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Abstract: Soil organic carbon stock (SOCS) changes caused by land use changes are still unclear, and
understanding this response is essential for many environmental policies and land management
practices. In this study, we investigated the temporal–spatial and vertical distribution characteristics
of the SOCS in the Western Sichuan Plateau (WSP) using the sparrow search algorithm–random
forest regression (SSA-RFR) models with excellent model applicability and accuracy. The temporal–
spatial variations in the SOCS were modeled using 1080 soil samples and a set of nine environmental
covariates. We analyzed the effect of land use changes on the SOCS in the WSP. The total SOCS
increased by 18.03 Tg C from 1990 to 2020. The results of this study confirmed a significant increase
in the SOCS in the study area since 2010. There was a 27.88 Tg C increase in the SOCS in 2020
compared to the total SOCS in 2010. We found that the spatial distribution of the SOCS increased
from southeast to northwest, and the vertical distribution of the SOCS in the study area decreased
with increasing soil depth. Forests and grasslands are the main sources of SOCS the total SOCS in
the forest and grassland accounted for 37.53 and 59.39% of the total soil organic carbon (SOC) pool
in 2020, respectively. The expansion of the wetlands, forest, and grassland areas could increase the
SOCS in the study area. A timely and accurate understanding of the dynamics of SOC is crucial
for developing effective land management strategies to enhance carbon sequestration and mitigate
land degradation.

Keywords: soil organic carbon density; soil organic carbon stocks; land use change; sparrow search
algorithm; alpine mountains region

1. Introduction

Soil organic carbon (SOC) is a significant indicator to measure soil fertility and eval-
uate crop growth and development [1,2]. It is related to climate change [3], vegetation
types [4], land use change (LUC) [5,6], and human activities [7]. As land resource manage-
ment transitions from quantity-focused to quality-focused management [8], it is crucial
to study the effect of this transition on the SOC stock (SOCS). In addition, the response
of the SOCS to land use change across different soil layers and regions shows significant
differences, and it is essential to examine the impact of land use change on the SOCS in both
horizontal and vertical directions [9]. SOC, pH, and soil bulk density (SBD) are important
indicators for estimating the SOCS [10]. The accurate estimation of these parameters is
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crucial for assessing regional changes in the SOCS and understanding carbon cycles in
ecosystems. Studying the temporal–spatial characteristic of LUC plays an important part
in the exploration of the change in the SOCS. However, only a few studies have focused
on the effects of LUC on the SOCS using a long time series [5,6,11–13]. Therefore, it is
significant to investigate the effects of LUC on the SOCS.

At present, random forest regression (RFR) has been commonly used to estimate the
SOC and SBD based on multi-source remote sensing data, and these models have strong
applicability [14–16]. To further improve the accuracy of the RFR model, the sparrow
search algorithm (SSA) can be employed, which is known for its easy implementation,
versatility, and fast convergence speed [17,18]. In addition, it is vital to identify the major
environmental variables affecting the SOC content; these variables were utilized as the input
dataset for SOC prediction models. However, the optimal combination of these variables
for improving the modeling accuracy has different performance in different regions.

The Qinghai–Tibet Plateau (QTP) is an important region for studying carbon sinks
and global energy, carbon, and moisture cycles [10,12]. However, the effect of LUC on
the increase in the SOCS in the QTP is still unclear. It is essential to qualitatively and
quantitatively investigate the SOC effects and potential risk assessment. Some studies
have reported that LUC can directly affect the SOCS [19,20], while others have indicated
that LUC is affected by climate change, indirectly affecting the SOCS [3,12,21,22]. Many
scholars have regarded the QTP as their study area to investigate the changes in the SOCS
with coarse spatial resolution (e.g., 90 m, 250 m, 500 m, 1000 m) and short time series;
their results have some limitations in showing the fine spatial and temporal characteristics
in the QTP [12,23,24]. To address these limitations, this study focused on the Western
Sichuan Plateau (WSP), which is located in the southeastern part of the QTP. The WSP is
known for its natural ecosystems, including forests, grassland, and wetlands, which have a
prominent carbon reduction effect [25]. The WSP is a major pastoral area in China, with
grasslands playing a critical role [26]. The WSP is a sensitive area, in which the vegetation
types and soil conditions are closely related to climate conditions [27]. Understanding the
effects of LUC on the SOCS is important for developing practices that promote agricultural
sustainability. However, only a few studies have been conducted on the impact of LUC on
the SOCS in the WSP. Therefore, it is important to further investigate the effect of LUC on
the SOCS in the WSP.

