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Abstract: This study aims to examine the individual and combined effects of soil moisture (SM)
and vapor pressure deficit (VPD) on ecosystem productivity in Southwest China. Utilizing the
community land model (CLM) to simulate the regional soil moisture and vapor pressure deficit, we
analyzed their impacts on ecosystem productivity through a data binning approach and employed
sun-induced chlorophyll fluorescence yield (SIFyield) as a productivity indicator. Our findings
highlight a significant coupling effect between SM and VPD, which diminishes with finer temporal
data resolution. The data binning analysis indicates that VPD has a predominant influence on
SIFyield across 70% of the study area, whereas SM is more influential in the remaining 30%. Notably,
the correlation between SIFyield and SM, modulated by VPD, is stronger in forest and shrubland
ecosystems, whereas in grasslands, the influence pattern is reversed, with VPD having a more
significant impact. The study concludes that in Southwest China, ecosystem productivity is more
significantly affected by VPD than by SM.

Keywords: soil moisture; vapor pressure difference; SIF; drought

1. Introduction

The productive capacity of an ecosystem is a fundamental metric for examining the
carbon balance and water use efficiency of a regional ecosystem [1], and it is an essential
parameter in the carbon–water coupling of such ecosystems [2]. Over the past few years,
the occurrence of droughts has become increasingly common on a global scale, resulting
in devastating damage to regional ecosystems [3–5]. The cumulative impact of extreme
drought can severely compromise the production capacity of ecosystems and, consequently,
have a significant effect on the carbon sink of those ecosystems [6,7]. Indeed, ecosystem
production is a key indicator of how ecosystems are responding to changing environmental
conditions in the wider context of climate change [8,9]. As a result, it has become an
essential parameter in the assessment of the health and resilience of regional ecosystems. In
the context of climate change, quantitative research on factors affecting regional ecosystem
productivity will help us to deepen our understanding of the terrestrial–atmospheric carbon
and water cycles.

Soil moisture and vapor pressure deficit, respectively, are deemed to be one of the
important drivers of regional ecosystem production [10]. From a vegetation physiology
viewpoint, low soil moisture and high vapor pressure deficit both cause vegetation to suffer
from drought stress [11], which affects the normal physiological activities of vegetation and,
hence, causes the death of vegetation and impairs the productivity of the ecosystem [12].
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There has been significant debate regarding the respective contributions of soil moisture
and atmospheric water demand in studies investigating the response of vegetation to
drought [10]. VPD causes plant stomata to close. This controls physiological processes
such as transpiration and photosynthesis [13]. Excessive VPD induces vegetation stomatal
closure, thus limiting photosynthesis in vegetation, which in turn leads to a decrease in
ecosystem productivity [14]. Soil moisture is the direct source of water for vegetation. Low
soil moisture leads to agricultural drought and even vegetation death [15]. A compre-
hensive understanding of the roles played by soil moisture and vapor pressure deficits in
ecosystem production is essential. The results are necessary for accurately assessing the
impacts of drought on regional ecosystems.

Examining the respective impacts of soil moisture and vapor pressure deficit on ecosys-
tem production at a regional scale can be challenging. Soil moisture and vapor pressure
deficit are intricately linked [16], necessitating distinct methodologies to individually assess
their impacts on ecosystem productivity. Furthermore, factors such as temperature, solar ra-
diation, and rainfall play critical roles in regional ecosystem productivity [17]. It is essential
to isolate the impacts of these elements when examining the specific effects of soil moisture
and vapor pressure deficit on vegetation productivity. However, such research is vital for
understanding ecosystem response mechanisms to drought and promoting environmental
protection. Liu conducted a global-scale investigation of the effects of low SM and high
VPD on ecosystem production using a data splitting box approach [10]. It was discovered
that SM plays a dominant role in most terrestrial vegetation ecosystem production subjected
to drought stress compared to VPD. Lu contends that Liu’s study does not account for the
influence of photosynthetically active radiation on VPD and SM, leading to inaccuracies
in the findings. They argue that the effect of VPD on ecosystem productivity is at least as
significant as that of SM [18]. Existing research highlights the importance of examining the
impact of soil moisture and vapor pressure deficit on ecosystem productivity at a regional
scale. This investigation is crucial for enhancing our understanding of ecosystem responses
to meteorological factors.

Southwest China is the major karst landscape distribution area in China, with ex-
tremely fragile ecosystems that are strongly vulnerable to extreme hazards [19]. In recent
years, there has been a noticeable increase in the frequency and intensity of drought events
in Southwest China [20], causing significant negative impacts on regional ecosystem pro-
duction as well as the sustainable development of human society [21]. Research on the
impact of different drivers on ecosystem production and carbon sinks in Southwest China
has been the focus of academic interest [22–24]. Chen et al. investigated the effects of
drought on vegetation productivity in Southwest China utilizing sun-induced chlorophyll
fluorescence (SIF) and soil moisture. The results of the research indicate that large-scale
drought significantly influences regional ecosystem productivity [25]. Chen et al. analyzed
the impact of VPD on regional primary productivity in three typical ecosystem study areas
in China and revealed that the decline in GPP in Southwest China was closely related
to SM and VPD, and that more than 50% of the change in GPP was attributable to the
combination of SM and VPD [26]. The above results demonstrate the importance of SM
and VPD in the study of the productive capacity of regional ecosystems in response to
climate elements. Despite the numerous studies on SM’s and VPD’s effects on ecosystem
productivity [18,27], fewer studies have clarified the respective influences of SM and VPD
on ecosystem production. Therefore, we need to clarify the impact of SM and VPD on
ecosystem productivity in Southwest China. Determining the main factors that dominate
vegetation productivity in SM and VPD will help us to deepen our understanding of the
carbon water cycle in the ecosystem.

