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Abstract: Predicting urban-scale carbon emissions (CEs) is crucial in drawing implications for various
urgent environmental issues, including global warming. However, prior studies have overlooked
the impact of the micro-level street environment, which might lead to biased prediction. To fill this
gap, we developed an effective machine learning (ML) framework to predict neighborhood-level
residential CEs based on a single data source, street view images (SVIs), which are publicly available
worldwide. Specifically, more than 30 streetscape elements were classified from SVIs using semantic
segmentation to describe the micro-level street environment, whose visual features can indicate major
socioeconomic activities that significantly affect residential CEs. A ten-fold cross-validation was
deployed to train ML models to predict the residential CEs at the 1 km grid level. We found, first, that
random forest (R2 = 0.8) outperforms many traditional models, confirming that visual features are
non-negligible in explaining CEs. Second, more building, wall, and fence views indicate higher CEs.
Third, the presence of trees and grass is inversely related to CEs. Our findings justify the feasibility
of using SVIs as a single data source to effectively predict neighborhood-level residential CEs. The
framework is applicable to large regions across diverse urban forms, informing urban planners of
sustainable urban form strategies to achieve carbon-neutral goals, especially for the development of
new towns.

Keywords: carbon emissions; residential; neighborhood level; street view image (SVI); machine
learning; Beijing

1. Introduction
1.1. Urban Form and CEs

Carbon emissions (CEs) from fossil fuels (e.g., paraffin, gas, coal, and other natural
gas) have driven global climate change [1,2], resulting in more frequent natural disasters [3]
and causing potable water [4] and energy insecurities [5]. Being one of the main emitters [6],
China generates about 10 billion tons of CEs annually, accounting for roughly one-third
of total global emissions [7]. In reaction, China commits to achieve the “3060” goal, with
CE reduction measures across many sectors [8,9]. Notably, the residential sector is the
second-largest emitter, which accounts for 23% of the Total Final Consumption (TFC) of
fossil fuels [10,11]. Moreover, as the urban population grew rapidly from 170 million to
670 million between 1978 and 2010, China’s urbanization rate remarkably soared from 18%
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to 50% [12]. The lifecycle energy consumption of the high urban population will play a
crucial role in drawing implications for predicting residential CEs [13–15].

Consequently, for China to successfully transform to a low-carbon economy, neighborhood-
level CE reduction measures become essential [16]. The neighborhood is a basic spatial
unit that accommodates urban dwellers and their daily socioeconomic activities—a mi-
crocosm of the urbanization process [17]. Therefore, the neighborhood-level urban form
inherently implies the region’s efficiency regarding the allocation and utilization of energy
resources [18]. That said, we hypothesize that the neighborhood-level urban form directly
and indirectly influences CEs through its multi-dimensional indicators, such as the land
use and building density. Understand the interlinkages would inform a more sustainable
urban development to achieve the CE reduction goal [19].

Understanding how the urban form affects CEs requires the capability to accurately
model greenhouse gas concentrations. It also requires a comprehensive dataset to capture
factors influencing CEs at the individual and regional levels [20]. However, it has long been
challenging to model the complex urban environment, which is highly variable in space
and time [21,22]. Specifically, this study aims to tackle the following three gaps.

1.2. Knowledge Gap

To start with, the data sources for CE models are limited. Traditionally, predicting
residential CEs relies on multifaceted GIS data—energy consumption as well as socioeco-
nomic and demographic datasets (e.g., the census and a household economics survey)—to
build regression models. However, detailed energy consumption data are not available
in many cities; they do not even exist for small cities due to insufficient funding for CE
data collection, nor do fine-grained sociodemographic data exist everywhere [23]. Energy
consumption data are often at the city scale rather than at the mesoscale [24]. Additionally,
socioeconomic data often come from different periods than energy consumption data.
Therefore, conventional CE prediction models are not immediately applicable to a new
region or a different period [25].

Moreover, modeling accuracy is often limited given the increased complexity of urban
form variables. Scholars use complex data sources in the hopes of capturing the dynamic
socioeconomic situations related to CEs, yet this could be counterproductive [26,27]. Of-
tentimes, multiple sources are deployed to generate multifaceted independent variables
(e.g., land use, residential density, travel mode choice, and traffic). However, the built
environment and the consequent residential activities are perpetually evolving, making
it difficult to keep multi-source datasets up to date [18,28–33]. That said, building a time-
effective model at the urban scale is desirable. Street view images (SVIs) are frequently
updated, making them ideal open-source data [34–36] to describe timely changes (at least)
on a yearly or even quarterly basis and therefore making them an ideal single source for
CE modeling.