In this study, we analyzed the impact of LUC on the temporal–spatial variability of the
SOCS in the WSP based on long time series field survey data and SSA-RFR. We measured
the SOC content, pH, and SBD of the topsoil (0–5, 5–10, 10–20, and 20–30 cm) using data
for 54 sampling sites to estimate the spatial and vertical distribution of the SOC and SBD.
We analyzed the temporal–spatial and vertical trends of the SOCS under the LUC from
1990 to 2020. The optimal combination of environmental covariates with the highest model
accuracy was determined by the different characteristics of the SOC and SBD in different
soil layers. Then, SSA-RFR was used to build SOC and SBD estimation models for the WSP;
the optimal models were adopted to upscale the field survey samples to the whole study
region. The spatial distribution results of the SOC density (SOCD) were mapped with a
high resolution (30 m). The objective of this study is to (1) find the optimal combination for
the specific region and (2) explore the dynamic change mechanism of the SBD and SOC
from 1990 to 2020. These results can be utilized for developing effective land management
strategies to enhance carbon sequestration and mitigate land degradation.

2. Materials and Methods
2.1. Study Areas

The WSP is located in the southeastern part of the QTP (27◦28′15.6′′–34◦18′46.8′′N,
97◦20′56.4′′–104◦42′50.4′′E), with an average elevation of 4177 m (Figure 1a) and a total
area of about 2.98 × 105 km2. The WSP is influenced by the Qinghai–Tibet Plateau and the
Hengduan Mountains, exhibiting a typical plateau monsoon climate with dry and rainless
conditions and a large temperature amplitude daily [28,29]. The average annual tempera-
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ture was 7.5 ◦C and the average annual precipitation was 87.61 mm in 2020 (Figure 1b). The
main land use types are grasslands and forests (Figure 1c). The main soil types are dark
felty soils, felty soils, and brown earths (Figure 1d). Carex myosuroides Vill. and a variety of
grass vegetation mostly grow in the dark felty soil, and it is an important area for livestock
products [30]. The vegetation in the alpine meadows is mainly Kobresia humilis and Carex
alatauensis S. R. Zhang, and the accompanying species include Carex tristachya Thunb. and
Polygonum macrophyllum D. Don [31].
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Figure 1. (a) The location of the study area. (b) The monthly mean precipitation and temperature
data for the study area in 2020. (c) The land use data in 2020 and the spatial distribution of the SOC
sampling sites. (d) The map of the soil types in the study area.

2.2. Field Data Measurements and Processes

We collected a total of 1080 soil samples from August 2018 to August 2020; the
sampling sites were evenly distributed and representative (Figure 1c). Considering that
forests and grasslands are the primary types of land use in the study area, we have
established numerous sampling sites distributed in these areas. In each sampling area, five
samples were collected at equidistant locations to obtain average values. Additionally, two
100 m sample lines were established in each sampling area (Figure 2a). For each sample,
we collected undisturbed soil samples at fixed intervals of 0–5, 5–10, 10–20, and 20–30 cm
in the topsoil layer using steel bulk density rings (Figure 2b). Each soil sample was selected
at a weight of 10 g and mixed with distilled water to form a soil–water suspension. The pH
value of each sample was measured using the potentiometric method. These samples were
oven-dried at 105 ◦C until a constant mass was achieved to determine the SBD (g cm−3).
The SOC content of the samples was separately determined using potassium dichromate
oxidation spectrophotometry. To estimate the SOCS, we calculated the SOCD in a certain
soil layer thickness per unit area (1 m2). The different soil structures of various land use
types can lead to changes in the accumulation and decomposition processes of SOC, thereby
affecting SOCD. The SOCS in the 0–30 cm layer was calculated using Equation (1) [32–34].

