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Abstract: Combustion power plants emit carbon dioxide (CO2), which is a major contributor to
climate change. Direct emissions measurement is cost-prohibitive globally, while reporting varies
in detail, latency, and granularity. To fill this gap and greatly increase the number of power plants
worldwide with independent emissions monitoring, we developed and applied machine learning
(ML) models using power plant water vapor plumes as proxy signals to estimate electric power
generation and CO2 emissions using Landsat 8, Sentinel-2, and PlanetScope imagery. Our ML models
estimated power plant activity on each image snapshot, then an aggregation model predicted plant
utilization over a 30-day period. Lastly, emission factors specific to region, fuel, and plant technology
were used to convert the estimated electricity generation into CO2 emissions. Models were trained
with reported hourly electricity generation data in the US, Europe, and Australia and were validated
with additional generation and emissions data from the US, Europe, Australia, Türkiye, and India.
All results with sufficiently large sample sizes indicate that our models outperformed the baseline
approaches. In validating our model results against available generation and emissions reported data,
we calculated the root mean square error as 1.75 TWh (236 plants across 17 countries over 4 years)
and 2.18 Mt CO2 (207 plants across 17 countries over 4 years), respectively. Ultimately, we applied
our ML method to plants that constitute 32% of global power plant CO2 emissions, as estimated
by Climate TRACE, averaged over the period 2015–2022. This dataset is the most comprehensive
independent and free-of-cost global power plant point-source emissions monitoring system currently
known to the authors and is made freely available to the public to support global emissions reduction.

Keywords: CO2 emissions inventories; greenhouse gases; satellite observations; machine learning

1. Introduction

Responding to climate change requires the timely and accurate measurement of
greenhouse gas (GHG) emissions, especially CO2. The Paris Agreement, adopted in 2015,
set goals to limit the global temperature rise and established frameworks for nations to
report on GHG emissions and steps to reduce them [1]. The energy sector contributes the
majority of GHG emissions globally. Depending on the data source, from 2015 to 2020,
the energy sector contributed, on average, ∼76% of global emissions, which translates
to between 33 and 37 GtCO2 per year [2–4]. In total, the energy sector emitted over
200,000 GtCO2 during the six-year period [3]. Within the energy sector, the majority of
GHG emissions originate from the electricity generation of combustion power plants. This
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sub-sector accounts for an average of ∼44% or ∼15 GtCO2, representing ∼31% of total
global GHG emissions from 2015 to 2020 [2]. To curb power plant emissions requires
monitoring their activity.

The monitoring of power plant emissions varies globally and involves self-reporting.
This includes the continuous emissions monitoring systems (CEMS) that are employed
in countries with strict emissions laws, such as Japan, the US, the European Union (EU),
and South Korea [5,6]. CEMS equipment is installed at individual power plants and mea-
sures emissions, providing reliable measurements to ensure that the plant is complying
with country emission regulations. However, CEMSs are costly, require specialized teams
to maintain and calibrate, come in different forms that impact the measurement quality,
and have limited deployment globally with some countries only deploying them at the
largest emitting power plants [5–7]. A more common approach to monitoring emissions
is bottom–up self-reporting. This approach quantifies power plant emissions using fuel
consumption, fuel quality, and emission factors [8,9]. To use the bottom–up approach
accurately and effectively requires quality data and, if not known, can have high uncertain-
ties in fuel properties, which translates into high uncertainty in estimating power plant
emissions [7,8,10]. Lastly, self-reporting varies by region in terms of latency and granularity.
This creates challenges for policymakers in designing strategies to mitigate and reduce a
country’s emissions and, consequently, in meeting sustainability goals [7,11].

Within the last decade, efforts have been made to use GHG monitoring satellites
and aerial surveys to infer and improve power plant emission monitoring [7,10,11]. This
includes studies that have derived CO2 emissions from the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) and Global Airborne Observatory (GAO) aerial surveys,
the Ozone Monitoring Instrument (OMI) on Aura, Orbiting Carbon Observatory-2 and
-3 (OCO-2 and -3), and the Precursore Iperspettrale della Missione Applicativa (PRISMA)
satellites [6,7,10,11]. These missions were not originally designed for monitoring CO2
point sources and yet have provided robust emission estimates in a consistent way—not
derived from the varying approaches described above. However, these studies have
limited deployment, and some GHG monitoring satellites work best when observing some
of the highest emitting power plants based on their sensor’s CO2 sensitivity and detection
threshold [7,11]. Alternatively, to provide higher spatial and temporal resolutions for power
plants, multi-spectral imaging satellites that observe Earth’s land and ocean provide an
opportunity to measure power plant emissions. Numerous multi-spectral satellites are in
orbit, and one can combine the imagery from many of these satellites to produce robust
and continuous global coverage, identifying more detailed power plant activity related
to emissions.

Climate TRACE (Tracking Real-time Atmospheric Carbon Emissions) is a coalition of
organizations working towards improved emissions monitoring (climatetrace.org, accessed
on 28 March 2024). Climate TRACE members WattTime (watttime.org, accessed on 28
March 2024) and TransitionZero (transitionzero.org, accessed on 28 March 2024) developed
the methods in this article that use multi-spectral satellite imagery combined with in situ
(reported) generation data to train machine learning (ML) models to infer a power plant’s
generation via its activity. These models were trained using satellite imagery on plants in
countries with reported hourly or sub-hourly generation data. Subsequently, they were
applied globally to estimate power plant activity, which was combined with regional-,
plant-type-, and fuel-specific carbon intensities to estimate the plant-level CO2 emissions.

2. Background

Several satellites measure CO2 concentrations globally, including OCO-2/3, the Green-
house Gases Observing Satellite (GOSAT), and PRISMA. These satellites use spectroscopic
methods based on the absorption of reflected sunlight to estimate the column-averaged
dry-air mole fraction of CO2, known as XCO2.

Nassar et al. used XCO2 retrievals from OCO-2 to quantify the CO2 emissions from
large power plants, comprising seven in the US and seven in other countries [12]. The
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narrow swath width of OCO-2 and cloud cover significantly limit the effective revisit time
and applicability of this technique to snapshots of emission estimates—a total of twenty
snapshot estimates across all fourteen of the study’s power plants between the years 2014
and 2018. Other studies have also used OCO-2 and/or OCO-3 but with similar coverage
limitations: one observation of each of two plants [13], fourteen plumes from six plants [14],
or 106 observations from 78 plants [15]. Cusworth et al. used XCO2 retrievals from the
AVIRIS Next-Generation (AVIRIS-NG) and GAO, as well as PRISMA, to quantify CO2
emissions from seventeen US coal- and gas-fired power plants [7]. While PRISMA was
not designed to measure CO2, research teams have used various retrieval algorithms for
XCO2, though it is not an official PRISMA data product. Several other researchers have also
reported methods to use XCO2 to estimate emissions from individual power plants [16–21].
These studies show that it is possible to estimate the emissions of large power plants
with remote sensing and can provide an independent way to verify reported estimates.
However, the small number of observations cannot create a comprehensive global power
plant emissions monitoring system, and the detection limits of the approaches restrict their
applicability to only the largest of power plants.

Future planned satellites, such as the Copernicus CO2 Monitoring (CO2M) mission [22,23],
Carbon Mapper [24], and CO2Image [25], aim to provide new opportunities for monitoring
emissions at individual power plants. The launch of the first two satellites for the CO2M
constellation is scheduled for 2026 with a planned operation of at least seven years. Each
CO2M satellite will cover fifty times more land than OCO-2 or -3 and include an NO2
imaging spectrometer to identify the source of the CO2 emissions since NO2 and CO2 are
co-emitted from industrial sources [8,21,22]. These future satellite missions will provide
valuable information for the global stocktake and emission reduction goals. However,
these satellites will lack the ability to track progress prior to their deployment, for instance,
quantifying the effectiveness of policy changes since the Paris Agreement.

Furthermore, despite the sensor- and orbit-specific differences of these studies, all
methods that use satellite-retrieved XCO2 face a similar set of challenges. First, elevated
CO2 concentrations at or near power plants are affected by the background concentra-
tion, which can be further impacted by the effect of wind and the spatial sampling from
GHG monitoring satellites [21,26]. Combined, these two factors can impact CO2 emission
retrievals and increase uncertainty. Additionally, the sensitivity of XCO2-based retrieval
techniques limits their ability to detect relatively low rates of anthropogenic emissions,
such as those from lower-capacity power plants. Second, resolving emissions from closely
adjacent sources is problematic without high spatial resolution. Third, the variability of
emissions from some industrial sources can be quite high, requiring high revisit rates to
observe patterns.

High-spatial-resolution (30 m or less) multi-spectral imagery is another potential route
to monitoring GHG emissions from individual sources. It has the important advantage of
being available today at relatively high temporal resolution from many different satellites.
Our project mainly uses this type of remote sensing data to build a “good enough, right
now” emissions-monitoring system that does not need to wait for future satellites. Since
multi-spectral imagery cannot directly measure CO2 concentrations, we developed a set
of proxies, or activity measurements, that are directly tied to emissions, such as visible
water vapor plumes from power plant cooling towers. Our approach is similar to countries
that employ proxy and activity measurements to estimate land use, land-use change, and
forestry (LULUCF) emissions for different land cover types [27] and the Tier 3 methods
to collect activity data to estimate fuel consumption and CO2 emissions in the United
Nations Framework Convention on Climate Change Resource Guide for Preparing National
Inventories applied to individual power plants [28].

Prior work on this task includes a proof of concept by the Carbon Tracker Initiative
to estimate emissions of coal plants in the EU, US, and China using Planet Labs’ satellite
images [29]. Other efforts have been made to estimate power plant emissions using Sentinel-
2 imagery and a multitask deep learning approach [30–32]. However, these studies were
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based on a heterogeneous dataset of European plants that include a variety of cooling types
with inconsistent signals. Our own prior work expands to additional satellite constellations
and power plant technologies but was focused on models to predict the plant operational
status (on/off and capacity factor) at a single point in time [33,34]. This article extends on
our previous work by developing an ensemble model to aggregate data from across all
satellite imagery sources and predict generation information for rolling 30-day intervals
to produce annual CO2 emissions estimates. We also validated our models on globally
distributed plants from outside our training set.

3. Materials and Methods

Power plants emit GHGs through a chimney called the flue stack, producing a flue gas
plume. Plants that are more efficient or have air pollution control equipment generally have
flue gas plumes that are difficult to see. Furthermore, fuel characteristics and power plant
equipment vary, impacting the visibility of flue gas plumes. For these reasons, directly
inspecting smoke plumes only provides a weak indicator of emissions. A better indicator
of emissions is the water vapor plumes from two primary sources:

• Natural draft cooling towers (NDT): Plants using NDT have a large hyperbolic struc-
ture that allows vapor plumes to form during evaporative cooling.

• Wet flue gas desulfurization (FGD): After desulfurization, flue gases become saturated
with water, increasing the visibility of plumes from the flue stack.

In terms of size, NDT plumes are generally larger and wider than FGD plumes, making
them easier to see in multi-spectral satellite imagery, as shown in Figure 1. A power plant
may have one, both, or neither of these technologies. Due to the differing plume sizes and
shapes from their sources, we created separate NDT and FGD models.