Additionally, the traditional model is generally built based on satellite images and GIS
data, ignoring the street-level information that is more capable of modeling neighborhood-
level activities. For example, satellite images are not fully capable of describing the urban
form at a fine granularity, as there are many sight obstructions, e.g., tree canopies or view
angles. Taking transportation CEs [37] as an example, driving trajectory data are often the
source of insight in estimating traffic flows and their corresponding CEs. However, satellite
images lack the traffic information for many residential blocks due to obstructions from
tree canopies. However, SVIs are capable of inferring traffic information of neighborhoods;
therefore, they are a promising tool in improving the accuracy of CE modeling.

1.3. Hypothesis and Research Design

Prior studies have confirmed that the built environment consists of various factors
influencing residential CEs [38]. The factors range from urban greening [35,38,39], den-
sity [40], and building height and building quality [41] to public infrastructures (e.g., roads
and bus stops) [42]. Notably, these factors can be inferred from SVIs. Specifically, the
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green view index is a proxy of greenery [43], which is important for carbon sequestra-
tion [44–46], while the building view index is a proxy for building density and building
height [47,48], which significantly affect CEs [49]. Adequate public infrastructure and
convenient transportation (e.g., roads, streetlights, and bus stops) may suggest a more
walkable and bikeable neighborhood whose residents would have a higher tendency for
active travel [35,50], resulting in lower CEs [42]. A more developed economy with adequate
infrastructure also relates to better maintained buildings whose dwellers exhibit stronger
awareness and obligation of low-carbon measures. For example, streetscapes such as
walls and fences can imply the quality of the building; a more complex composition of the
façade suggests a higher-quality building whose likelihood of HVAC installation is higher
and whose residents’ income is higher, tending to consume more energy. In other words,
streetscape features extracted from SVIs can imply abundant dweller behavior information,
which can outweigh the impacts of the geometry itself to model energy use [51].

The micro-scale built environment described by SVIs is also related to other indicators
of residential behaviors, including walkability [52,53], bikeability [54–56], running [35],
public transit ridership [57], and, therefore, mode choice [58,59] and active living [60–62].
Moreover, SVIs can infer the urban forms like street canyons and density [63,64] that explain
local climate zones [65–67], an effective indicator for modeling neighborhood microclimate,
outdoor comfort, and urban heat island effects [68–70], which ultimately influence energy
usage and CEs.

In terms of the feasibility of the SVI data source, Google provides publicly available
API access to obtain the frequently updated SVIs, while Baidu and Tencent are dominant
suppliers in China. SVIs have become a common method to replace time-consuming
and costly field auditing [71–74], being easily implementable at the urban scale [75,76].
However, despite the large potential of SVIs, little has been empirically tested to justify
their effectiveness. To fill in the gap, this paper proposes an image-based framework to
directly predict residential CEs based on the micro-level streetscape features extracted from
the SVI dataset.

2. Literature Review
2.1. Conventional Urban Energy Models

Conventional urban CE models can be classified into three families based on method-
ology: (1) models that directly measure the CO2 concentration from remote-sensed satellite
data, for example, the TanSat Satellite [77]; (2) models that aggregate sectoral emission data
collected from sensors monitoring viable spatial grids ranging from a city to a household,
among which “one square kilometer” is the most common resolution [78]; (3) models that
relate the global CE data to human societal indicators in smaller spatial units [79].

The first approach mainly translates observed spectral data into the distribution of
carbon dioxide, thereby obtaining global- or regional-scale carbon flux information. It
becomes a key source for observing global and regional CO2 distributions [80,81]. Publicly
accessible satellite datasets include Europe’s SCIAMACHY, the USA’s OCO-2 and OCO-3,
Japan’s GOSAT and GOSAT-2, and China’s TanSat [77]. Recent studies have showcased the
capability to map and estimate regional CO2 emissions [82] as well as facility-scale CH4
fluxes in urban and complex areas [83,84]. This method exclusively yields CO2 emission
data based on advancements in satellite technology, and its disadvantages are as evident as
its merits: it offers frequent updates for the global coverage in atmospheric CO2 levels.

The second approach collects carbon data from sensors [85,86] or simulated energy
consumption and CEs [87] including the fuel consumption conversion based on prior
sensor data [88]. It often determines the total CEs of a given region based on fossil en-
ergy consumption information disaggregated by sectors—this is particularly prevalent in
China. For example, China’s National Greenhouse Gas Inventory is created by experts
from various fields within the National Development and Reform Commission. They de-
veloped the “Provincial Greenhouse Gas Inventory Compilation Guidelines (PGGICG)” in
2011, comprising sectors including waste disposal, land-use changes, forestry, agriculture,
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production processes, and industrial and energy activities. A recent study in the US [89]
quantified CEs from fossil fuel consumptions by sectors with a bottom–up method and
measured hourly emissions from citywide industrial/electricity facilities, road segments,
and individual buildings. Notably, various datasets, such as building energy simulations,
electricity production data, traffic insights, and local pollution reports, were merged to
build the dataset. City sub-regions can also be modeled. For example, ref. [90] measured
the energy-use intensity (EUI) for each building type using the building energy efficiency
monitoring platform in Shanghai. Ref. [91] incorporated a traffic allocation model to mimic
traffic situations using a gasoline consumption function—the User Equilibrium (UE). Al-
though their method versatility suits major cities in the more developed world, it is not
immediately applicable to medium-to-small-sized cities in many developing countries
where no similar data source exists.