SOCS = A × ∑n
i=1 SOCD, SOCD = SOCi × Hi × SBDi × 1 − Gi

100
(1)
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where A is the area of the study area (m2), SOCD is the density of SOC (t hm−2), H is the
soil thickness (cm), SBD is the bulk density of the soil layer (g cm−3), G is the gravel content
of the soil sample (%), and n is the number of soil layers (n = 4).
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To ensure the accuracy and reliability of the spatiotemporal analysis of the SOCS,
many relevant measured data were obtained from several articles to validate and correct
the results of this study (Table 1). Moreover, publicly available soil data (including the
SBD and SOC data for the 0–30 cm soil layer(s) in the 2010s) were acquired from the above
studies, and some of the soil data (including SBD data for the 0–30 cm soil layer) were
obtained from the Harmonized World Soil Database (HWSD). This database provided us
with additional SBD data for the 0–30 cm soil layer. By incorporating these diverse sources
of data, we aimed to enhance the robustness and comprehensiveness of our analysis.

Table 1. Relevant measured data of SOCS in China.

Region Year Quantity References

Alpine-cold Zone of Northwest Sichuan 2007 39 [35]
Western Sichuan Plateau 2019–2020 87 [36]

Zoige National Wetland Reserve 2010 3 [37]
Zoige Plateau, Sichuan Province 2018–2019 48 [38]

2.3. SSA-RFR Model and Accuracy Evaluation

The random forest regression (RFR) algorithm is a machine learning algorithm to
estimate the ecological indicators [39–41]. In this study, 70% of the soil samples were
utilized as the training set and 30% of the soil samples were utilized as the testing set to
estimate the SBD and SOC with different land types, respectively. In addition, to ensure
the optimal and stable model, the SSA was employed to improve the performance of the
RFR models; the workflow chart is shown in Figure 3. The SSA draws inspiration from
the foraging behavior of sparrows and applies cooperative and competitive strategies
to find the most optimal solutions within the solution space [42]. The SSA incorporates
randomness and local search mechanisms to enhance its ability to explore the solution space
and improve the convergence of the algorithm [43]. The performance of the RFR models
of the SBD and SOC predictions was evaluated using the coefficient of determination (R2,
Equation (2)), mean absolute error (MAE, Equation (3)), root mean square error (RMSE,
Equation (4)), and BIAS (Equation (5)) [44,45]. Both RFR and the SSA are implemented in
Python 3.8.

R2 = 1 − ∑n
i=1(yi − fi)

2

∑n
i=1(yi − y)2 (2)

MAE =
∑n

i=1|ŷi − yi|
n

(3)



Remote Sens. 2024, 16, 1308 5 of 15

RMSE =

√
∑n

i=1(yi − fi)
2

n
, (4)

BIAS = y − f , (5)

where yi and fi represent the field’s measured and estimated SOC or SBD values in the ith
sample, respectively, y and f are the measured and estimated SOC or SBD averaged over
all of the soil samples, and n is the number of soil samples.

1 
 

 

Figure 3. Workflow chart of this study.

2.4. Satellite Data and Pre-Processing

A total of 224 Landsat Collection 2 Level-2 surface reflectance products with a spatial
resolution of 30 m during 1990–2020 were downloaded from the United States Geological
Survey Earth Explorer (USGS EarthExplorer)with an image acquisition time that was close
to the field measurement time and a cloud cover of less than 10% [40,46]. The images were
pre-processed using the ENVI 5.3. The vegetation indices were calculated by band math
(Table 2). Moreover, a digital elevation model (DEM) was obtained from Shuttle Radar
Topography Mission (SRTM) images (version 003, 30 m), which was used to calculate the
slope, aspect, terrain ruggedness index (TRI), and topographic wetness index (TWI). Both
the above vegetation indices and terrain indicators were used to construct the dataset for
the RFR model. The land use change data were obtained from the first Landsat-derived
annual land cover product of China (CLCD) with 30 m spatial resolution, covering four
periods: 1990, 2000, 2010, and 2020. The meteorological data were downloaded from the
European Centre for Medium-Range Weather Forecasts (ECMWF). The meteorological
and LUC data were used to analyze the spatial and temporal characteristics of the SOC
and SBD.
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Table 2. Selected vegetation indices and calculation formulae.

Vegetation Indices Equations References

NDVI Rnir − Rred
Rnir + Rred

[16]

EVI 2.5 ∗ (Rnir − Rred)
Rnir + 6Rred − 7Rblue + 1

[39]

CIg
Rnir

Rgreen
− 1 [40]

SAVI 1.5 ∗ (Rnir − Rred)
Rnir + Rred + 0.5

[47]

Note: NDVI: normalized difference vegetation index; EVI: enhanced vegetation index; CIg: chlorophyll index-
green; and SAVI: soil-adjusted vegetation index.