This study aims to examine the respective impact of soil moisture and vapor pressure
deficit on ecosystem production in Southwest China. To achieve this goal, we first simu-
lated soil moisture and other variables in Southwest China using the CLM4.5 model in
conjunction with GLDAS atmosphere-driven data and verified the accuracy of the simu-
lation results. Then, we decoupled SM and VPD using the data split-box approach and
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quantitatively assessed the extent of influence of each of SM and VPD on the productivity of
vegetation in the southwest. Finally, we investigated the effect of changes in SM and VPD
on the correlation between each other and ecosystem productivity, as well as the variability
of this result under different vegetation types. The results of this study are expected to
provide scientific suggestions and a theoretical foundation for addressing future droughts
in Southwest China.

2. Materials and Methods

In this study, the study area’s soil moisture and other variables were simulated using
the land surface process model CLM4.5 from 2005 to 2020. The CLM4.5 model is an
internationally recognized and highly advanced model for studying land surface processes.
It is the land surface module of the Common Earth System Model [28,29]. The CLM4.5
model realizes the heterogeneity of land surface space using a nesting grid. The grid
contains a variety of land individuals, snow, soil columns, and vegetation functional
types [30]. The CLM4.5 model stands out due to its nested grid capability, which enables
the simulation of intricate surface features. Moreover, it offers a detailed and complex
depiction of processes such as soil moisture dynamics, plant growth and mortality, and
the exchange of water and energy between vegetation and the atmosphere [31]. CLM4.5
encompasses extensive simulations of phenomena like root water uptake, soil evaporation,
plant transpiration, and permafrost processes [32]. As a result, it potentially delivers more
accurate simulations of soil moisture dynamics under specific conditions compared to
other models. In this study, we use the CLM4.5 model to simulate soil moisture and
evapotranspiration data in Southwest China.

Simultaneous changes in photosynthetically active radiation (PAR) and fraction of
photosynthetically active radiation (fPAR) with VPD and SM interfere with the analysis
of VPD and SM effects [33,34]. For example, when VPD rises, the accompanying rise in
PAR boosts ecosystem production. That would offset the decline in ecosystem production
caused by a rise in VPD [18]. With regard to SM, both FPAR and SM reductions equally
cause a reduction in SIF. To better separate the simultaneous effects of PAR and FPAR on
ecosystem production, the experiment was conducted with Yuan’s method of applying
SIFyield instead of SIF [27]. SIFyield was calculated as follows:

SIFyield =
SIF

PAR × fPAR
(1)

SM and VPD are strongly coupled, and the experiment requires a reduction in the
coupling of the two elements to better investigate the influence of each on regional ecosys-
tem production [10]. This experiment employs a data-binning approach [35,36] to reduce
the strong coupling correlation between SM and VPD, which is performed as follows.
The data binning process is outlined as follows: For each pixel, we established the 10th,
20th, and up to the 100th percentile thresholds for both SM and VPD. These thresholds
were utilized to categorize the data into 10 distinct bins, corresponding to the percentile
ranges of 0–10th, 10th–20th, through to 80–90th, and 90–100th for SM or VPD. This binning
procedure maintained the temporal alignment of the datasets. Given that SM and VPD
were substantially uncoupled within each specific SM or VPD bin, we were able to isolate
the individual impacts of SM and VPD on the SIFyield. To ensure comparability across
different spatial areas, the SIFyield time series for each pixel was normalized against the
average SIFyield observed at the 90th percentile for that pixel.

The effects of SM and VPD on SIFyield [18] were counted separately on the basis of
data bins, where the effect of VPD on SIFyield was calculated as follows:

∆SIFyield(VPD|SM) =
1
N

n

∑
k=0

SIFyieldk,mk,max
− SIFyieldk,mk,min

(2)
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where N is the number of bins of SM, k is a particular bin number of SM, and mk,max and
mk,min are the maximum and minimum VPD bin numbers of the bins for which SM is k. The
meaning of Equation (2) is to calculate the difference between the SIFyield corresponding
to the largest bins number with VPD and the smallest bins number for all SM bins, which
is the change in SIFyield variation due to high VPD.

∆SIFyield(SM|VPD) =
1
N

n

∑
l=0

SIFyieldml,min,l − SIFyieldml,max,l (3)

where N is the number of bins of VPD, l is a particular bin number of VPD, and ml,max and
ml,min are the maximum and minimum SM bin numbers of the bins for which VPD is l. The
meaning of Equation (3) is to calculate the difference between the SIFyield corresponding
to the smallest sub-box number of the SM and the largest sub-box number for all VPD
sub-boxes, which is the change in SIFyield variation caused by the low SM.