Figure 1. PlanetScope CNN predictions on the James H. Miller Jr. power plant at low vs. high
generation on two observation dates. Separate NDT and FGD models predicted on NDT cooling
tower (blue) and FGD stack (red) patches, respectively. These predictions were ingested by subsequent
models to estimate generation, then CO2, for the plant. © 2023 IEEE. Reproduced with permission
from [34].

Observing the visible emitted water vapor plumes in multi-spectral satellite imagery,
we built an ML modeling pipeline using gradient-boosted decision trees and convolutional



Remote Sens. 2024, 16, 1290 5 of 34

neural networks (CNNs), and then trained these ML models to infer a power plant’s
operational status. Specially, we designed models to perform two tasks:

1. Sounding-level models: consist of (A) a classification model to classify whether a
plant was running or not (on/off), and (B) a regression model to predict the capacity
factor (i.e., what proportion of the power plant’s generation capacity was being used
to generate power, generally between 0 and 1), for a given a satellite image of that
plant at a certain point in time.

2. Generation models: aggregate the predictions from the sounding-level models into
the estimates of a power plant capacity factor over the preceding 30 days.

Each sounding model was trained on satellite images paired with the reported genera-
tion status. After predicting the capacity factor, it was multiplied by capacity (maximum
electric power output) to infer generation. Our models are trained on power plants in
countries for which we have hourly or sub-hourly generation data, which can be closely
matched to the satellite image timestamp. Then, the models were applied globally using
country-, fuel-, and prime-mover-specific average carbon intensities to convert the modeled
plant-level generation into emission estimates. Figure 2 provides an overview of how these
different models and data sources are integrated to estimate emissions.

Geolocation and 
infrastructure

Sounding models

Satellite imagery
Weather 

data

Power plant 
inventory

Carbon intensity 
modelGeneration 

model
Emissions 
estimate

Plant-level 
generation

Location
Fuel

Prime mover
Cooling technology

Pollution control equipment
Capacity

Location of NDT and FGD

Temperature
Humidity

PlanetScope
Sentinel-2
Landsat 8

Hourly or sub-hourly 
generation

For each fuel/prime 
mover/country

Data Collection

Modeling

Figure 2. Overview of the data and models required to estimate CO2 emissions from fossil-fuel power
plants using satellite imagery.

3.1. Power Plant Datasets

In order to form a set of power plants for training our model and running inference,
we partnered with Global Energy Monitor (globalenergymonitor.org, accessed on 1 June
2023) to create a complete-as-possible, harmonized inventory of global combustion power
plants that are currently operational. This was necessary because no single existing power
plant dataset contains all the required information for this work. To use a plant in our ML
modeling, we required the following inventory and auxiliary data:

• An accurate plant location for our satellite imagery.
• The location of FGD flue stacks and NDT cooling towers to focus our models on the

relevant signals.
• Attributes of the power plant, including type, fuel, cooling technology, and air pollu-

tion control equipment to identify whether the plant is suitable for our models.
• Local weather data to decide whether temperature and humidity are conducive to

vapor plume visibility.
• Plant capacity to determine whether the plant is of sufficient size to be modeled and to

calculate the generation from the modeled capacity factor. This is used in conjunction
with unit operating dates to find the plant capacity on any given date.

• Fuel and prime mover (i.e., steam or gas turbine) type to estimate the emissions factor.

http://globalenergymonitor.org
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In addition, plant-level electricity generation data is required for model training.
Plants without generation data were used for inference only. We elaborate on each of these
data requirements and our sources in Appendix A.

3.2. Satellite Data and Processing

Remote sensing imagery from the PlanetScope constellation, Sentinel-2A/B, and
Landsat 8 satellites were employed in our ML modeling approach to infer a power plant’s
operational status through the identification of emitted visible water vapor plumes. A
sample image of a power plant from each satellite is shown in Figure 3. A description of
each satellite and imagery processing step is provided below.

Figure 3. The Ninghai power station in China as seen from Landsat 8 at 30 m spatial resolution (left),
Sentinel-2 at 10 m spatial resolution (center), and PlanetScope at 3 m spatial resolution (right). These
images only represent the visible bands (red, green, and blue).

PlanetScope. Planet Labs’ PlanetScope satellite constellation consists of approxi-
mately 130 individual satellites, called “Doves”, with the first launch of this constellation
in 2014 [35]. The PlanetScope constellation provides daily revisits with an equatorial
crossing time between 7:30 and 11:30 a.m. (Planet, 2022). Each PlanetScope satellite im-
ages the Earth’s surface in the blue, green, red, and near-infrared (NIR) wavelengths
(∼450–880 nm), with the exception of the “SuperDove” instrument which includes ad-
ditional wavelengths [36,37]. The swath width is 25 km. PlanetScope PSScenes were
downloaded via the Planet Labs API, providing a spatial resolution of ∼3 m, and including
eight additional Usable Data Mask (UDM2) image quality bands.

Sentinel-2. The European Space Agency’s Sentinel-2 mission comprises two satellites:
Sentinel-2A launched in 2015 and Sentinel-2B launched in 2017 [38,39]. Each Sentinel-2
satellite has a 10-day revisit time with a 5-day combined revisit and an equatorial crossing
time of ∼10:30 a.m. [40]. Both satellites are equipped with a multispectral (MSI) instru-
ment that provides 13 spectral band measurements, blue to shortwave infrared (SWIR)
wavelengths and (∼442 nm to ∼2202 nm) reflected radiance and, depending on the band,
provides measurements at 10 m–60 m spatial resolution [39,40]. The swath width is 290 km.
We downloaded Harmonized Sentinel-2A/B Level-1C Top of Atmosphere (TOA) products
from Google Earth Engine (GEE).

Landsat 8. The Landsat 8 mission was built and launched by NASA and is operated
by US Geological Survey (USGS) [41,42]. Landsat 8 was launched in 2013 and has a 16-day
revisit with an equatorial crossing time of 10 a.m. (+/− 15 min). Landsat 8 is equipped with
two instruments: Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS).
OLI has nine spectral bands ranging from ∼430 nm to ∼1380 nm with a spatial resolution
of 30 m. TIRS has two bands spanning 10,600 to 12,500 nm with a spatial resolution of
100 m that is upscaled to 30 m. [43]. The swath width is 185 km. We downloaded the
Landsat 8 Collection 2, Tier 1 TOA from GEE.

Each satellite has multiple bands with different spatial resolutions. Lower-resolution
bands were upsampled to match the highest-resolution band for that satellite. Each band
also has a different distribution of pixel values, which can cause instability during model
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training. For this reason, we standardized the radiance values in each band to a mean of
0.5 and a standard deviation of 0.25, placing most pixel values between 0 and 1.

For some of our models, we created additional bands through post-processing:

• Haze-optimized transformation (HOT), a linear combination of the blue and red bands:

HOT = blue − 0.5 ∗ red

• Whiteness [44], which consists of:

whiteness =
|blue − visible|+ |green − visible|+ |red − visible|

visible

where visible = 1
3 (blue + green + red)

• Normalized difference vegetation index (NDVI), a ratio between the red and near-
infrared (NIR) bands,

NDVI =
NIR − red
NIR + red

• Normalized difference shortwave infrared, a ratio between the shortwave infrared
(SWIR) bands,

normalized difference SWIR =
SWIR2 − SWIR1
SWIR2 + SWIR1

• Normalized difference thermal infrared, a ratio between the shortwave infrared
(TIR) bands,

normalized difference TIR =
TIR2 − TIR1
TIR2 + TIR1

These were generated for the satellites that have these available bands, i.e., normalized
difference SWIR for Landsat 8 and Sentinel-2 but not for Planet. The band combinations
provided additional beneficial features for some of our models. For example, HOT and
whiteness acted as a basic plume mask. Our gradient-boosted tree models used all these
bands, while the neural networks were more limited because of transfer learning, as
described in Section 3.5. Additional uses of these synthetic bands for image selection will
be detailed in Section 3.4.

3.3. Ground Truth Labels for Model Training

To train our ML models, our satellite images needed to be linked to plant-level genera-
tion data. We used satellite image timestamps to match each image to the nearest record
of plant-level generation data, as described in Appendix A.4. Our training plants are
located in the US, Europe, and Australia. For regression models, each satellite image was
labeled with the capacity factor at that timestamp: the generation of the plant divided by its
capacity at the given timestamp (see Figure 1). For classification, we labeled plants with a
greater than 5% capacity factor as “on” and everything else as “off”. We used this nonzero
threshold because there are a handful of plants reporting very low levels of generation that
can functionally be considered “off”.

3.4. Plant and Image Selection

For all satellite imagery, a region of interest (ROI) was produced for each power plant
by setting an outer boundary that envelops the plant itself, all associated facilities, and
any other affected areas of interest. Based on this ROI, we restricted the training data to
optimize for both modelability and impact:

1. Plant selection. The first set of filters was based on the capacity of the plant and
whether it was using mostly NDT or FGD technology at the time:

• Coal must account for at least 50% of the plant’s operating capacity.
• For NDT models, ≥70% of the plant’s cooling was NDT.
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• For FGD models, ≥90% of total generation and 100% of coal capacity was associ-
ated with wet FGD.

• At least one NDT tower or FGD-enabled flue stack has been annotated in Open-
StreetMap or in our in-house annotations database.

• Capacity must be at least 500 MW.
• Exclude from training any plants with incomplete or erroneous generation

and/or retirement date, for example, failure to report generation for oper-
ating units, reporting generation several months past retirement, or insuffi-
cient or inconsistently reported generation data. This criterion is applicable to
training only.

• Because our modeling approach assumes that plants with wet FGD always run
their pollution controls, we removed from training any operational plants that
repeatedly exhibited sporadic or no visible FGD usage when the plant was
reported “on”. For inference, this is harder to assess in the absence of reported
generation data. We flagged operational plants with FGD where FGD plumes
were never detected under the expected plume-favorable weather conditions
(detailed later in this section) by our classification models, nor observed upon the
manual inspection of 100 random images. We also flagged plants that exhibited
other signals of operating (i.e., NDT plumes) with no FGD signal. There are two
primary reasons for which an operational plant may fail to exhibit an FGD vapor
plume signal when generating electricity under the appropriate temperature and
humidity conditions:

– Our power plant database has incorrect information suggesting that the
power plant has a “wet” process when it is actually “dry”. This is possible
for both NDT and FGD as either can be a “wet” or “dry” process; generally
“dry” is more common in arid climates to conserve water.

– The power plant fails to run its SOx pollution control equipment (the flue
gas desulfurization, FGD), so there is no FGD plume. Note that this is
only relevant for FGD plumes, not NDT, because some type of cooling
is necessary to operate a power plant, whereas pollution controls are not
strictly necessary to operate (rather, they represent additional requirements
set by clean air regulations).

For inference on NDT plants, these criteria were relaxed by applying our models to
all the plants that met the following criteria every year: a total capacity of at least
50 MW and any positive amount of NDT capacity, regardless of fuel type. Despite the
loosened criteria, the vast majority of plants in our external validation sets for both
electricity generation and emissions burn >50% coal.

2. Image selection. We also filtered based on the characteristics of each satellite image:

• Our FGD and NDT annotations are fully contained within the satellite image.
• The cloud mask over the plant indicated <20% cloud coverage. This threshold

is set relatively high to avoid falsely excluding images containing large plumes,
which are easily misclassified as clouds.