The third approach disaggregates global CE data to a finer resolution relating to the
indicators describing the built environment and industrial activities. This is because there
was a strong alignment between the surface fluxes of atmospheric CO2 and bottom–up
inventories [92,93] or urban activity indicators like land use [94,95] and road length [96]. On
the one hand, nighttime light (NTL) images are found to reflect human activities correlated
with energy consumption. Therefore, the brightness of NTL pixels significantly correlates
with CEs, enabling the prediction across spatial and temporal scales. On the other hand,
various urban layers, such as transportation networks [97,98], buildings [99–101], and
households [102,103], are related to the CE prediction [104]. Other explanatory factors
include population [105] and living standards [14]. This approach is particularly useful
for the ex-ante assessment of alternative urban scenarios to support decisions like urban
retrofitting aiming at achieving low-carbon goals [17,106].

2.2. SVIs for Urban Form Modeling

Multifaceted natural, socioeconomic, and human behavior forces have made neighborhood-
level residential CE prediction challenging [107]. Fortunately, with the rapid improvements
in AI and multi-source big data applications for urban studies, many urban form character-
istics that are used to model CEs have become more accessible to researchers [108]. Some
focus on the complex relationships between total urban CEs and the industrial/economic
development level or urban sprawl trend of the region [109,110]. Some other studies con-
sider the regularity of historical data [111]—the cyclical trends in CE. For example, ref. [112]
studied the influence of household members’ environmental perceptions and energy con-
sumption behavior on household CEs. More recently, ref. [113] modeled household travel
patterns from neighborhoods’ urban forms to evaluate CEs. An increasing number of
models have started to address the interplay between people’s energy-use habits and the
environment they live in.

Meanwhile, SVI data are publicly available and frequently updated to capture ground-
level panorama street scenes [114]. SVIs are an ideal dataset to comprehensively de-
scribe the urban environmental variability [115] and citizen behaviors, including building
height [116], streetscape features [117], green and water systems [118], land-use classifi-
cation [94,119,120], openness [121], road networks [122], mobile monitoring [98], mobility
patterns [123,124], sun-glare-related traffic crashes [125], land use [79,126–128], and resi-
dential behavior [129].

Among these urban environment characteristics and societal consequences, many are
related directly or indirectly to energy consumption, indicating significant correlations with
CE estimation. To the best of our knowledge, few studies have attempted to parse SVIs to
module urban-scale CEs. Only one recent study took SVIs to model household-travel CEs in
Jinan, China [130]. However, in this study, SVIs only represent the road and road–building
relationship (i.e., urban canyon). To fill in the research gap, this study sets out to address the
effectiveness of using SVI data to capture urban forms related to the energy-use behaviors
of citizens as latent layers to predict residential CEs.
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3. Data and Method
3.1. Analytical Framework
3.1.1. Study Area

Beijing, as the capital city and one of the largest metropolitan areas in China, is crucial
in addressing the CE reduction goal. Moreover, its diverse urban forms ranging from the
central business district (CBD), residential blocks, and industry parks to the periphery, with
its massive road network, provide important samples in addressing the effectiveness of our
proposed framework. Within the Sixth Ring Road is the area where most urban residents
live. This region has the most frequent urban mobility and resident activities. Therefore,
the area within the Sixth Ring Road in Beijing was chosen (Figure 1).
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3.1.2. Conceptual Framework

The framework consists of six steps (see Figure 2). First, remote-sensing CE data were
provided by Planet Data Tech (Suzhou) Ltd., a car-bon data platform company based on
satellite quantitative remote sensing fusion algorithm and high-quality environmental data
model, with a 1 km level data grid. Second, the SVIs were obtained, using Baidu Open
Platform API (https://lbsyun.baidu.com/, accessed on 1 May 2022) in Python 3.8 through
the coordinates of the selected points along the road network in Beijing at a 250 m interval.
For each sampling coordinate, we obtained the 360-degree-view SVI. Third, PSPNet, a
semantic segmentation model, was used to extract the proportion of various street elements
from each SVI. The most ubiquitous visual elements related to CEs suggested by the
literature, including the surface, sidewalk, greenery, sky, road, building, wall, fence, and
seat, were selected. Fourth, training of ML models was performed to predict CEs using
visual features extracted in Python. The goodness of fit (R2) was chosen as the criterion to
select the most accurate models from the four ML models (i.e., KNN, SVM, random forest,
and decision trees). Last, we used the trained ML model to predict the residential CEs
in Beijing, visualizing the gaps between the ground-truth CE and our best prediction to
validate our model and understand the potential causes of the biases based on the impact
ranking and feature importance.