3. Results
3.1. Statistical Analysis of SBD and SOC

The vertical distribution of the SOC decreased with increasing soil depth, with an
average SOC value of 66.12 g kg−1 in the 0–30 cm layer (Figure 4). The largest decrease in
the SOC content occurred between 5–10 cm and 0–5 cm and in adjacent soil layers, with a
maximum difference of 117.26 g kg−1. The average SBD value for the 0–30 cm interval in
the study area was 0.83 g cm−3.
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Figure 4. SOC content in different soil depths.

Both the pH and SBD exhibited significant negative correlations with the SOC (Figure 5).
Soil is rich in microorganisms which are suitable to grow in a neutral soil environment.
The study area is an acidic soil, in which the decomposition process of organic carbon is
inhibited and can increase the stability of the SOC. SOC has the ability to combine with soil
particles, enhancing soil stability and reducing SBD. Additionally, higher SOC in the soil
results in increased microbial activity and soil biodiversity, which facilitate the breakdown
and decomposition of organic matter in the soil. This process contributes to the formation
of soil aggregates and improves soil structure and reduces soil compaction.
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The average SOCD value in the 0–30 cm range was 1.98 t hm−2. The SOCD decreased
with increasing soil depth. And there were noticeable differences in the SOCD among the
different land use types (Figure 6). The SOCD can directly influence the SOCS. Vegetation
types and land use types strongly influence SOCD and the SOCS.
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median and the upper and lower lines denote the maximum and minimum values of the SOCD.

3.2. Applicability of SSA-RFR Model

SSA-RFR models were used to construct the SBD and SOC estimation models for the
study area. The indicator significance results for each model also exhibited significant
differences (Figure 7). According to the indicator significance results, the DEM we chose
mainly has indicators to estimate SBD and SOC in each different soil layer. This is because
different spectral bands reflect different vegetation properties and hence soil properties.
Topographic indices can reflect soil properties and compensate for the limitations of re-
motely sensed data in obtaining surface data. Therefore, the combination groups of these
vegetation and topographic indicators are a good description of the soil properties.
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The optimal SBD and SOC in the different soil depth estimation models were selected
to achieve the point-to-region expansion based on the cross-validation. The precision
evaluation indicators of the SSA-RFR models are listed in Table 3. The simulated SBD and
SOC exhibited strong correlations with the measured SBD and SOC across each model
(Figure 8). The estimation accuracy of the SBD prediction model was significantly better
than that of the SOC prediction model. Moreover, all of the SSA-RFR models have strong
stability and applicability in SBD and SOC estimation. We validated the results of the
SBD and SOC in different years using datasets obtained from the relevant studies and the
HWSD. Our results have excellent consistency with the validation data.

Table 3. SSA-RFR model evaluation indicators for SBD and SOC prediction in different soil layers.

SSA-RFR Model R2 MAE RMSE BIAS Accuracy

SBD

0–5 cm 0.79 0.09 0.13 0.14 94.38%
5–10 cm 0.76 0.08 0.09 0.02 92.13%
10–20 cm 0.74 0.06 0.08 0.06 93.34%
20–30 cm 0.78 0.06 0.08 0.05 93.79%

SOC

0–5 cm 0.62 18.09 21.63 0.06 82.43%
5–10 cm 0.67 10.31 12.92 0.17 82.69%
10–20 cm 0.65 9.44 10.91 0.23 80.25%
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Note: SBD: soil bulk density; SOC: soil organic carbon.
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3.3. Spatial Distribution of SOCD in 2020

Using the nine spatial explanatory variables and the optimized SSA-RFR models
for the different soil layers (within 0–30 cm), we generated a map of the SOCD in 2020
(Figure 9). The SOCD was higher in the northern and western parts of the study area.
In addition, the wetlands had the highest SOCD in the WSP, and the magnitude of the
decrease in the SOCD with increasing soil depth was different. Moreover, the response
of the SOCD to LUC varies with soil depth. The SOCD in built-up land exhibited the
most pronounced reduction as soil depth increased due to the intense impact of human
activities. The SBD and SOC content in the 0–5 cm soil layer were strongly influenced by
land management patterns. These activities frequently resulted in soil quality degradation
and an increased loss of SOC. In contrast, the shrub, barren land, grassland, and forest
exhibited a higher soil quality due to the high vegetation cover and better sequestration
conditions. The wetlands showed the highest stable SOCD trend due to the higher inputs
and fixation of SOC.
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Combined with the land use data for the WSP, we calculated the SOCS of the different
land use types at different soil depths (Table 4). The grassland had the highest SOCS in
the WSP. The total SOCS in the study area in 2020 was 232.94 Tg C. The total SOCSs of the
seven land use types in topsoil were different. The SOCS of the forest, shrub, and grassland
remained stable and can be fixed in the soil for long periods.
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Table 4. Statistics of the SOCS in topsoil for the different land use types.