• For PlanetScope, we used the post-2018 UDM2 bands to keep only images with
<80% heavy haze.

• For all PlanetScope images, we calculated the mean brightness and developed a
cloudiness score based on HOT, whiteness, and NDVI, respectively, to filter out
excessively dark or cloudy images.

• Images with known data quality issues were discarded, e.g., exhibiting plumes
when generation has been zero for at least an hour. Appendix A.4 details the
scenarios in which we excluded images due to quality issues.

• When there were images of the same location with the same timestamp, we
kept a single copy, breaking ties with the following: (1) largest area surround-
ing the plant contained; (2) least cloudy area; (3) latest download timestamp; and
(4) random selection.
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3. Weather filters. Ambient temperature and relative humidity were obtained for each
plant as detailed in Appendix A.3. Images were excluded from FGD models when
ambient weather conditions were unfavorable for plume visibility. At high tempera-
tures and/or low relative humidity, the water vapor in the flue stack does not readily
condense, plume visibility is reduced, and our models have no signal to detect. The
warmer the temperature, the more humid it needs to be for water vapor plumes to
be visible, eventually becoming very faint at high temperatures regardless of the
humidity. At colder temperatures, however, even very dry conditions will still result
in a visible plume. Therefore, we used empirically derived cutoff rules for plume
visibility:

• Exclude images in which the ambient temperature is ≥14 ◦C and relative humid-
ity is ≤26%.

• Exclude images in which the ambient temperature is ≥24 ◦C and relative humid-
ity is ≤36%.

• Exclude images in which the ambient temperature is ≥32 ◦C.

After applying the above plant, image, and weather filters, our training dataset con-
sisted of 74 plants for NDT and 99 for FGD during the years 2015–2022. Table 1 lists the
number of training images for each satellite before and after filtering.

Table 1. Training image count for the years 2015–2022 for each satellite before and after filtering.
For PlanetScope, we applied cloud filtering prior to downloading images, so the “Before filtering”
column does not include cloudy images. Note that the same image may be used by both the NDT
and FGD models since a power plant can have both types of technology.

Satellite
NDT Image Count FGD Image Count

Before Filtering After Filtering Before Filtering After Filtering

PlanetScope 69,533 54,136 108,038 69,462
Sentinel-2 18,964 15,064 30,541 18,390
Landsat 8 9040 7176 12,885 8235

3.5. Sounding Models

To estimate power plant generation and CO2 emissions from satellite imagery at
a specific timestamp, our sounding-level models predicted whether a power plant was
running or not (on/off) and estimated the capacity factor (generation divided by capacity).
We included both sets of models because the on/off task was simpler and could be predicted
more accurately, while the regression task was essential for differentiating low from high
generation. We multiplied the predicted capacity factor by the capacity to infer generation.

As we estimate power plant activity by identifying vapor plumes, focusing our models
on the structures that emit these plumes can improve performance. Therefore, we used the
annotated NDT cooling tower and FGD stack patches as model inputs, as shown by the red
and blue boxes in Figure 1. This helped produce more accurate classification models than a
single image of the entire plant, which can have the features of non-power plant activity
impacting the accuracy [33]. Two different types of models were trained: gradient-boosted
decision trees and convolutional neural networks (CNNs). For each model type, separate
models for NDT and FGD were built, as well as for each satellite dataset, for a total of
16 sounding models. Figure 4 illustrates the structure of both model types.
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Figure 4. Overview of modeling approaches: NDT cooling towers and FGD stacks were cropped
from satellite imagery (red frames above) and fed into ML models to classify the power plant’s on/off
status and predict the capacity factor. Patch size is selected as detailed in Section 3.5 and may be
larger than visualized here. Image from [33].

3.5.1. Gradient-Boosted Decision Trees

The gradient-boosted decision tree models used XGBoost. For each image fed into
the XGBoost models, we extracted the patches of varying sizes centered on the FGD or
NDT structures. A set of statistics was derived for the pixel values in each patch: mean,
standard deviation, and 90th percentile. These vectors of statistics were then aggregated
to the image level using mean, min, and max operations to accommodate the plants with
multiple FGD or NDT structures. We used multiple patch sizes around the FGD or NDT
structures (4–32 pixels for Landsat 8, 4, to 32 pixels for Sentinel-2, and 8 to 64 pixels for
PlanetScope) in order to capture features at different scales.

Visible plumes at power plants tend to be white. However, there can be other white
features, such as buildings, near the cooling tower or flue stacks. To handle this, we also
included features from background-subtracted images. Background images were calculated
as the median pixel value across a random set of 32 images of the plant. The background
images were then subtracted from the current image, and the same set of statistical features
was calculated and concatenated to the previous set, as described above.

3.5.2. Convolutional Neural Networks

To enable the CNN models to handle multiple patches, we used a multiple instance
framework to combine patches via an attention layer, with the patch size being tuned as
a hyperparameter (hyperparameters are discussed in greater detail in Section 3.8). The
attention mechanism aggregates the features from all the different patches for a particular
image of a plant [33,34]. Each patch was first encoded with a CNN encoder truncated after
a subset of the convolutional blocks. Transfer learning was used to initialize model weights
in one of two ways:

• RESISC: a ResNet50 CNN [45] pre-trained on the RESISC dataset, which consists of
aerial RGB images labeled by land cover and scene classes [46]. The RESISC dataset is
particularly relevant because it includes a cloud class, enabling the model to capture
distinguishing features of clouds—and, likely, plumes. This model uses the RGB
channels only.

• BigEarthNet: with a VGG16 CNN [47] pre-trained on the BigEarthNet dataset, which
consists of Sentinel-2 images labeled by land cover class [48]. This model uses 10 bands
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from Sentinel-2, excluding the lowest resolution bands of 1, 9, and 10. We were not
able to apply this model to PlanetScope but did adapt it for Landsat 8 by matching
the band wavelengths as closely as possible and pairing the remaining bands even if
the wavelengths are different. While this dataset enabled the model to learn a more
diverse set of spectral characteristics, it only contained cloud-free images; our model
must learn plume features during fine-tuning.

After the shared convolutional encoder, we used an attention layer to combine patch
features as a weighted sum, with the weights determined by the model itself [49]. A dense
layer then made the final prediction. More details about model configuration and training
are provided in Appendix B.

3.6. Generation Ensemble Models

The sounding-level models described in Section 3.5 give us an instantaneous estimate
of the power plant activity in a single satellite image. Collecting these instantaneous esti-
mates creates an irregular time series of on/off classification and capacity factor regression
estimates for each plant. In order to estimate emissions of a plant over a given period
of time, we built a set of second-stage models (“generation models”) responsible for ag-
gregating the sounding model time series into features and predicting a rolling 30-day
average capacity factor for each plant (predicting one value for each day, that value being
the average capacity factor over the preceding 30 days). We then multiplied this capacity
factor with each plant’s capacity to obtain the plant’s estimated generation. Afterward, the
estimated generation was multiplied by an emissions factor, as described later in Section 3.7,
to estimate emissions.

Separate generation models were trained for NDT and FGD plants and only for the
years 2018 to 2022 inclusive. This is because there is very limited PlanetScope data available
prior to 2018, making rolling 30-day predictions difficult due to the sparsity of soundings.
Each generation model is an L1-regularized linear regression model with features formed
from aggregating the sounding model predictions (described in Appendix C). To calcu-
late features for each plant at each point in time, we aggregated the predictions from the
sounding-level models over multiple lookback windows. In total, the NDT model had
access to 162 features, while the FGD model had access to 324 features (see Appendix C
for the list of features). All features were standardized to a mean of zero and unit stan-
dard deviation prior to model training. The same standardization factors were applied
for inference.

The lookback windows over which we aggregated predictions for the NDT generation
model were 30, 60, and 180 days. Due to the lower number of soundings for the FGD
generation model, its lookback windows were 30, 60, and 365 days. In addition to including
more plant-specific information, these longer windows also allowed our models to account
for the longer-term behavior of the plant when making a prediction. The generation
models were trained with L1-regularization weights of 0.01 and 0.005 for FGD and NDT,
respectively. Figure 5 shows an example of FGD and NDT model predictions compared
with the capacity factor calculated from reported electricity generation.
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Be chatów Power Station (5030 MW capacity as of 2022): Climate TRACE vs. ENTSO-E Derived Rolling 30-Day Average Hourly Capacity Factor
estimated by Climate TRACE NDT machine learning model (0.05 RMSE, 0.61 Pearson correlation)
estimated by Climate TRACE FGD  machine learning model (0.12 RMSE, 0.31 Pearson correlation)
calculated via reported electricity generation from ENTSO-E

Figure 5. A sample of model predictions for Bełchatów in Poland, Europe’s largest fossil-fuel burning
power plant, for the years 2019–2022. Included are predictions from the NDT (blue line) and FGD
(orange line) generation models to compare to the reported electricity generation (green line). The
rolling average 30-day capacity factor never fell below 45% capacity from 2019 to 2022 and was
maintained above 60% for the entirety of 2022. The NDT model performs over two times better
than the FGD model for this power plant, a representative characteristic of the NDT task given its
clearer signal.

3.7. Emissions Estimation

To generate plant-level emissions estimates, we first estimated the annual capacity
factor of each plant. Then, the rolling 30-day average capacity factor estimates were
converted into the annual capacity factor by averaging and weighting each estimate by
what fraction of the 30-day interval fell into the year in question. The total unit level annual
generation is the product of (1) the hourly capacity factor, (2) the unit capacity, and (3) the
number of hours in the year. The unit-level annual emissions are the product of (1) the
generation and (2) the carbon intensity (see Appendix A.6). Finally, the unit-level estimates
were aggregated to the plant level to provide the annual facility-level emissions estimate.

3.8. Model Training with Cross-Validation

As our goal was to estimate the power plant emissions when no reported generation
data exist, it is essential to validate that our models generalize well to unseen plants. To
do this, we used cross-validation, a resampling procedure in which the data are divided
into a set of folds, and models are iteratively trained and tested on different subsets of
these folds. We built a regular 1◦ × 1◦ grid in latitude–longitude space and placed plants
in the same grid cell into the same fold. Each plant was assigned to a single fold, with
all of its images belonging to that same fold. By rotating the assignment of these folds to
training/tuning/testing, we were able to train and evaluate four different models. For
each one, two of the four folds of plants were used for training, one for tuning/validation,
and one for testing. The details of model training are specified by hyperparameters such
as patch size and learning rate. We independently tuned the hyperparameters of both
XGBoost and CNN models to optimize for validation mean average precision (mAP) and
root mean squared error (RMSE) for classification and regression, respectively. We selected
mAP due to the class imbalance; plants were “on” in about ∼80% of the training images.

Since the generation models are trained on the outputs of other ML models—the
sounding models—we must take extra care to prevent the use of information from model
training that would not be available at the prediction time, i.e., data leakage. Therefore,
the following cross-validation approach was adopted for the training and evaluation of
the generation models. Each of the four generation model instances was trained with
features based on soundings from the validation fold and evaluated with features based
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on the sounding predictions from the testing fold. This way, both sets of sounding predic-
tions come from the same sounding model and were not used for its training. While the
sounding models might be overfitted to their validation fold due to early stopping and
hyperparameter tuning, the test fold was not used for any model optimization or selection.
Thus, measuring the performance on the test fold provides a reasonable representation of
predictions on unseen plants.