https://lbsyun.baidu.com/
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3.2. Variables
3.2.1. Residential Carbon Emissions

The residential CEs in July 2021 (the most available year at the time this study was
initiated) were provided by Planet Data Tech (Suzhou) Ltd., and with the tagged image file
(TIF) of residential CEs in a 1 km grid (data accessed on 22 April 2022). The CE estimation
comes from Tsinghua University’s MEIC CE data inventory. By relating urban activity
indicators (e.g., energy consumption and the number of residents per area) with the original
satellite CE data (at the 1/4◦ resolution), Planet Data established a 1 km resolution CE
model (1/100◦) covering all the urban regions in China using a fusion model.

Ideally, it is preferrable to have the CE and SVI data collected during the same period
of the year such that the seasonal variations of the street environments will be captured.
However, since the focus of this paper is to demonstrate the usefulness of predicting CEs
from a single data source (i.e., SVIs), we decided to predict a random month’s CE values as
an initial test. Notably, since SVIs are mostly collected in spring and summer (March to
August), to align the CE data as much as possible with the SVIs regarding collecting time,
July’s data are appropriate for an initial case study (Figure 3).

3.2.2. Independent Variables
SVI Data Collection

Baidu Street View images represent the most significant data source available for
use in studying urban streets. Several different angles of street view images are available
using Baidu Maps, which is one of the largest online map providers in China. Since
Google Maps is unavailable in China, Baidu Maps is an excellent choice with relatively
high quality. This study downloaded Baidu Street View (BSV) imagery using the BSV API
(http://api.map.baidu.com/panorama/v2, accessed on 1 May 2022)). We set the sampling
point to capture street view images in four radial directions at a fixed height, giving a total
of 25,046 street view images (Figure 4) based on our sampling points every 250 m along the
road networks. Each image had a resolution of 512 × 512 pixels and was in JPG format,
making them a reliable source for our research. Note that (by checking the time data) all SVI

http://api.map.baidu.com/panorama/v2
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samples were taken during 2019–2021, being the most up-to-date dataset that is available to
match the period of our CE data. We looked through the street view history in Baidu Maps,
which makes it possible for users to see how a place has changed over the years and help
identify changes in the physical environment. There were few major construction projects
in the study area during this period. Considering that the street environment is rather stable
in the short term [131], we were able to assume no significant changes happened during
the sample period (2019–2021). Notably, the SVI retrieval process is also consistent with all
parameters, including the heading, the position coordinates (longitude and latitude), the
image resolution (width and height), the horizontal field, and the pitch.
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Semantic Segmentation

The independent variables are streetscape visual features extracted from the 25,046 SVIs
(Figure 4). Streetscape features represent the micro-level built environment that becomes
hidden layers to represent comprehensive urban information related to residential CEs,
such as urban location, land use, microclimate condition, and residents’ behavior such as
their living styles and habits, which link to the residential CEs.

PSPNet (Pyramid Scene Parsing Network), a deep learning (DL) semantic segmen-
tation tool, was used to process the SVIs. Semantic segmentation refers to dividing and
parsing images into several areas linked with semantic categories [132]. PSPNet has become
a commonly used approach in emerging urban studies to extract street canyon charac-
teristics [133–135] and has shown state-of-the-art performance on the ADE20K database,
achieving an accuracy of over 80% [133,136].

Consequently, for each SVI, the output is the visual feature’s view index, denoting
the pixel percentage of the feature identified to the total pixels of the image. More than
30 visual features were observed from all SVI samples in Beijing (Figure 5), including
natural features (e.g., tree and grass), built environment features (e.g., road, sidewalk, and
building), and traffic features (e.g., car, bus, bicycle). Evidently, not all visual elements
should be taken as independent variables. Variables whose presences in SVIs were minor
were removed.
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To this end, the residential CEs at each SVI sample point become the dependent
variable, while the selected visual features’ view indices become the independent variables
for all the 25,046 SVIs (Table 1) to train the ML models for prediction.

Table 1. Summary of streetscape visual elements.

