIM scores. Our approach, which
incorporates both memory enhancements, distinctly outshined the other three method-
ologies. For instance, at the standard stage count of K = 9, our method realized PSNR
improvements of approximately 6 dB over ISTA-Net+, 4 dB over HSM, and 3 dB over
CLM, respectively, and achieved a 3–8% elevation in the SSIM index, as well as a 0.01–0.03
improvement in the NMSE index. This suite of findings robustly validates the efficacy
of both HSM and CLM in the context of SAR scene imaging tasks, corroborating that the
concurrent application of these two strategies can synergistically amplify the performance
of SAR scene reconstruction.
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Table 4. Comparison of metrics for performance study of memory enhancement mechanism.

Method
PSNR (dB)/SSIM/NMSE

K = 5 K = 7 K = 9 K = 11

ISTA-Net+ 24.62/84.16%/0.0794 25.52/86.22%/0.0612 26.06/87.50%/0.0525 26.11/87.45%/0.0521
ISTA-Net+ with HSM 26.54/86.24%/0.0645 27.89/88.66%/0.0503 28.42/90.04%/0.0458 28.4/90.01%/0.0457
ISTA-Net+ with CLM 26.82/86.82%/0.0608 28.76/90.43%/0.0442 29.28/92.57%/0.0354 29.25/92.58%/0.0350

Proposed Method 30.96/93.15%/0.0401 32.01/94.83%/0.0276 32.48/96.24%/0.0207 32.54/96.27%/0.0204
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Additionally, we evaluated the imaging times of four methods with an ablation study.
Table 5 compares the imaging times of these methods under the default setting of nine
stages (K = 9). Among them, the ISTA-Net+ method is the fastest, while our proposed
method is the slowest. The imaging times for ISTA-Net+ with HSM and ISTA-Net+ with
CLM are longer than that for ISTA-Net+ alone. This increase in time can be attributed to
the fact that HSM and CLM enhance reconstruction quality by, respectively, increasing
the amount of information transmission between stages of the model, and establishing
long-range connections across stages through the introduction of the ConvLSTM module.
Both approaches add to the computational load, thereby slowing down the imaging speed.

Table 5. Performance comparison of imaging speed.

Method Time (ms)

ISTA-Net+ 31.8
ISTA-Net+ with HSM 85.2
ISTA-Net+ with CLM 92.1

Proposed Method 156.7

3.2. Measured Experiments

To assess the applicability of the MADUN-based sparse SAR imaging algorithm in ma-
rine sparse scenes, its efficacy in real-data imaging must be established. In the experiment,
sparse marine scenes captured by Sentinel-1 and GF-3 satellites were selected for training.
Each dataset comprised 1100 echo data slices of dimensions 256 × 256, with 1000 slices
allocated for training and 100 slices designated for testing. Ground truth images were gener-
ated using the conventional Range-Doppler Algorithm (RDA) for imaging, which was then
subjected to feature enhancement, sidelobe suppression, and noise reduction techniques
to diminish noise levels [21]. Three distinct scenarios—ships, islands, and waves—were
chosen to evaluate the algorithm’s reconstruction capabilities in these contexts and to bench-
mark them against ISTA and ISTA-Net+. The Entropy (ENT) metric was employed for
quantitative assessment. Figure 12 and Table 6 showcase the SAR reconstruction outcomes
and evaluation metrics for the three scenes across various sampling rates.

Figure 12. Cont.
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Figure 12. (a–c) The imaging results for three different scenes based on measured data. Within the same
scene, from left to right are the results yielded by the ISTA algorithm, ISTA-Net+, and the proposed
method. The first row shows the results with Subsampling at η = 80%, and the second row is with
subsampling at η = 50%. (a) Scene 1: ship scene. (b) Scene 2: island scene. (c) Scene 3: wave scene.

In Scene 1, the ships scene, it was noted that the ISTA algorithm yielded reconstruc-
tions of lower quality at 80% and 50% sampling ratios, with boundary blurring evident
at lower sampling ratios. Conversely, both ISTA-Net+ and the proposed algorithm de-
livered superior performance, with the proposed algorithm preserving clear boundaries
even at reduced sampling ratios. Table 6 indicates that at an 80% sampling ratio, the
proposed method exhibited lower ENT values than the ISTA and ISTA-Net+ algorithms
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by 1.16 and 0.47, respectively, demonstrating more pronounced quality enhancements at a
50% sampling ratio, where the ENT was lower by 1.35 and 0.6, respectively.

Table 6. Comparison of ENT for imaging of three scenes in actual experiments through different methods.