3.9. Model Inference

To produce our final generation estimates, we followed the same data processing steps
laid out in the previous sections, but with relaxed filters as described in Section 3.4.

Predictions for all images were generated during the period 2015–2022, using our
sounding-level models described in Section 3.5. For inference, the sounding predictions
were averaged from all four instances of a sounding model (one model for each fold).
Then, these predictions were converted to generate time series features and rolling 30-day
average capacity factor predictions using the generation models as described in Section 3.6.
Similarly to the sounding models, the predictions were averaged from all four instances of a
generation model to obtain the final generation prediction. The result is a set of predictions,
one per day per plant, of the average capacity factor of that plant over the preceding 30 days.
These were then summed and weighted by how much the 30-day interval overlaps with
the year to produce the estimates of the annual plant-level capacity factor.

The sounding and generation models were run on NDT and FGD structures separately
to estimate the activity of the entire plant. For plants that have only FGD or only NDT,
the estimation process was straightforward: simply use the prediction from the single
applicable model. For plants with both NDT and FGD, predictions were aggregated from
both model types by weighting the NDT model prediction two times more than the FGD
model prediction ( 2∗NDT+FGD

3 ), reflecting the lower error and increased confidence in the
NDT models.

4. Results

We used two mechanisms to validate our models. First, through cross-validation on
our training set, performance was measured on the held-out fold and aggregated across
the four folds (details in Section 3.8). Second, additional generation and emissions data
were gathered from plants with NDT and/or FGD in Türkiye (not reported to ENTSO-E
or EU ETS with the rest of Europe) and India (Appendices A.4 and A.5), plus plants with
NDT in the US, Europe (reported to ENTSO-E or EU ETS), and Australia that did not meet
our strict filters for training but did qualify with a looser filter due to a lower capacity or a
more heterogeneous set of cooling types (Section 3.4). We refer to the first mechanism on
training plants as “cross-validation” and the second on non-training plants as “external
validation”. Table 2 below summarizes the fraction of the total power sector emissions and
the number of observations, plants, and countries to which we applied our ML methods,
as compared to prior work we discussed in Section 2. We validated our methodology on
nearly twice as many plants, with two-to-four orders of magnitude more observations,
and a broader selection of countries than any prior study. Furthermore, our inference
predictions encompass 1042 power plants across 41 countries, including several plants in
each of the five countries that produce the most carbon emissions from power generation
(in order): China, US, India, Russia, and Japan [50]. Figure 6 displays the coverage of our
emission estimates for 2022 on a map.
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Table 2. Coverage summary of Climate TRACE’s ML approach, as compared with prior work
discussed in Section 2; all studies that included ten or more plants are listed. Percent power emissions
are calculated per year, and then averaged to produce the value in the table, using as a denominator
the total power sector emissions, as estimated by Climate TRACE for each year (note that the ML
technique presented in this paper represents just one of the ways that Climate TRACE estimates
power sector emissions [51]).

Approach % Power Emissions # Observations # Plants # Countries Years

Climate TRACE ML
Cross-val 7% 157,831 139 12 2015–2022
External val (generation) 2% 107,440 101 16 2018–2022
External val (CO2) 7% 162,588 207 17 2019–2022
All inference 32% 1,198,167 1042 41 2015–2022

Jain [32] <1% 2131 146 18 2019–2021
Hanna et al. [31] <1% 1639 146 11 2020
Lin et al. [15] inference 4% 106 78 15 2018–2021
Lin et al. [15] validation <1% 50 22 1 2018–2021
Cusworth et al. [7] <1% 28 21 4 2014–2020
Nassar et al. [12] <1% 20 14 6 2014–2018

Figure 6. A map displaying global CO2 emissions estimates produced by our ML models (equivalent
to “all inference” in Table 2). Each dot represents a single power plant, with the size of the dot
corresponding to the amount of estimated CO2 emissions for that plant in 2022.

Using these two mechanisms, cross-validation and external validation, the perfor-
mance was evaluated for our sounding, generation, and emissions models. The results are
detailed in this section. We also calculated 90% confidence intervals by block bootstrapping
the test set (blocking on plants, i.e., resampling plants rather than images to ensure plants
were not split up).

Our validation sets consist of combustion power plants with NDT and/or FGD tech-
nologies. Few plants burn exclusively one type of fuel; most use a variety of types. Plants
that use NDT may have any variety of fuel mix, even 0% coal, but plants with FGD all burn
some amount of coal because the purpose of FGD is to remove the SO2 emitted when coal
is burned. The vast majority of plants in our validation sets burn some amount of coal. Of
the 207 plants in our emissions validation dataset, 16 (8%) did not burn any coal since 2016.
These 16 plants all burn mostly gas, with oil or waste heat filling the gaps (no biomass).
There are two plants that burn biomass in this emissions validation dataset; however, both
still burn mostly coal.
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4.1. Sounding Model Validation

Classification and capacity factor regression results for the period 2015–2022 are
displayed in Tables 3 and 4, respectively. A naive baseline mAP is 0.5 for a model that
predicts the most prevalent class, or always “on”. This serves as a simple benchmark against
which to compare our models’ performance. For the regression model, a naive baseline
that predicts a constant value of the training set’s mean capacity factor would produce an
RMSE of 0.34 and a mean bias error (MBE) of 0 across all imagery sources for both NDT
and FGD. Models were trained and cross-validated on 99 plants with FGD (25 in Europe’s
ENTSO-E and 74 in the US) and 74 plants with NDT (45 in Europe’s ENTSO-E, 22 in the
US, and 7 in Australia). All of our models outperformed their respective baselines—and by
an especially wide margin on the simpler task of classification. NDT models generally did
better than FGD because NDT tends to produce larger plumes.

Table 3. On/off classification cross-validated mean average precision (mAP) and block-bootstrapped
90% confidence intervals for 2015–2022.

Satellite Model NDT mAP [CI] FGD mAP [CI]

PlanetScope XGBoost 0.956 [0.932, 0.987] 0.886 [0.857, 0.911]
PlanetScope CNN-RESISC 0.930 [0.901, 0.963] 0.885 [0.861, 0.916]
Sentinel-2 XGBoost 0.932 [0.904, 0.980] 0.889 [0.858, 0.917]
Sentinel-2 CNN-RESISC 0.959 [0.941, 0.974] 0.903 [0.880, 0.925]
Sentinel-2 CNN-BigEarthNet 0.933 [0.906, 0.966] 0.839 [0.801, 0.873]
Landsat 8 XGBoost 0.899 [0.866, 0.942] 0.878 [0.855, 0.904]
Landsat 8 CNN-RESISC 0.901 [0.866, 0.942] 0.824 [0.793, 0.854]
Landsat 8 CNN-BigEarthNet 0.865 [0.826, 0.899] 0.811 [0.784, 0.837]

Table 4. Capacity factor regression cross-validated root mean squared error (RMSE) and mean bias
error (MBE), alongside respective block-bootstrapped 90% confidence intervals, for 2015–2022.

Satellite Model
NDT FGD

RMSE [CI] MBE [CI] RMSE [CI] MBE [CI]

PlanetScope XGBoost 0.209 [0.194, 0.221] −0.021 [−0.034, −0.006] 0.297 [0.285, 0.308] −0.056 [−0.076, −0.037]
PlanetScope CNN-RESISC 0.196 [0.186, 0.206] −0.024 [−0.037, −0.010] 0.263 [0.244, 0.277] −0.065 [−0.084, −0.045]
Sentinel-2 XGBoost 0.210 [0.198, 0.220] −0.020 [−0.034, −0.006] 0.270 [0.258, 0.281] −0.029 [−0.049, −0.011]
Sentinel-2 CNN-RESISC 0.203 [0.192, 0.213] −0.019 [−0.034, −0.004] 0.267 [0.248, 0.282] −0.048 [−0.066, −0.029]
Sentinel-2 CNN-BigEarthNet 0.220 [0.206, 0.233] −0.025 [−0.041, −0.008] 0.259 [0.246, 0.269] 0.005 [−0.014, 0.025]
Landsat 8 XGBoost 0.243 [0.220, 0.260] −0.011 [−0.032, 0.013] 0.285 [0.271, 0.298] −0.063 [−0.085, −0.042]
Landsat 8 CNN-RESISC 0.266 [0.249, 0.280] −0.089 [−0.110, −0.068] 0.299 [0.289, 0.309] −0.036 [−0.054, −0.015]
Landsat 8 CNN-BigEarthNet 0.264 [0.247, 0.278] −0.031 [−0.054, −0.006] 0.301 [0.288, 0.313] 0.025 [0.002, 0.050]

Comparing the different model types drew out a few more insights. The BigEarthNet
models require 10 bands and so can only be used for Sentinel-2 and Landsat 8. In general,
RESISC models performed slightly better than BigEarthNet. Overall, RESISC and XGBoost
fared similarly, with RESISC sometimes outperforming XGBoost and sometimes vice versa,
emphasizing the utility of an ensemble approach. Both PlanetScope and Sentinel-2 models
performed similarly; the on/off classification mAP for both varied from 0.93 to 0.96 for
NDT and from 0.84 to 0.90 for FGD across all models, and the capacity factor regression
RMSE for both ranged from 0.20 to 0.22 for NDT and 0.26 to 0.30 for FGD. The Landsat
8 models generally were less accurate, with on/off classification mAP values of 0.81 to
0.90, and capacity factor regression RMSE values between 0.24 and 0.30. The Landsat
8 models’ lower performance is most likely due to the coarser 30 m spatial resolution and
revisit rate of 16 days, which results in fewer training images. Additionally, the capacity
factor regression RMSE values for Sentinel-2 and PlanetScope overlap, which suggests that
Sentinel-2’s 10 m resolution is sufficient to identify on/off classification and the capacity
factor. Even though PlanetScope’s 3 m resolution did not substantially improve the model’s
performance, the daily revisits improve the temporal resolution, allowing for the more
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frequent capturing of the on/off and capacity factor identification at power plants, which
produces a greater number of total observations in each year.

Appendix D includes some additional results validating our sounding models on non-
training plants in the US, Europe (ENTSO-E), Australia, and Türkiye. On these plants, our
NDT classification models using Sentinel-2 and PlanetScope imagery performed similarly
with an mAP between 0.74 and 0.78, while the Landsat 8 models received lower average
classification mAP scores of ∼0.72. These NDT classification results are worse than the
cross-validation performance but are still significantly (alpha = 0.1) better than a naïve
baseline of 0.5 mAP. The NDT regression models’ overall average performance was 0.22,
0.23, and 0.27 for PlanetScope, Sentinel-2, and Landsat 8 models, respectively, which is
comparable to the cross-validation performance above. For the FGD model validation, only
three plants with FGD had reported data available to compare against, but a similar trend
was seen as the Sentinel-2 and PlanetScope models performed better than the Landsat
8 models.