Variables Mean Min Max Std Dev. Source

Y CE 461.41369 166.85400 748.09564 131.13719 BSV API

X1 wall 0.0080 0.00000 0.47448 0.02126

extracting
from 25,046
panorama

SVIs in Beijing

X2 building 0.1092 0.00000 0.68636 0.08460
X3 sky 0.5223 0.00000 0.74635 0.13137
X4 tree 0.0595 0.00000 0.65801 0.07291
X5 road 0.1545 0.00000 0.78654 0.09889
X6 grass 0.0343 0.00000 0.24804 0.06358
X7 sidewalk 0.0075 0.00000 0.19549 0.01319
X8 person 0.0046 0.00000 0.23174 0.01323
X9 earth (soil) 0.0287 0.00000 0.37849 0.05352

X10 car 0.0163 0.00000 0.29916 0.03156
X11 fence 0.0107 0.00000 0.23245 0.01559
X12 railing 0.0066 0.00000 0.23574 0.01462
X13 column 0.0041 0.00000 0.35881 0.01108
X14 bridge 0.0010 0.00000 0.11614 0.00415
X15 streetlight 0.0024 0.00000 0.24859 0.00917
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Table 1. Cont.

Variables Mean Min Max Std Dev. Source

X16 plant 0.0023 0.00000 0.60550 0.01524

extracting
from 25,046
panorama

SVIs in Beijing

X17 signboard 0.0007 0.00000 0.26453 0.00420
X18 minibike 0.0016 0.00000 0.74652 0.01795
X19 chair 0.0007 0.00000 0.00059 0.00010
X20 bicycle 0.0017 0.00000 0.63037 0.01554
X21 lamp 0.0000 0.00000 0.00000 0.00000
X22 van 0.0011 0.00000 0.39913 0.00738
X23 ashcan 0.0009 0.00000 0.21978 0.00588
X24 skyscraper 0.0012 0.00000 0.69262 0.01369
X25 ceiling 0.0000 0.00000 0.00000 0.00000
X26 mountain 0.0014 0.00000 0.84518 0.02129
X27 awning 0.0017 0.00000 0.94899 0.02578
X28 windowpane 0.0001 0.00000 0.14033 0.00131
X29 sculpture 0.0002 0.00000 0.27530 0.00415
X30 fountain 0.0001 0.00000 0.08715 0.00193
X31 water 0.0002 0.00000 0.17654 0.00287
X32 pier 0.0000 0.00000 0.01570 0.00035
X33 sofa 0.0000 0.00000 0.00000 0.00000

X34 bulletin
board 0.0000 0.00000 0.00781 0.00008

X35 booth 0.0000 0.00000 0.01002 0.00009
X36 glass 0.0000 0.00000 0.00128 0.00002
X37 desk 0.0000 0.00000 0.00000 0.00000

Among the 37 elements in the above table, desk, glass, sofa, chair, and lamp are common indoor elements and do
not usually appear in the SVIs we analyzed. As shown in the table, their percentages are almost 0; thus, all these
5 elements are excluded in later analysis.

3.3. Model Architecture
3.3.1. Machine Learning Models

Since the number of independent variables is less than 40, ML models might be more
suitable than the neural network model. Regarding the ML training, 80% of the sample was
used for training and 20% for validation. The training utilizes a ten-fold cross-validation
approach deployed to add effectiveness to the models’ training. Specifically, the input
data were divided into 10 subgroups: for each iteration, one subgroup was utilized as the
testing data while the other nine subgroups were employed for training. In other words,
all data were utilized to train the ML models after 10 iterations, therefore lowering the bias.
What is more, every iteration’s model weights for the convolutional layers are continuously
updated, which also adds to the effectiveness of training [137].

3.3.2. Training Algorithm

Before training, we employed a method to identify and remove outliers from the
SAMPLE residential column, the Interquartile Range (IQR), a common statistical approach
for outlier detection to enhance the quality of our dataset and to ensure robust analysis.
Instead of the traditional 25th (Q1) and 75th (Q3) percentiles, we opted for the 30th and 70th
percentiles to compute the IQR. After the outlier removal process, approximately 99.57% of
the original data remained. This process ensured that our analyses were conducted on a
dataset free from extreme values that might skew the results.

In our research, we applied eight commonly used ML models to train and predict
carbon data based on the SVIs. To identify the optimal ML model, we conducted experi-
ments to evaluate their performances against established metrics, which are regarded as
indicative of the most efficient ML models [138]. During the training process, the accuracy
of ML models was evaluated using the R2 (correlation coefficient), RMSE (root mean square
error), MAE (mean absolute error), and IA (index of agreement). Whereas the R2 represents
the goodness of fit, the IA is representative of the agreement of the estimated value with
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the observed value, and the fitting effect of the MAE and RMSE is representative of the
deviation of the estimated value from the observed value.