Land Use Type Area (km2)
SOCS (Tg C)

0–5 cm 5–10 cm 10–20 cm 20–30 cm

Cropland 1562 0.24 0.19 0.41 0.34
Forest 10.5251 18.11 15.60 29.31 25.39
Shrub 3014 0.45 0.36 0.78 0.61

Grassland 17.9529 27.20 21.70 49.21 40.21
Barren land 5436 0.66 0.55 1.09 1.04

Wetland 528 0.10 0.08 0.15 0.14
Others 2330 0.0039 0.0029 0.0062 0.0056

All 297,650 46.7639 37.4829 80.9562 67.7356

3.4. Characteristics of Temporal–Spatial Distribution of SOCD

The average SOCD values were 7.21, 7.06, 6.88, and 7.82 t hm−2 in 1990, 2000, 2010,
and 2020, respectively (Figure 10). The total SOCD increased by 0.61 t hm−2 from 1990
to 2020. The greatest increasing trend of the SOCD occurred in the northern and western
regions of the study area, which were mostly grassland and forest areas. The total SOCD
decreased from 1990 to 2010 and increased from 2010 to 2020.
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3.5. Effects of LUC on SOCS during 1990–2020

We analyzed the spatial distribution of the LUC in the study area from 1990 to 2020.
Considering that forests and grasslands were the main sources of the SOCS in the study
area, we examined the carbon dynamics and LUC associated with the conversions between
forests and grasslands (Figure 11). By comparing the changes in the SOCS in the different
land use types, we aimed to better understand the implications of LUC on soil carbon
dynamics. The land use types were predominantly grasslands and forests in the WSP. The
changes in the built-up land and barren land were concentrated in the northeastern and
western parts of the study area, respectively. Different land management patterns can
significantly affect the SOC content of the soil at different depths. From 1990 to 2000, there
was a significant reduction in wetland, with 367.84 km2 being converted into grassland
mainly due to climate warming and human activities. Between 2000 and 2010, there was a
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notable expansion in forests, increasing by 1.94 × 103 km2. In addition, from 2010 to 2020,
there was a considerable increase in both wetlands and forests, with wetlands expanding
by 238.60 km2 and forests by 1.11 × 103 km2.
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We analyzed the time series changes in the SOCS from 1990 to 2020 (Table 5) based on
the land use changes. The forest and grassland were the main sources of the SOCS. The
total SOCS exhibited a decreasing trend during 1990–2010, and the total SOCS increased
from 2010 to 2020. The total SOCS increased by 18.03 Tg C from 1990 to 2020 and by
27.88 Tg C from 2010 to 2020. The grassland was the largest region that contributed to
the SOCS in the study area during 1990–2020. The SOCS of the cropland was influenced
by agricultural management practices and exhibited a decreasing trend. The SOCS of
the built-up land with a vegetation region was affected by anthropogenic factors and
exhibited a clear increasing trend. Land use change affects the activity and diversity of
soil microorganisms and influences the stability and cycling processes of SOC. SOC in the
cropland is the most affected by human activities, as shown by the fact that fertilization
patterns during farming could accelerate the rate of decomposition of SOC.

Table 5. SOCSs in the 0–30 cm soil layers for the different land use types.