4.2. Generation Model Validation

To validate our generation models, we measured performance using the RMSE be-
tween the reported and predicted 30-day rolling average capacity factors in the validation
set. Table 5 summarizes the results of our two generation models for both cross-validation
(training plants in the US, Europe (ENTSO-E), and Australia) and external validation (non-
training plants in the US, Europe (ENTSO-E), Australia, Türkiye, and India). While we
included imagery from as early as 2015 for the sounding model, we focused on 2018–2022
for the generation model. This is because PlanetScope has limited imagery before 2018, and
this higher-temporal-resolution is crucial for predicting the 30-day rolling capacity factor.
The baseline used is again the average value of the target in the relevant training set, i.e., the
average capacity factor: 0.44 for NDT plants and 0.47 for FGD plants. Compared to the
sounding-level regression tasks described previously, the NDT ensemble model lead to a
lower baseline RMSE of 0.27. This is due to the smoothing effect from 30 to day averaging.
Our generation ensemble models combine multiple sounding model types, satellite im-
agery sources, and timescales to outperform this baseline significantly (alpha = 0.1) with an
RMSE of 0.149 to 0.199 in almost all cases for both cross-validation and external validation.
The one exception is FGD external validation, which was based on only four plants (due to
limited reported data) that produced an RMSE of 0.323. These four plants include the same
three in Türkiye used for sounding validation and one additional plant in India.

Table 5. Generation ensemble model performance for each plant type, during the period of 2018–2022,
for training plants using cross-validation and on additional plants as external validation. Baseline
results and a 90% confidence interval are also included.

Plant Validation Plant RMSE MBE
Type Type Count ML [CI] Baseline ML [CI] Baseline

NDT cross 73 0.149 [0.129, 0.162] 0.272 −0.014 [−0.028, 0.002] 0.000
NDT external 104 0.199 [0.188, 0.210] 0.273 −0.075 [−0.091, −0.058] 0.048
FGD cross 97 0.196 [0.187, 0.205] 0.270 0.012 [−0.007, 0.031] 0.000
FGD external 4 0.323 [0.216, 0.384] 0.359 −0.252 [−0.330, −0.127] −0.272

Limited conclusions can be drawn from the external validation on FGD plants, as
there are only four plants with reported data in this group. Sounding-level FGD results for
Türkiye showed both a high RMSE and a large negative MBE (Table A3). These errors are
once again reflected in the results for our generation model (Table 5, bottom row).

Our generation models performed better on NDT than FGD plants, which is explained
by both the better performance of the NDT sounding-level model as well as the reduced
number of sounding-level predictions going into the FGD models due to the weather filters
described in Section 3.4 that lead to periods with very little sounding-level information for
some plants. These results also demonstrate that, by aggregating to a coarser temporal res-
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olution (from hourly generation at the sounding level to rolling 30-day average generation),
our error rate reduces substantially.

4.3. Annual Validation

Facility-level annual average capacity factor, total electricity generation, and total
CO2 emissions were calculated from the sounding and generation model outputs for
2019–2022, inclusive. This year range was selected because generation model training was
restricted to 2018–2022 (due to the scarcity of PlanetScope data prior to 2018) and because
of the overlapping nature of the 30-day windows and fiscal year differences necessitating
lookbacks to the previous year.

In addition to our ML models, we produced a second set of simpler baseline capacity
factor estimates. We used country-level annual estimates of capacity and generation by fuel
type from the EIA (eia.gov/international/data/world/electricity/more-electricity-data,
accessed on 1 May 2023) and EMBER (ember-climate.org/data-catalogue/yearly-electricity-
data, accessed on 1 May 2023). From this, we calculated the annual average fuel-specific
capacity factor in each year reported for each country in the world. We then assumed the
same capacity factors within each country for each part of the plant with the associated
fuel type. This does not account for the typical variation in dispatch for plants serving base,
intermediate, and peaking loads. This baseline is different to those used in Sections 4.1
and 4.2 which were simply calculated from the training data, whereas this one is based on
country- and fuel-specific averages. Metrics were calculated by comparing the estimates
derived from our ML methods to the reported generation data summarized in Appendix A.4
or emissions data summarized in Appendix A.6. We used this as a baseline rather than
alternatives like EDGAR, ODIAC, or OCO-2/3 for the reasons described in Section 5.

Table 6 displays performance metrics for the annual average capacity factor. For the
US and Europe (ENTSO-E), cross-validation performance is comparable with an RMSE of
0.17 and 0.12, respectively, and external validation is 0.14 for both. The region with the
highest (lowest performing) external validation RMSE was Türkiye with 0.24. The region
with the largest MBE was Australia with -0.12. This may be due to Australian power plants
generally running at higher capacity factors than the rest of the training set. The fifty plants
in India, on the other hand, achieved results that are very similar to the US training plants,
lending credibility to the generalizability of our ML emissions estimation approach.

Table 6. Annual average capacity factor estimation performance for 2019–2022 compared to the capac-
ity factor derived from the reported generation data for the US, Europe, (ENTSO-E), Australia, India,
and Türkiye, as reported by their respective government mechanisms summarized in Appendix A.4.
A comparison to the country- and fuel-specific average baseline is also included.

Region Validation Plant RMSE MBE
Type Count ML [CI] Baseline ML [CI] Baseline

US cross 78 0.17 [0.16, 0.18] 0.22 −0.02 [−0.05, 0.00] −0.05
US external 6 0.14 [0.12, 0.17] 0.19 0.03 [−0.06, 0.12] 0.04
Europe (ENTSO-E) cross 59 0.12 [0.11, 0.13] 0.20 0.04 [ 0.02, 0.06] 0.05
Europe (ENTSO-E) external 27 0.14 [0.12, 0.16] 0.18 0.02 [−0.01, 0.05] 0.10
Australia cross 7 0.20 [0.08, 0.26] 0.18 −0.12 [−0.20, −0.04] −0.10
Australia external 1 0.09 [N/A] 0.09 −0.01 [N/A] 0.04
India external 50 0.14 [0.13, 0.15] 0.20 −0.03 [−0.05, −0.01] 0.08
Türkiye external 8 0.24 [ 0.21, 0.26] 0.32 0.00 [−0.12, 0.10] 0.13

Comparing modeled to reported annual generation and emissions for individual
power plants, the overall RMSEs, aggregating across both cross- and external validation,
were 1.75 TWh and 2.18 Mt CO2, respectively. Tables 7 and 8 show the performance
of our ML methods for annual total generation (in terawatt–hour or TWh) and annual
CO2 emissions (in megatonnes or Mt) estimation. For US cross- and external validation,
Europe (ENTSO-E for generation and EU ETS for emissions) cross-validation only, and

https://www.eia.gov/international/data/world/electricity/more-electricity-data
https://ember-climate.org/data-catalogue/yearly-electricity-data
https://ember-climate.org/data-catalogue/yearly-electricity-data
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India and Türkiye (both exclusively external validation), the ML-based estimate had a
significantly lower RMSE than the baseline approach using country averages. However, the
RMSE for Europe (ENTSO-E for generation and EU ETS for emissions) external validation
and all Australian plants was no better than the baseline approaches. Furthermore, for
Australia, the errors were significantly worse than anywhere else with the ML-based
method, underpredicting substantially. This may once again be because the ML models
failed to capture the higher average utilization rate in Australia, which makes up a small
percentage of training plants, relative to the lower average utilization rate of the rest of the
training set. That being said, the overall plant-wise annual RMSEs of 1.75 TWh and 2.18 Mt
CO2 are small relative to the annual generation and CO2 emissions of the world’s largest
power plants, as can be seen in Figure 7, which plots our estimates for the average annual
capacity factor, total annual generation, and annual CO2 emissions at individual plants
against reported electricity and emissions data.

Table 7. Annual total generation estimation performance compared to the reported generation data
(in terawatt–hours, TWh) for the US, Europe (ENTSO-E), Australia, India, and Türkiye during the
period 2019–2022.

Region Validation Plant RMSE (TWh) MBE (TWh)
Type Count ML [CI] Baseline ML [CI] Baseline

US cross 78 1.68 [1.51, 1.84] 2.99 0.06 [−0.16, 2.90] −0.65
US external 6 2.92 [ 0.68, 3.92] 3.90 −0.66 [−2.17, 0.88] 0.31
Europe (ENTSO-E) cross 59 1.38 [1.09, 1.58] 2.43 0.35 [ 0.15, 0.53] −0.16
Europe (ENTSO-E) external 27 1.39 [1.09, 1.61] 1.27 −0.55 [−0.82, −0.28] 0.65
Australia cross 7 2.05 [ 0.91, 2.60] 2.19 −1.46 [−2.08, −0.63] −1.33
Australia external 1 1.12 [N/A] 0.94 −0.49 [N/A] 0.37
India external 50 2.12 [1.78, 2.37] 2.58 −1.38 [−1.63, −1.12] 0.98
Türkiye external 8 2.08 [1.31, 2.57] 2.80 −0.94 [−1.91, 0.01] 0.97

Table 8. Annual emissions estimation performance compared to the reported data for the US, EU,
Australia, and India during the period 2019–2022

Region Validation Plant RMSE (Mt CO2) MBE (Mt CO2)
Type Count ML [CI] Baseline ML [CI] Baseline

US cross 77 2.11 [1.73, 2.36] 2.68 0.37 [ 0.08, 0.67] −1.13
US external 5 1.12 [0.37, 1.43] 2.25 −0.61 [−1.08, −0.10] −0.56
EU cross 58 2.27 [1.70, 2.68] 3.04 0.57 [ 0.19, 0.97] −0.18
EU external 36 1.00 [0.76, 1.16] 1.05 −0.41 [−0.58, −0.23] 0.25
Australia cross 6 4.17 [2.91, 5.12] 3.67 −1.40 [−2.98, 0.34] −0.84
Australia external 1 3.23 [N/A] 2.63 −2.06 [N/A] −1.21
India external 24 2.74 [2.41, 3.01] 4.06 0.33 [−0.02, 0.68] 2.72

In conclusion, although our models have an RMSE of 0.12–0.24 in terms of capacity
factor, they are reliable in differentiating low versus high utilization. Validating against
reported data, instead of remote sensing-derived GHG estimates discussed in Section 2,
provides robust and more plentiful verification of specific plants. One area for improvement
is that the model struggles to predict high-capacity factors, favoring mid-range predictions
instead, which contributes to a negative bias in this range. However, once the total gen-
eration and emissions are calculated from our capacity factor estimates, and compared to
reported values, the bias of our models is much more evenly distributed across plants with
different total generation and emissions. Looking at our external validation results, our
models underestimate the reported annual emissions the most in Australia (n = 7) where
plants generally run at a higher capacity factor relative to the training regions according to
reported generation data. On the other hand, the slight positive bias of emissions estimates
in India (n = 24) is more in line with the US and Europe (EU ETS), lending credibility to
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the generalizability of our ML emissions estimation approach beyond training regions.
Furthermore, these errors are small enough relative to the total emissions of major power
plants that, although it may not measure emissions perfectly, the ML technique presented
here is immediately useful in helping the world track relative comparisons between power
plants and thus quantify marginal progress toward urgent emission reduction goals.
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Figure 7. A comparison for 2019–2022 of ML estimated vs. reported (a) capacity factor with Pearson
correlation 0.80, (b) electricity generation (terawatt hour, TWh) with Pearson correlation 0.93, and
(c) CO2 emissions (megatonnes, Mt) with Pearson correlation 0.90 [50]. Each dot represents an
individual plant and year matched to a reported electricity generation or emissions source from the
respective region’s reporting agency. Note: reported CO2 emissions were not plotted for Türkiye as
no emission data are available (Appendix A.5).
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5. Discussion