Simultaneously, the choice of visual elements was also determined while applying
interactions. All visual elements were first used as test objects for all ML models, which
resulted in the highest R2 among all ML models as the baseline model. Then, the feature
importance of each element was considered as the criterion for screening. The elements with
the lowest feature importance in the model performance were removed in turn, and then
the model performance after removal was compared with the model performance before
removal, and finally the element combination with the best performance was obtained.

4. Results and Discussions
4.1. Analysis of Results
4.1.1. Model Performance

After training, we obtained the best performance of the model with 24 elements as
the input. Table 2 shows the comparison of the performance of the eight ML models.
Among them, the model using the random forest algorithm had the best performance,
which leverages the collective outputs of multiple decision trees to generate a unified result.
Its inherent simplicity and flexibility have facilitated its widespread adoption, particularly
in handling large datasets and yielding precise predictions for both classification and
regression tasks. It had the best performance and obtained an R2 of 0.80021, while the
model’s RMSE was 58.11 t/km2/month, and its MAE was 40.90 t/km2/month.

Table 2. Comparison of ML model performance.

Index Model R2 RMSE
(t/km2/Month)

MAE
(t/km2/Month)

1 KNN 0.35 105.17 83.21
2 SVM 0.1 123.31 100.61
3 Random Forest * 0.80 58.11 40.90
4 Decision Tree 0.74 66.79 21.69
5 OLS 0.1 123.04 100.22
6 Gaussian 0.0 130.72 106.64
7 Voting Selection 0.47 95 77.11
8 Gradient Boosting 0.23 113.97 93

Note: * The best model selected.

4.1.2. Co-linearity Issues

The pairwise correlation analysis illustrates potential co-linearity issues among the
streetscape visual features (Figure 6). Highly correlated variables will be further inves-
tigated with reference to the VIF test (Table 3) and literature on CE estimation to decide
whether they should be t removed. For example, “earth” and “road” are highly related,
raising concerns for the multicollinearity issue. However, the test suggests a VIF < 10, while
both “earth” and “road” are important indicators for different aspects affecting the residen-
tial energy use. The “road” indicates travel models and mobility/accessibility related to
travel frequency and travel mode, while the “earth” affects land surface permeability and
the micro-climate. Therefore, both streetscapes were kept.

4.1.3. The Roles of Micro-Level Built Environment Visual Features

The impact factor (IF) and feature importance (FI) analysis revealed a big divergence
regarding what visual features are significant in predicting the CEs. On the one hand, the
IF ranking (based on linear regression coefficients) indicates that bridge, streetlight, van,
signboard, ashcan, building, grass, minibike, car, sky, and earth were the most impactful
(Figure 7). On the other hand, the FI analysis highlights divergent visual elements as more
effective when using tree-based ML models (Figure 8). The top 10 features regarding FI are
building, sky, road, tree, car, grass, fence, wall, streetlight, and earth. Given that the OLS
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has a significantly poorer performance (Table 2), the relationship between visual features
and the CEs is more likely to be non-linear. The FI analysis is more reliable.
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Table 3. Feature Variance Inflation Factor (VIF).

No Feature VIF

1 wall 1.302509

2 building 2.372834

3 sky 8.148338

4 tree 1.86316

5 road 5.77073

6 grass 2.282957

7 sidewalk 1.648845

8 person 1.248487

9 earth 1.742131
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Table 3. Cont.

No Feature VIF

10 car 1.416357

11 fence 1.547135

12 railing 1.365433

13 column 1.224163

14 bridge 1.069011

15 streetlight 1.124353

16 plant 1.058969

17 signboard 1.04199

18 minibike 1.023058

19 bicycle 1.050033

20 van 1.05049

21 ashcan 1.067147

22 skyscraper 1.030406

23 mountain 1.032571

24 awning 1.084868

25 windowpane 1.034308

26 sculpture 1.028813

27 fountain 1.012001

28 water 1.023882

29 pier 1.01266

30 bulletin board 1.001936

31 booth 1.002064
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The FI analysis shows that features such as building, sky, road, tree, car, grass, fence,
and wall are in strong correlation with CEs (Figure 8). This is reasonable, as a higher
ratio of these elements can indicate a higher residential density, resulting in more frequent
socioeconomic activities that consume energy. For instance, the high ratio of building
view can indicate the frequent use of air conditioners. Such a phenomenon may be even
more significant in our study since the CE data used were collected in July. The average
temperature in Beijing was 29 ◦C when household cooling appliances were widely used.
Moreover, a higher density of residents will also lead to an increased use of vehicles. As
another example, more road views in SVIs could suggest higher traffic volumes, resulting
in greater CEs in the urban region.

In addition, a greater view index of buildings, walls, and fences suggests narrower
urban canyons, which reduce wind speeds and can slow down the diffusion of carbon-
containing gases, keeping the CE value sensed at a relatively higher level than that in
open streets. Meanwhile, Choi et al. (2016) found that block-scaled UFP (ultrafine particle)
concentrations have a close connection with the surface turbulence and built environment
of buildings in urban areas [139]. And CEs are also in the form of particles in the air and
are related to construction in the streets.