Land Use Type
SOCS (Tg C)

1990 2000 2010 2020

Cropland 0.91 1.32 1.21 1.18
Forest 72.94 69.92 71.82 88.41
Shrub 2.74 2.33 2.25 2.20

Grassland 135.12 133.57 127.06 137.32
Barren 2.69 2.85 2.54 3.34

Wetland 0.50 0.39 0.17 0.47
Others 0.0041 0.0061 0.0097 0.0186

All 214.9041 210.3861 205.0597 232.9386

4. Discussion
4.1. Impact of Land Management Practices on SOCS

Recently, significant changes in land use patterns have occurred in the WSP, including
rapid urbanization [48] and land degradation [49]. These changes have had a notable
impact on the SOCS in different land use types. Forests and grasslands have played a role
in enhancing carbon accumulation (Figure 10, Table 5), which is consistent with previous
studies showing the positive effects of these natural ecosystems on SOC. Ploughing and
agricultural activities, on the other hand, lead to a decrease in SOC. The total SOCS in
the study area has significantly improved since 2010, primarily due to the conversion of
grasslands to forests and wetlands. Forests and grasslands play a vital role in global carbon
cycling and climate change mitigation, with significant potential for carbon sequestration
and emission reduction. This conclusion is also supported by previous research [50–52].
In this study, we confirmed that land use transitions can increase the SOCS in the WSP.
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Wetlands contain a large number of microorganisms that enhance the carbon sequestration
capacity of these ecosystems. Therefore, it is imperative for policymakers to adapt current
management practices and policies to preserve and restore degraded ecosystems in order
to safeguard the stability and sustainability of SOCS in the study area. Additionally, this
study analyzed the variations in the SOCS among different land use types and soil depths.
The findings provide data and theoretical support for enhancing the SOCS in the WSP.
Further analysis will be conducted to investigate the effects of factors such as fertilizers
and irrigation on the temporal and spatial distribution of the SOCS at different soil depths.

4.2. Uncertainties and Limitations

The results of this study were affected by the variance in the historical image data,
primarily due to the inconsistency in the acquisition times of the images for the different
years. This can have an impact on the vegetation indices, such as the NDVI and EVI, and
consequently on the SOCS prediction results. These vegetation indices are sensitive indica-
tors of climate change and land use change. By employing vegetation indices’ data with
higher accuracy, the estimation of the SOCS can be significantly refined [53,54]. Moreover,
the temporal–spatial distribution of the SOCS in the study area was synergistically affected
by several factors. In this study, we only explored the effects of land use change on the
SOCS from qualitative and quantitative perspectives. Further research is still needed to
address the synergistic effects of climate change and LUC on the SOCS in the study area.
The results of this study showed that there were few data for the regions with higher eleva-
tions (Figure 1). In addition, the SOC and SBD data were obtained without considering the
specific areas where the land use types have changed. Therefore, if more representative
data can be obtained, we can more accurately explore the impact of LUC on the SOCS. We
will further investigate future climate and land use under different scenarios to map the
distribution and evolution of the SOCS in the study area.

To verify whether the results of the long-term SOCS are reliable, we compared several
measured datasets from previous studies and the HWSD in different years with our simu-
lation results (Figure 6). Strong consistency was found between the simulated data and
measured data. Moreover, our results confirmed that the average SOCD in the topsoil in
the WSP was 1.96 t m−2 in 2020, which is lower than in Chen’s study [36]. This difference
can be attributed to our consideration of the effect of gravel content and multiple land use
types on the SOCD. Our research takes into account more natural limitations and provides
more accurate data support.

5. Conclusions

In this study, we explored the temporal–spatial changes in the LUC on the SOCS in the
Western Sichuan Plateau with 30 m spatial resolution. SSA-RFR models and multi-source
datasets were utilized to estimate the distribution of the SOCS from 1990 to 2020. The
vertical distribution of the SOCS in the study area decreased with increasing soil depth,
and the SOCS increased from southeast to northwest. The wetlands had the highest SOCD.
The grassland, as the main land use type in the study area, had the highest total SOCS
(137.32 Tg C in 2020). Forests and grasslands were the main sources of the SOCS in the
study area and had a significant impact on the increase in the total SOCS. More importantly,
land use transitions were confirmed to increase the SOCS in the Western Sichuan Plateau
under climate change. The results of this study confirmed that the SOCS in the study
area increased significantly since 2010, with an increase of 27.88 Tg C over the total SOCS
in 2010. Further, this study highlighted the importance of land management goals and
practices in reaching the dual carbon goals early under the background of climate change.
Because of the change, the SOCS is also likely to be affected by land management practices
including fertilization and cultivation practices. It is crucial to understand the role of land
management processes and to discern the effects of management practices to complement
the SOCS change estimates provided in this study.
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