In Section 4, we compared our model predictions against reported electricity gen-
eration and CO2 emissions data reported from national inventories. For sounding and
generation model validation, we included a baseline approach using training set averages,
which is a standard ML baseline. For annual validation, we compared with EIA- and
EMBER-derived annual country-/fuel-specific averages. The reader may be left wondering
why we did not present comparisons against other approaches, such as the Emissions
Database for Global Atmospheric Research (EDGAR), the open-source data inventory for
Anthropogenic CO2 (ODIAC), or CO2 concentrations derived from OCO-2/3. In the case of
EDGAR, it provides estimates at the annual and country level, so we can neither compare
individual power plants nor individual timestamps, and, since our ML method is applica-
ble to only specific power plants with the NDT and/or FGD technologies producing water
vapor plume proxy signals, we cannot simply sum to obtain the country totals. However,
by augmenting our ML method with the EIA- and EMBER-based country-/fuel-specific
averages to fill the gaps for plants that lack the water vapor plume signal, our previous
studies did indeed match very well with EDGAR [50,51]. As for ODIAC, it is also not
directly comparable because it mixes in other fossil fuel activities outside of electricity and
is a gridded product, so it does not report individual assets. We considered comparing it
to CARMA, which underlies ODIAC and focuses on individual power plants, but it has
not been updated since 2012 and only provides static estimates, thus failing to provide as
recent and granular a comparison as the EIA- and EMBER-based averages. Finally, we
explored matching our instantaneous sounding-level model predictions against some of
the studies that use OCO-2/3 highlighted in Table 2. However, they either did not report
the timestamps needed for matching (Lin et al. [15]) or the lack of overlapping timestamps
between imagery sources produced ten or fewer observations to compare against (Cus-
worth et al. [7] and Nassar et al. [12]). The low availability of processed space-based CO2
concentrations remains the primary challenge in comparing against this data source. For
example, Lin et al. [15], which presented the largest number of observations out of these
three papers, had an average of only 1.4 observations per plant (range 1–6) over four years,
while our methods for the same set of plants, have a mean of 836 observations per plant
(range 473–1510) over the same period. In the future, we would be eager to coordinate
directly with science teams to perform a comprehensive comparison, and, as direct CO2
remote sensing approaches continue to expand over the next few years, we look forward to
incorporating these data into our modeling efforts.

Our results in Section 4 reveal where our models perform well, as well as a few regions
and plant types with larger errors and, in some cases, a negative bias in estimates. We
identified the following sources of error that may have contributed:

1. FGD usage. Because our models assume continuous wet FGD usage, if a plant is
mislabeled and has dry FGD instead of wet or does not run its FGD continuously,
our models will tend to underpredict emissions. We manually filtered out the most
obvious examples of plants that showed no FGD signal but had other signs of activity
from our FGD models. However, there could be plants we missed and therefore
underestimated their emissions.

2. Changing plant characteristics. For simplicity, our current filtering approach is not
time-dependent and assumes fixed plant characteristics; however, plants may change
over time and add or remove FGD or NDT units. A plant may meet FGD or NDT
criteria one year and not another, yet we treat all years the same. To address this issue
for the time being, we filtered out plants that did not meet the filtering criteria for one
or more years during the period of analysis (2015–2022 inclusive). However, we did
not exclude plants that only failed the filter for one year because they retired midway
through that year.

3. Satellite overpass time. The satellites’ local overpass times are during the daytime
and in the morning, averaging around mid-morning or ∼11 a.m. local time for all
three sensors: Landsat 8, Sentinel-2, and PlanetScope. Therefore, all soundings, and
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thus all predictions, are based on images from this time window. If a power plant
generates more/less electricity at times when the satellites do not capture the plant,
our generation estimates are biased low/high, respectively. Furthermore, since our
generation model is currently restricted to training on the US, Australia, and Europe
(ENTSO-E), it may simply learn how mid-morning power plant snapshots predict
rolling 30-day average generation in those regions (especially the US and Europe,
as 93% of training plants are in these regions). Our method can, therefore, over- or
under-predict in regions of the world where dispatch patterns differ significantly from
those in the training regions. We are working to remedy this source of bias by both
expanding our training set to include more regions and by investigating additional
proxy signals to augment our current NDT and FGD signals with a more complete
view of each power plant.

4. Weather influencing signal visibility. The primary proxy signal we currently use to
estimate capacity factor is the water vapor plume, whose size is sensitive to tempera-
ture, humidity, and wind speed: cold and wet conditions favor large plumes, dry and
hot conditions result in smaller or fainter plumes, and higher wind speeds elongate
plumes. Wind is not currently taken into account in our models because we did not
find it to be a significant factor in differentiating the model performance, perhaps in
part due to the lack of precise wind data for specific power plant locations. To address
the temperature and humidity, however, we currently employ a temperature and hu-
midity filter for FGD models, since FGD plumes are especially at risk of disappearing
under hot and dry conditions compared to their larger NDT counterparts. Still, this
means that regions that are too hot and dry to pass the filter will lack observations
for models to ingest, such that we are forced to make predictions based off less data.
However, even if observations pass the filters, regions that are hotter and drier on
average are at risk of underprediction. Adding additional proxy signals that are not
as sensitive to local weather will reduce this bias, and this is an area we are actively
working on.

5. More satellite images in recent years. The majority of PlanetScope satellites were
launched in 2017 or later, with more satellites added through 2022. Furthermore,
Sentinel-2B was launched in 2017. This makes satellite-derived estimates in the
years 2015–2017 less accurate due to the limited satellite coverage and observations.
Because there is less confidence on ML predictions prior to 2019, we restricted asset-
level reporting on the Climate TRACE website to 2019–2022, while ML predictions on
2015–2018 are only used for aggregating into country totals.

6. Conclusions

Applying ML models to multi-spectral satellite imagery enables the identification of
power plant generation activity and emissions with greater spatial coverage and resolution,
more frequent revisits, and lower data latency than currently reported data. Additionally,
combining imagery from multiple satellites provides more observations, and thereby more
activity estimates, over current GHG-concentration remote sensing observations. The
approach developed here can be applied to countries where the generation or emission
data are not publicly available or cannot possibly be obtained due to technical limitations.
Our ML and satellite monitoring approach creates the ability to provide publicly available
power plant emission estimates on a frequent and plant-wise basis. Currently, our estimated
power plant CO2 emissions are available on the Climate TRACE website (climatetrace.org,
accessed on 28 March 2024). As of fall 2023, the website contains country-level annual CO2
emissions estimates during the period 2015–2022 and power plant, source-level, annual
CO2 emissions estimates during the period 2019–2022. The source-level estimates include
power plants for the US, Europe (ENTSO-E for generation and EU ETS for emissions),
Australia, Türkiye, and India, as discussed in Section 4.3. Additionally, the models were
run on FGD and NDT plants in other regions of the world meeting the criteria described
in Section 3.4. In total, we used our ML method to estimate the emissions of 1042 power

http://climatetrace.org
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plants, representing 3% of power plants globally but responsible for roughly 32% of the
global combustion power plant CO2 emissions averaged over 2015–2022, representing a
major step forward in the world’s ability to monitor power plant emissions.

Our models’ predictions were found to be more accurate than the alternative baseline
calculations using country- and fuel-specific capacity factor averages. We identified a
negative bias in Australia and Türkiye and hypothesized some sources for this error
(e.g., plants running at higher average capacity factors than the bulk of the training data,
as can be seen in Appendix D), that we will work to mitigate in the future. We continue to
refine and improve the accuracy and coverage of our predictions in an effort to provide
plant-level emissions estimates for more power plants. This includes the following:

• Improving our regression models by better understanding the relationship between
plume size, generation, and weather conditions;

• Creating mechanisms to estimate model bias;
• Including new and additional satellite measurements, e.g., thermal and SWIR, that

can identify activity related to emissions;
• Sourcing additional reported data from regions outside the current training set to both

validate and mitigate model bias;
• Investigating new proxy signals at plants that do not use NDT or FGD as well as

signals widely applicable to other fuel sources;
• Increasing the precision of the carbon intensity modeling of individual power plants.

The use of satellite imagery that is available at low latency allows for estimates to be de-
rived at a higher recency than other GHG inventory methods and can track and identify the
emissions down to the source level. This approach is a promising step forward in providing
more up-to-date estimates and can complement current approaches to estimate emissions.
This work can provide useful information to governments, corporations, and citizens that
seek to reduce their GHG emissions to meet The Paris Agreement and sustainability goals.
As this project is an ongoing effort, the Climate TRACE website (climatetrace.org, accessed
on 28 March 2024) will continue to be updated with the best-known available methods to
provide global coverage for power plant emissions estimation, and contributions from the
community are welcome and encouraged.
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Abbreviations
The following abbreviations are used in this manuscript:

AVIRIS-NG Next-Generation Airborne Visible/Infrared Imaging Spectrometer
CAMPD Clean Air Markets Program Data
CNN convolutional neural network
CO2 carbon dioxide
CO2M Copernicus CO2 Monitoring
CEMS Continuous emissions monitoring systems
EDGAR Emissions Database for Global Atmospheric Research
EIA Energy Information Administration
ENTSO-E European Network of Transmission System Operators for Electricity
EU European Union
EU ETS European Union Emissions Trading System
FGD Flue gas desulfurization
GAO Global Airborne Observatory
GEE Google Earth Engine
GOSAT Greenhouse Gases Observing Satellite
HOT Haze-optimized transformation
LULUCF Land Use, land-use change and forestry
mAP Mean average precision
MBE Mean bias error
ML Machine learning
NDT Natural draft wet cooling towers
NDVI Normalized difference vegetation index
NIR Near-infrared
OCO Orbiting Carbon Observatory
OLI Operational Land Imager
ODIAC Open-source Data Inventory for Anthropogenic CO2
PRISMA Precursore Iperspettrale della Missione Applicativa
RMSE Root mean squared error
ROI Region of interest
SWIR Shortwave infrared
TIR Thermal infrared
TIRS Thermal infrared sensor
TOA Top of atmosphere
UDM2 Usable data mask
US United States
USGS US Geological Survey

Appendix A. Data Sources

Appendix A.1. Global Fossil Power Plant Inventory

We needed a power plant inventory containing information on location, fuel type,
capacity, operating dates, cooling type, and pollution control technology at both the plant
and unit levels. Unfortunately, all existing power plant inventories have shortcomings,
including missing, outdated, conflicting, or incomplete information. Therefore, we devel-
oped our own harmonized global inventory of power plants by assimilating data from
as many sources as we could. Each dataset contains different, complementary data that
were merged together and standardized. Table A1 below describes how we use each of the
datasets, including which data we republish.
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Table A1. Datasets employed to create a harmonized Global Fossil Power Plant Inventory.

Dataset Plant Metadata Used

US Energy Information Administration EIA-860, EIA-860m
https://www.eia.gov/electricity/data/eia860/
(accessed on 1 June 2023)

Plant name
Unit fuel type
Location
Unit capacity
Unit operating dates
Unit cooling type
Unit pollution control tech SO2

World Resources Institute (WRI) Global Power Plant Database (GPPD)
https://datasets.wri.org/dataset/globalpowerplantdatabase
(accessed on 1 July 2021)

Plant name
Plant fuel type
Location
Plant capacity
Plant operating dates

S&P Global/Platts World Electric Power Plant (WEPP)
https://www.spglobal.com/marketintelligence/en/solutions/market-intelligence-platform
(accessed on 1 March 2023)
Note: The source level dataset is proprietary and is used internally only.