4.2. Discussion
4.2.1. Spatial and Temporal Distribution of Residential CEs

In general, high values of CEs happen in densely populated areas, such as the center
of the city. The CEs of residents in diverse microenvironments shows significant spatial
heterogeneity. For example, the unit CEs of suburban areas around Beijing are the lowest,
with the CEs in July ranging from 106 to 211 t/km2/month, while the unit CEs are higher
closer to the center of the city where the density of residents is high. The total CEs in July
were between 177.72 and 748.10 t/km2/month. In the eastern urban districts of Beijing,
such as Chaoyang and Dongcheng, the overall CEs in residential areas in summer are
higher than those in the western urban districts, such as Changping and Haidian. This is
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probably because the eastern urban area is an old urban area, with more resident activities
and a higher population density, resulting in more CEs.

Therefore, the CEs in Beijing residential areas present obvious spatial heterogeneity
in their distribution. Meanwhile, the density of residents and their activity frequencies
can be directly reflected from the street view. This is because residents’ activities largely
shape the SVIs. For example, in general, a place with a higher population density has more
resident activities, more residential buildings, and a higher building density, which then
demonstrates as less greenery and more bounding walls. In addition, a place with more
resident activities and a higher population has more vehicles in the SVIs. Therefore, the
street map can be used to predict residents’ CEs and reflect the spatial heterogeneity of
residents’ CE accordingly.

4.2.2. Model Visualization and Model Application Scenarios

To better visualize the CE prediction results, ArcGIS was used to illustrate the differ-
ence between actual and predicted residential CE values within each 1 km grid (Figure 9).
The actual CE value ranged between 177 and 748 t/km2/month; therefore, the estimated
CEs were also visualized at the same scale, to be more immediately comparable.

Remote Sens. 2024, 14, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 9. Comparison between Actual and Predicted CE Value Model. 

Figure 10 clearly depicts a relatively reliable prediction of CE values, as overall there 
are no distinct divergences between the predicted and actual CE values. However, certain 
deviations were observed across the Beijing urban area. Notably, a significant portion of 
the city registered lower predicted CEs than the actual recorded values. Interestingly, this 
trend shifts at the urban fringes, where our model consistently predicts higher emissions 
than what has been observed. This variance could be indicative of underlying complexi-
ties in the urban peripheral dynamics that may not be fully encapsulated by the current 
model. These findings are invaluable, highlighting potential areas of refinement in our 
predictive mechanisms, especially concerning the nuanced interplay at the city�s outskirts. 
Figure 9 indicates that prediction accuracy is higher when the ground truth value falls in 
a certain range (350–550 t/km2/month). When the actual CEs are low and high, the accu-
racy of the predicted values will be low. The range of actual CEs is 177.72–748.10 
t/km2/month, while the predicted range is 210.77–627.19 t/km2/month.  
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Figure 10 clearly depicts a relatively reliable prediction of CE values, as overall there
are no distinct divergences between the predicted and actual CE values. However, certain
deviations were observed across the Beijing urban area. Notably, a significant portion of
the city registered lower predicted CEs than the actual recorded values. Interestingly, this
trend shifts at the urban fringes, where our model consistently predicts higher emissions
than what has been observed. This variance could be indicative of underlying complexities
in the urban peripheral dynamics that may not be fully encapsulated by the current model.
These findings are invaluable, highlighting potential areas of refinement in our predictive
mechanisms, especially concerning the nuanced interplay at the city’s outskirts. Figure 9
indicates that prediction accuracy is higher when the ground truth value falls in a certain
range (350–550 t/km2/month). When the actual CEs are low and high, the accuracy of the



Remote Sens. 2024, 16, 1312 15 of 23

predicted values will be low. The range of actual CEs is 177.72–748.10 t/km2/month, while
the predicted range is 210.77–627.19 t/km2/month.
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Given the spatial heterogeneity of prediction residual, we selected six areas of
16-square-kilometer urban areas to investigate the divergence between the actual and
predicted data. These six areas are distributed in various parts of Beijing (Figure 10).
Among them, the MAEs in Figure 10a,b,d are smaller, indicating better prediction accuracy.
It can be seen from the comparison of Figure 10c,e that there exist quite great gaps in the
prediction of the extremely high value and extremely low value, and the accuracy does not
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perform well. Figure 10f is similar to the average level, but there is still a certain gap when
predicting higher CE values.