Scene Sample Ratio (η)
ENT

ISTA ISTA-Net+ Proposed Method

Scene 1: Ship Scene 80% 3.51 2.82 2.35
50% 4.22 3.47 2.87

Scene 2: Island Scene
80% 4.36 3.84 3.11
50% 4.8 4.23 3.62

Scene 3: Wave Scene
80% 3.73 3.01 2.52
50% 4.47 3.78 3.20

For Scene 2, the islands scene, the proposed algorithm surpassed ISTA and ISTA-Net+
in the restoration of image details. Despite a loss of some details at a 50% sampling ratio
compared to the higher ratio, the method consistently maintained the island’s surface
uniformity and continuity. For Scene 3, the sea waves scene, both ISTA and ISTA-Net+
exhibited suboptimal performance in delineating details such as wave structures, whereas
the proposed algorithm facilitated a clearer observation of precise wave structures. At
an 80% sampling ratio, ISTA-Net+ managed to capture certain wave structures; however,
the absence of a memory enhancement mechanism led to feature loss at a lower sam-
pling ratio, thus diminishing its capacity for detail resolution. In contrast, our algorithm
maintained a greater level of detail even at a reduced sampling ratio. The ENT metrics
presented in Table 6 further substantiate that, relative to ISTA and ISTA-Net+, the proposed
method achieves superior reconstruction performance in sparse scenes, such as islands and
sea waves.

4. Discussion

In this study, through simulations and measured data experiments, we thoroughly
assessed the reconstruction capabilities of our proposed algorithm in sparse marine SAR
environments. The simulated tests employed simulated echo data to compare the perfor-
mance of our algorithm with other methods, validating its effectiveness through detailed
ablation studies. The outcomes of both simulation and ablation experiments unequivocally
demonstrate the importance of the HSM and CLM in enhancing the quality of SAR scene
reconstructions. In measured experiments, our algorithm outperformed ISTA and ISTA-
Net+ by producing reconstructions with clearer edges in ship area imaging. Furthermore,
in scenarios featuring islands and sea surfaces with waves, our algorithm preserved in-
ternal structures and details even at lower sampling ratios. This not only showcased the
algorithm’s superior ability in edge preservation and detail restoration through improved
inter-stage information transfer and the establishment of long-term dependencies within
the network, but also highlighted its versatility in addressing a variety of sparse marine
SAR imaging tasks.

In our proposed method, the division of SAR data into real and imaginary compo-
nents within the gradient descent module enables the MADUN to more effectively process
complex-valued data. However, this approach somewhat neglects the interaction between
the real and imaginary parts, potentially leading to partial information loss or insufficient
integration, which could adversely affect the final imaging quality. Furthermore, in our
research, although the ConvLSTM within the CLM module successfully establishes con-
nections across various stages, its efficacy in maintaining the influence of initial inputs
diminishes with an increasing number of stages. This results in a gradual attenuation of
information from earlier stages. Therefore, there is room for improvement in the method’s
ability to balance historical and contemporary information effectively.
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5. Conclusions

This work has introduced a sparse SAR imaging algorithm based on MADUN for
marine scene imaging tasks, encompassing elements such as waves, islands, and ships.
The deep unfolding network, a prominent deep learning strategy used for addressing the
inverse problem in sparse SAR imaging, is traditionally challenged by information loss
across single-channel stage transitions and the absence of long-range, cross-stage connec-
tivity, impacting the quality of SAR reconstructions. To overcome these challenges, we
integrated a memory enhancement mechanism within MADUN. Specifically, the gradient
descent module within MADUN is tailored to accommodate the complex characteristics
of radar signals by processing data into real and imaginary components. Meanwhile, the
proximal mapping module introduces HSM and CLM, with the former addressing the gaps
in information transfer between adjacent stages, and the latter establishing vital long-term
cross-stage links. The experimental outcomes demonstrate that our proposed method
significantly elevates the reconstruction performance in sparse marine scenes, surpassing
traditional ISTA approaches and the deep unfolding method ISTA-Net+. We anticipate
that this memory-augmented deep unfolding methodology will find broad application in
marine SAR imaging and beyond.

In our study, we encounter limitations in processing complex-valued radar data and
in the ability of long-term memory mechanisms to effectively balance and integrate his-
torical and current information. Thus, future research and improvements may pursue
the following avenues: (1) The design and incorporation of complex network structures
or alternative methods capable of preserving more complex information during decom-
position and processing. (2) The integration of attention mechanisms, which enable the
model to dynamically focus on different parts of the input sequence when processing each
output. This enhances the model’s ability to capture long-term dependencies and manage
long-distance relationships, thereby further improving imaging performance.
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