Unit fuel type
Unit capacity
Unit operating dates
Unit cooling type
Unit pollution control tech SO2

Global Energy Monitor (GEM) Global Coal Plant Tracker
(GCPT) and Global Gas Plant Tracker (GGPT)
https://globalenergymonitor.org/
(accessed on 8 August 2023)

Plant name
Unit fuel type
Location
Unit capacity
Unit operating dates

Other sources (e.g., press releases, newspaper articles, company websites) All

The US Energy Information Administration (EIA) dataset is the only one that provides
all relevant data points for every US-based plant. Therefore, we primarily used EIA for the
US. For the rest of the world, we used a combination of the other datasets.

To harmonize our datasets and obtain all the required information for every plant,
we mapped units and plants between datasets. Global Energy Monitor provides unit-
and plant-level mappings to the World Electric Power Plant (WEPP), while Global Power
Plant Database (GPPD) contains plant-level mappings to WEPP. For those plants missing
linkages, we matched them ourselves.

GPPD, WEPP, and Global Energy Monitor have overlapping information, such as the
capacity of many plants. Plants with discrepancies for overlapping values were investigated
and validated as much as possible via primary sources such as newspaper articles, press
announcements, etc.

In addition, some datasets are more up-to-date than others. Global Energy Monitor,
for example, contains recently built plants not found in other datasets. Comparisons and
validation of the base datasets were performed to ensure that the most up-to-date plant
information was included in our final dataset.

Appendix A.2. Plant Validation and Infrastructure Mapping

To validate and augment our plant-level data, we used OpenStreetMap (OSM), a
publicly available and free geographic database. First, we manually cross-referenced and
corrected the geolocation of power plants in our harmonized dataset. Second, OSM enabled
us to annotate (“tag”) physical features of power plants (Figure A1). We used tags to label
parts of the plant from which we expect to see vapor plumes: NDT cooling towers and FGD
flue stacks. These annotations were used to focus our ML models on the most pertinent
parts of the plant, improving their performance.

https://www.eia.gov/electricity/data/eia860/
https://datasets.wri.org/dataset/globalpowerplantdatabase
https://www.spglobal.com/marketintelligence/en/solutions/market-intelligence-platform
https://globalenergymonitor.org/
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Figure A1. White bluff power station as shown on OpenStreetMap (top) and in OpenStreetMap edit
mode (bottom). We used this aerial imagery to annotate the locations of FGD flue stacks (translucent
white circle) and NDT cooling towers (red circles).

For every power plant on which we run ML training or inference, we completed the
following manual tasks using OSM:

1. Confirmed that there is a power plant at the provided coordinates.
2. Verified that it is the correct plant by checking that plant information and visible tech-

nology (e.g., cooling equipment, coal piles) on the ground matches our information
about the plant.

3. Annotated all FGD flue stacks.
4. Annotated all NDT cooling towers.

We created our own annotations for specialized tags that are not relevant for OSM,
including the labeling of flue stacks with FGD technology. More information on our
activities on OSM can be found on the Climate TRACE OSM wiki page (https://wiki.
openstreetmap.org/wiki/Organised_Editing/Activities/Climate_TRACE, accessed on
1 August 2023).

Appendix A.3. Weather Data

Our ML models were trained to observe the visible vapor plumes to predict power
plant activity. However, we observed that visible vapor plume formation was reduced at
high ambient temperature and low relative humidity, particularly for FGD structures which
emit a fainter plume than NDT. In order to focus our models on weather conditions in
which we expect to see a signal, we applied a set of empirically derived filters, as detailed in
Section 3.4. We obtained historical weather data from 2015 to 2022 for all of our plants from
World Weather Online (https://www.worldweatheronline.com/weather-api, accessed on
10 August 2023).

https://wiki.openstreetmap.org/wiki/Organised_Editing/Activities/Climate_TRACE
https://wiki.openstreetmap.org/wiki/Organised_Editing/Activities/Climate_TRACE
https://www.worldweatheronline.com/weather-api


Remote Sens. 2024, 16, 1290 26 of 34

Appendix A.4. Plant-Level Electricity Generation Data

To train our ML models, we used multiple sources of reported high-time-resolution
(hourly to sub-hourly) plant-level generation data in MWh for plants in regions where this
was available. While many datasets are available that provide low time-resolution genera-
tion data (days to months) or generation-aggregated across a large number of power plants,
these are not usable in our ML model training set. Our datasets include the US EPA Clean
Air Markets Program Data (CAMPD) (https://campd.epa.gov, accessed on 1 June 2023),
European Network of Transmission System Operators for Electricity (ENTSO-E) (https:
//transparency.entsoe.eu/generation/r2/actualGenerationPerGenerationUnit/show, ac-
cessed on 1 June 2023), and Australia National Electricity Market (NEM) (https://aemo.
com.au/energy-systems/electricity/national-electricity-market-nem/about-the-national-
electricity-market-nem, accessed on 1 June 2023). These datasets provide us with genera-
tion at hourly or sub-hourly intervals for several thousand power plants, from 2015 to the
present. We matched each asset’s time series to the power plants in our database, resulting
in plants with reported generation data in 23 countries.

This reported generation data must be complete and accurate for our models to be
useful. To train models that predict on/off and capacity factor on each satellite image,
we require hourly (or more frequent) reported generation to match to satellite imagery to
avoid letting too much time elapse and risk the power plant generation value changing
by the time imagery is captured. Images that cannot be matched to reported generation
within the hour prior to capture are not used to train models. In power plants that have
clearly visible activity-related signals, the power generation values can be validated, either
through hand-labeling studies or by inspecting samples where our models have particularly
confident errors. We reviewed a selection of false negative predictions from our models,
i.e., cases where the reported data claim that the power plant is active, but the models
predicted that it is off. This may be due to cooling towers following a dry (no plume) cooling
process while our harmonized powerplant inventory incorrectly shows them as wet (plume-
producing) or due to plants with inefficient or non-operating FGD pollution controls. For
false positives, i.e., power generation is reported as zero, but there is an obvious plume
coming out of a cooling tower or flue stack, it is more likely to be because the time gap is
too great between reported generation and when the image was captured or there exists
a generation reporting error. While reviewing our models, we came across a couple of
hundred images that showed visible NDT or FGD plumes but with a generation reported
as zero and a handful of others that showed no visible signal but reported generation; we
excluded images from model training. For plants with an abundance of issues with reported
generation data (e.g., failure to report generation for operating units, reporting generation
several months past retirement, or insufficient or inconsistently reported generation data),
we excluded the entire plant from the training set. These tactics helped us avoid “garbage
in, garbage out”; i.e., they prevented the ML models from learning incorrect patterns due
to erroneous data. This process also helped us identify and correct data issues (e.g., dry vs.
wet cooling towers).

For model validation, we also gathered reported electricity generation data from three
additional countries for as many NDT or FGD power plants as possible:

• Türkiye—Enerji Piyasaları İşletme A.Ş. (EPİAŞ), also known as Energy Exchange
Istanbul (EXIST) (https://www.epias.com.tr, accessed on 1 June 2023). Reports hourly
electricity generation data.

• India—National Power Portal (NPP) (https://npp.gov.in, accessed on 1 June 2023).
Reports daily electricity generation data.

We were not able to train on power plants in India because we require hourly (or
more frequent) reported data. Although the data from Türkiye and Taiwan meet this
requirement, we have not yet quality-controlled these data to the same extent as the rest of
our training data (which has been in our database for multiple years). Although we did not
use them for model training, all three datasets were included in our validation described in
Sections 4.1 to 4.3, which we used to estimate the model error.

https://campd.epa.gov
https://transparency.entsoe.eu/generation/r2/actualGenerationPerGenerationUnit/show
https://transparency.entsoe.eu/generation/r2/actualGenerationPerGenerationUnit/show
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/about-the-national-electricity-market-nem
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/about-the-national-electricity-market-nem
https://aemo.com.au/energy-systems/electricity/national-electricity-market-nem/about-the-national-electricity-market-nem
https://www.epias.com.tr
https://npp.gov.in
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Appendix A.5. Plant-Level Emissions Data

We sourced facility-level power plant CO2 emissions data reported by the following
agencies to compare against estimates derived from our machine learning approach:

• United States—US EPA Clean Air Markets Program Data (CAMPD) (https://campd.
epa.gov, accessed on 1 June 2023);

• European Union–European Union Emissions Trading System (EU ETS); (https://www.
eea.europa.eu/data-and-maps/data/european-union-emissions-trading-scheme-17/eu-
ets-data-download-latest-version, accessed on 25 October 2023);

• Australia–Clean Energy Regulator (CER) National Greenhouse and Energy Reporting
(NGER) Scheme (https://www.cleanenergyregulator.gov.au/NGER, accessed on 25
October 2023);

• India–Central Electricity Authority (CEA) (https://cea.nic.in, accessed on 25 October 2023).

Note that, for Australia and India, emissions data are reported on the local fiscal year
(1 July–30 June in Australia, 1 April–31 March in India). For comparability to annual-
level ML-based predictions, emissions were converted to the Gregorian calendar year by
rescaling based on sub-annual electricity data reported from NEM and NPP, respectively:

monthly emissions =
monthly generation
yearly generation

∗ yearly emissions

Appendix A.6. Annual Emissions Factors

The combustion of fuel in an electric power plant is an energy conversion process.
The effectiveness of the conversion energy in the fuel to electricity is quantified as the
heat rate (GJ/kWh) and is strongly affected by fuel and power plant technology [52]. The
combustion process oxidizes the carbon, hydrogen, sulfur, and other constituents in the
fuel, releasing both heat and the products of combustion: CO2, H2O, and SO2. The quantity
of CO2 emissions per energy content of the fuel, the carbon dioxide emissions coefficient
(kgCO2/GJ), is closely associated with the fuel type [53]. For power plants, the product
of the heat rate and the carbon dioxide emissions coefficient is called the CO2 emissions
factor (kgCO2/kWh). The consequence of the combustion process in power plants is that,
for a combination of power plant technology and fuel, the quantity of CO2 emissions is
strongly associated with the activity of the power plant. This relationship is demonstrated
in Figure A2.
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Figure A2. A comparison of reported annual electricity generation (terawatt hour, TWh) and reported
CO2 emissions (megatonnes, Mt) of US plants (reported by CAMPD) for 2019–2022 of gas combined
cycle plants with Person correlation 0.98 and coal steam turbine plants with a Pearson correlation of
0.99. Each dot represents an individual plant and year.
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A power plant consists of one or more generating units, each of which may have
a different fuel source and prime mover type, and therefore a different carbon intensity,
from other units at the plant. For each unit, an emissions factor (carbon intensity) was
calculated through a combination of country-, fuel-, and prime-mover-specific average
carbon intensities. Nominal carbon intensity values for combinations of energy source
and prime mover technology were derived from a combination of US EPA Clean Air
Markets Program Data (CAMPD), US EPA Emissions & Generation Resource Integrated
Database (eGRID) (https://www.epa.gov/egrid, accessed on 1 August 2022), and European
Commission Joint Research Open Power Plants Database (JRC-PPDB-OPEN) (https://data.
jrc.ec.europa.eu/dataset/9810feeb-f062-49cd-8e76-8d8cfd488a05, accessed on 1 August
2022) data, and country-specific calibration based on IEA (https://www.iea.org, accessed
on 1 August 2022) data. The emissions factor of each unit (unit_annual_carbon_intensity),
was determined as follows:

1. A base value (base_carbon_intensity) was gathered from the combination of the unit’s
energy source (energy_source_type), e.g., coal, gas, oil, and prime mover technology
(prime_mover_type), e.g., combined cycle, simple cycle. This factor accounts for
the typical efficiency and fuel carbon content differences between fuel and prime
mover types.