4.2.3. Model Comparison

To the best of our knowledge, currently, there are only a few mesoscale residential CE
models [140]. As a cross-reference validation, we selected three similar studies that also
focus on household residential and travel CEs to compare with our CE model (Table 4). In
comparison to the existing literature, our study stands out for its innovative approach and
remarkable accuracy in predicting residential carbon emissions. While previous studies
have utilized a plethora of data sources, ranging from socioeconomic indicators to land-use
patterns and geographic variables, our model achieves comparable performance using
variables derived from SVIs. This highlights the efficiency and potential of leveraging
simpler data sources for carbon emissions predictions.

Table 4. Summary of literature in CE prediction.

Literature
Dep.

Variable

Independent Var. Model
Performance

No. of Data
Sources Type of Variables S.D. MAE RMSE R2

[140]
Household travel

CEs in Guangzhou
(kg/week)

5
Socioeconomic,

household, land use, street
forms, and location

5.7 12.7 N/A 0.418
(pseudo R2)

[141] China’s annual
CEs (mt/year) 6

Forest coverage, total
energy consumption,
energy consumption

intensity, GDP, industrial
structure, and

employment structure

2850.1 405.5 525.2 N/A

[142] CEs in China 6

Renewable energy
development, market

demand changes, energy
industry regulations,
industrial structure
reforms, industrial

technology innovation,
and accidental events

N/A N/A N/A 0.74–0.77

This
paper

Residential CEs
(t/km2/month) 1 SVIs 131.12 40.9 58.11 0.8

That said, this study not only proposed a model that can better predict residents’
carbon emissions on a small scale, but more importantly, we verified the possibility of
using street view, a simple data source, to predict residents’ carbon emissions, supporting
simpler data sources for a wide geographical region. A more timely and finer-grained
carbon emissions prediction model can be potentially established for cities where data
availability is limited, especially those in developing countries.

5. Conclusions and Limitations
5.1. Effects of Micro-Level Streetscape Attributes

This study developed an innovative framework to predict residential CEs in urban
areas, leveraging SVIs and ML techniques. Our study underscores the feasibility of incor-
porating micro-level urban streetscape elements into CE prediction models to address the
gaps in existing carbon emissions prediction models.

We first explained the relationship between residential CEs and built environment
characteristics, and how streetscape elements represent urban regional characteristics
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through literature reviews, thereby drawing a possible correlation between streetscape
elements and urban residential carbon emissions. By employing a semantic segmentation
algorithm, we classified 32 outdoor streetscape elements from SVIs and obtained the best-
performing random forest prediction model composed of 24 street view elements, such as
buildings, trees, and sky through multiple iterative comparisons, whose R2 is 0.8. Notably,
our findings indicate that the ratios of elements including bridge, signboard, road, grass,
car, building, and bicycle, which indicate dense urban features, are correlated with higher
emissions. Conversely, streetlight, van, etc., demonstrate a negative relationship with CEs.
In addition, building, sky, and road have the highest feature importance among all features.

This study contributes to the field by demonstrating the relative importance of various
streetscape elements in CE prediction and showcasing the model’s potential for general-
ization across different urban contexts. It also offers a novel perspective for CE prediction
using a single, open data source but also provides a valuable tool for urban planners
and policymakers. Our findings suggest that understanding the interplay between urban
design and CEs can inform sustainable and low-carbon urban development strategies. The
streetscape elements can be conducive to the creation of urban environments under the
concept of low-carbon design, and the visual nature of our model empowers citizens to
engage in public decision making and urban living choices. This will let the goals of sus-
tainable development and carbon neutrality gain a foothold to be promoted and optimized
on a large scale.

5.2. Limitations

However, our research has limitations. First, we only modeled one month’s data,
meaning that we failed to control for whether the vegetation is green or not, which might
result in different SVI analyses and a different model fit to explain CEs. It would be
ideal to collect solid information on the periods when SVIs were collected so as to model
seasonal variations in the street environment. That said, future studies can accumulate
time-series data and build separate models by season. In the meantime, microclimates
can also be taken into consideration. Microclimates have regional characteristics. People
may adopt more energy-efficient appliances or pursue a more comfortable temperature
environment in different buildings. Therefore, microclimates have a certain impact on
residential energy consumption and carbon emissions [143,144]. In the future, we can try
to use the microclimate as one of the impact factors for the optimization of the prediction
model. Third, as carbon emissions distributions were found to be heterogeneous, there were
differences according to urban functional zone (UFZ) types [25]. Comparing the different
SVI features and the differences in CEs of the specific areas in Chaoyang, including the
prosperous areas with high population densities, CBD areas, suburbs, industrial areas,
etc., is beneficial in discussing the model’s transferability in different urban scenarios
and could possibly increase the mobility and accuracy of the model in different regions.
The aforementioned limitations could be addressed to examine more spatial effects on
residential CEs in the future.
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