2. If the combination of the energy source and prime mover did not have a value in the
database, the average carbon intensity of the energy source was used.

3. The final emissions factor was calculated by applying an energy source and country-
specific calibration factor (country_calibration_factor), a scalar that was multiplied by
the base value to account for average regional differences in power plant efficiency
(due to age, technology level, and size), fuel quality, and the impact of ambient
conditions on carbon intensity that are not currently modeled.

Example calculation:

unit_annual_carbon_intensity =

base_carbon_intensity(energy_source_type, prime_mover_type)

∗ country_calibration_factor(country, energy_source_type)

For a coal-fired boiler with a steam turbine prime mover in the US, the annual carbon
intensity would be 934 [kg CO2/MWh] = 1170 [kg CO2/MWh] ∗ 0.798.

Appendix B. CNN Model and Training Details

For the classification CNNs, we used a softmax layer and cross-entropy loss. These
models were trained using class weighting so that the on and off classes were represented
equally during training. This is necessary because plants were “on” in about 80% of the
training images.

For the regression CNNs, we used a sigmoid layer with either mean squared error
or Huber loss based on performance. The regression models had a more difficult time
converging than the classification ones. We found the simplest solution was to train it as a
multi-task model that performs both classification and regression, with weights of 0.02 and
0.98 applied to each, respectively.

The patch size around each tower or stack was optimized as a hyperparameter for
each model type and imagery product. Patch sizes ranged from 8 to 64 pixels, with larger
patch sizes selected for regression models where the model can benefit from a full view of
the plume.

We trained our CNN models using the AdamW optimizer that uses weight decay
for regularization. We also regularized with dropout and image augmentation, including
transformations for random flipping, rotation, brightness, contrast, darkness, Gaussian
blur, translation, and zooming. The brightness, contrast, darkness, and Gaussian blur
transformations simulate some of the image quality issues that we saw. Many of these

https://www.epa.gov/egrid
https://data.jrc.ec.europa.eu/dataset/9810feeb-f062-49cd-8e76-8d8cfd488a05
https://data.jrc.ec.europa.eu/dataset/9810feeb-f062-49cd-8e76-8d8cfd488a05
https://www.iea.org
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issues are caused by natural phenomena like haze and various lighting conditions. As we
trained models on a single satellite at a time with a fixed spatial resolution, the amount of
translation and zooming augmentation is relatively small but does provide a benefit. We
tuned the magnitude of image augmentation during hyperparameter optimization.

In summary, we optimized the following hyperparameters:

• Patch size [8, 16, 32, 48, 64];
• Backbone truncation layer [block2_pool, block3_pool, block4_pool];
• Attention heads [1, 8];
• Augmentation magnitude [0.5, 1, 1.5, 2, 2.5, 3];
• Weight decay [10−6, 10−5, 10−4, 10−3];
• Early stopping patience [10, 20, 30];
• Batch size [32, 54, 128];
• Learning rate [10−5, 10−2];
• Number of epochs [40, 50, 60, 70, 80, 90, 100];
• Loss (for regression only) [mean squared error, huber].

Appendix C. Generation Model Features

This section details the features used in our generation model (Section 3.6). The
equations below use the variables defined as follows:

• A sounding prediction p from the set of soundings P within a lookback window; |P|
represents the number of sounding predictions in the lookback window;

• A sounding model ms from the set of sounding models Ms associated with a satellite
s; |Ms| represents the number of sounding models for satellite s;

• A classification sounding from sounding model ms: ypms ;
• A regression sounding from sounding model ms: zpms .

If a feature value was missing, i.e., when there were no soundings for a plant during
the lookback window, we imputed the value by calculating the average of the feature across
all plants within the generation training fold. The generation models had access to the
following feature sets calculated within each lookback window:

1. Model-averaged regression and classification soundings: We averaged each sound-
ing model’s capacity factor predictions, and separately, the ON-scores during the
lookback window:

yms
=

1
|P| ∑

p∈P
ypms

zms =
1
|P| ∑

p∈P
zpms

This produced a feature for each sounding model for each satellite.
2. Satellite-averaged regression and classification soundings: We averaged the capacity

factor predictions and, separately, the ON scores from all sounding models associated
with a satellite. This resulted in one ensembled capacity factor estimate and ON-score
per image in the lookback window. These values were then averaged over the images
to obtain a single value per lookback window:

ys =
1

|P||Ms| ∑
p∈P

∑
ms∈Ms

ypms

zs =
1

|P||Ms| ∑
p∈P

∑
ms∈Ms

zpms

This produced a feature for each satellite.
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3. Weighted-average regression soundings: We weighed the capacity-factor-related
predictions based on the corresponding classification soundings. First, we averaged
the classification soundings from all sounding models associated with a satellite:

yps =
1

|Ms| ∑
ms∈Ms

ypms

This produced one ensembled ON-score per image in the lookback window. These
values were then used to weigh the capacity-factor-related predictions. The further
away from 0.5 the ensembled ON-score, the higher the weight, with a maximum
weight of 1 and a minimum weight of 0. The resulting weighted regression scores
were then averaged within the lookback window to obtain a single value. This was
achieved for each model and for each satellite:

wms =
1

∑
p∈P

yps
∑
p∈P

2|yps − 0.5|zpms

ws =
1

∑
p∈P

yps
∑
p∈P

2|yps − 0.5| 1
|Ms| ∑

ms∈Ms

zpms

This produced a feature for each model and one for each satellite.
4. Mean thresholded classification soundings: These features indicate the percentage of

ON-scores in the lookback window that were above 0.5:

bms =
1
|P| ∑

p∈P
I(ypms > 0.5)

bs =
1
|P| ∑

p∈P
I(

1
|Ms| ∑

ms∈Ms

ypms > 0.5)

where I is an indicator function mapping to 1 if the condition is true and 0 otherwise.
This resulted in a feature for each model and one for each satellite.

5. Missing feature indicator (FGD only): This value indicates whether a feature was
imputed, 1 if imputed, and 0 otherwise. Imputation was used more often for the FGD
model due to the stricter temperature and humidity filter.

Appendix D. External Validation for Sounding Model

We acquired additional electricity generation data for external validation from report-
ing agencies in Türkiye and India, as described in Appendix A.4. A comparison to our
models is shown in Tables A2 and A3. Since India reports only at the daily level, not hourly,
it could only be used to validate the generation and annual-level models, not the sounding
models that require hourly generation data. Some plants in the US, Europe (ENTSO-E), and
Australia were excluded from training due to the strict filters set in Section 3.4; however,
they do meet the looser requirements also described in that Section. There are very few
external validation plants for FGD as compared to NDT because the plant filters were
relaxed for NDT but not FGD at inference time.
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Table A2. On/off classification and regression external validation on 42 NDT plants across the US,
Europe (ENTSO-E), Australia, and Türkiye, 2015–2022.

Satellite Model
Classification Regression

mAP [CI] RMSE [CI] MBE [CI]

PlanetScope XGBoost 0.779 [0.733, 0.837] 0.221 [0.206, 0.233] 0.004 [−0.017, 0.028]
PlanetScope CNN-RESISC 0.782 [0.721, 0.851] 0.215 [0.198, 0.231] −0.009 [−0.034, 0.020]
Sentinel-2 XGBoost 0.749 [0.708, 0.802] 0.240 [0.223, 0.255] −0.008 [−0.037, 0.024]
Sentinel-2 CNN-RESISC 0.752 [0.713, 0.808] 0.231 [0.210, 0.250] −0.040 [−0.068, −0.008]
Sentinel-2 CNN-BigEarthNet 0.738 [0.704, 0.795] 0.232 [0.214, 0.248] −0.014 [−0.041, 0.018]
Landsat 8 XGBoost 0.730 [0.689, 0.803] 0.257 [0.230, 0.278] 0.033 [ 0.000, 0.066]
Landsat 8 CNN-RESISC 0.717 [0.669, 0.772] 0.271 [0.244, 0.294] −0.017 [−0.053, 0.019]
Landsat 8 CNN-BigEarthNet 0.721 [0.683, 0.791] 0.272 [0.243, 0.295] −0.003 [−0.039, 0.039]

Table A3. On/off classification and regression external validation on 3 FGD plants in Türkiye,
2015–2022.

Satellite Model
Classification Regression

mAP [CI] RMSE [CI] MBE [CI]

PlanetScope XGBoost 0.664 [0.531, 0.909] 0.487 [0.463, 0.504] −0.373 [−0.416, −0.323]
PlanetScope CNN-RESISC 0.778 [0.623, 0.943] 0.394 [0.392, 0.395] −0.299 [−0.303, −0.295]
Sentinel-2 XGBoost 0.615 [0.519, 0.766] 0.455 [0.411, 0.492] −0.350 [−0.407, −0.277]
Sentinel-2 CNN-RESISC 0.604 [0.523, 0.871] 0.461 [0.416, 0.500] −0.356 [−0.410, −0.292]
Sentinel-2 CNN-BigEarthNet 0.682 [0.529, 0.940] 0.474 [0.444, 0.496] −0.390 [−0.419, −0.346]
Landsat 8 XGBoost 0.586 [0.517, 0.765] 0.519 [0.444, 0.584] −0.406 [−0.516, −0.296]
Landsat 8 CNN-RESISC 0.550 [0.517, 0.714] 0.509 [0.479, 0.543] −0.400 [−0.477, −0.329]
Landsat 8 CNN-BigEarthNet 0.569 [0.568, 0.829] 0.430 [0.408, 0.447] −0.318 [−0.372, −0.260]

The same naive baselines used in Tables 3 and 4 were applied for the external validation
set as a comparison to the ML approach: simply predicting the mean off/on value or mean
capacity factor over the training set. For NDT, these baselines produced an RMSE of 0.326
to 0.343 and MBE of 0.119 to 0.180. For FGD, the baselines were 0.436 to 0.461 and −0.406
to −0.299 for RMSE and MBE, respectively.

In external validation, our NDT models achieved a regression performance comparable
to the cross-validation results but performed more poorly for classification with mAP
ranging from 0.72 to 0.78.

For FGD, our external validation results were significantly poorer. Classification
mAP ranged from 0.55 to 0.78, and regression RMSE did not always outperform the naive
baseline. Even more concerning, there was a large negative bias ranging from −0.299
to −0.406. However, it must be noted that the set of FGD plants available for external
validation was extremely limited: only 3 plants compared to 42 available for NDT. Therefore,
additional external validation of FGD is needed. Furthermore, we suspect that the high
error and large negative bias for those three Turkish FGD plants could be because the
average annual capacity factor of those three plants is around 0.8, yet our FGD training
set consists of only European (ENTSO-E) and US plants with an average annual capacity
factors around 0.4 and 0.5, respectively.
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