Temperature, precipitation, and solar radiation are important factors affecting the
productivity of vegetated ecosystems, but we need to avoid the influence of the above
factors on our study to better investigate the respective effects of SM and VPD on the
productivity of vegetated ecosystems. Therefore, we performed some data screening before
data binning to help us avoid the influence of temperature and other factors. Specifically,
we need the following steps:

(1) Consider only pixels with daily average temperature greater than 15 ◦C, and
exclude pixels that do not meet the requirements of SM, VPD, and the corresponding time
of SIFyield according to the conditions;

(2) Consider only pixels with daily average VPD greater than 0.5 kPa, and exclude
pixels that do not meet the requirements of SM, VPD, and the corresponding time of
SIFyield according to the conditions.

The above operation can effectively avoid the influences of temperature as well as
solar radiation on vegetation productivity. The high-temperature period in Southwest
China is accompanied by high rainfall, and the temperature screening also avoids the effect
of rainfall to some extent [10,18].

Solar-induced chlorophyll fluorescence (SIF) has significant potential as an effective
indicator for monitoring gross primary productivity (GPP) and evaluating plant photosyn-
thesis [37]. The relationship between SIF and GPP on a global scale stated that GPP had
a significant positive correlation with SIF (p < 0.001) [38]. In this experiment, the global
high-resolution SIF data produced by Chen [39] were selected as an indicator of regional
ecosystem production. The data presented were generated using the XGBoost machine
learning model, with a temporal resolution of 8 days and a spatial resolution of 0.05◦. The
SIF data obtained had both a long temporal range and high spatial resolution, making it
highly valuable for evaluating long-term terrestrial ecosystem photosynthesis and global
carbon water flux.

Additionally, the photosynthetically available radiation (PAR) and fraction of absorbed
photosynthetically active radiation (fPAR) products were used, which were obtained from
the Global Land Surface Satellite (GLASS) [40]. The production of these two products
is based on a look-up table approach which, combined with Moderate Resolution Imag-
ing Spectroradiometer (MODIS) data, generates land surface data products with global
coverage. Both the PAR and fPAR data have a temporal resolution of 1 day and a spatial
resolution of 0.05◦, spanning from 2000 to 2021. These data products are commonly used in
studies related to the carbon cycle and carbon driving mechanisms.

The CLM atmospheric drive data were derived from GLDAS-2.1 with a spatial res-
olution of 0.25◦ and a temporal resolution of 3 h. The atmospheric drive data consist
mainly of data on precipitation, air temperature, barometric radiation, etc. Land Cover
data is produced by MODIS with International Geosphere–Biosphere Programme (IGBP)
classification standard and a spatial resolution of 500 m [41].
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3. Study Area

Southwest China mainly includes Yunnan, Sichuan, Guizhou, Guangxi, and Chongqing
Provinces (Figure 1) [42]. The entire study area lies between 94◦21′E–112◦04′E and
20◦54′E–34◦19′N at an altitude of between 0 and 7756 m [43]. Southwest China is the
main distribution area of karst landscapes in China, with karst areas covering up to
550,000 km2 [44]. Southwest China encompasses six distinct climatic zones, ranging from a
tropical climate in the southern regions, through a subtropical climate in the central areas, to
a plateau climate in the northwest [45]. This plateau climate zone, notable for its extensive
grasslands, spans approximately 13% of Southwest China’s total area. The predominant
vegetation types across Southwest China are shrubs and forests, which together consti-
tute about 67% of the region. Southwest China experiences marked seasonal variations,
characterized by dry and wet periods [46]. Spring and winter bring low temperatures and
minimal precipitation, while summer and autumn are marked by high temperatures and
significant precipitation [47].
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4. Results
4.1. Evaluation of Simulation Results in Southwest CHINA

This study utilized soil moisture data from GLDAS, ERA5, and ESA-CCI remote
sensing for validating the CLM4.5 model’s simulated soil moisture in Southwest China.
To enhance the validation process, Southwest China was segmented into four distinct
regions based on administrative divisions: Yunnan, Sichuan and Chongqing, Guizhou,
and Guangxi. This approach facilitated a targeted validation by integrating reanalysis and
remote sensing data. Figure 2 illustrates a significant linear correlation between CLM4.5-
simulated soil moisture and reanalyzed soil moisture data. Table 1 corroborates this,
showing that the correlation between simulated soil moisture across various regions and
reanalysis data exceeded 0.7, with all results passing the significance test (p < 0.05). Both
the root mean square error (RMSE) and the mean absolute error (MAE) for the comparison
of simulated and reanalyzed soil moisture were below 0.06 and 0.036, respectively. These
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findings validate the effectiveness of the CLM4.5 model for simulating soil moisture in
Southwest China.
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Figure 2. Comparison of soil moisture products of CLM4.5, GLDAS, and ERA5. Red represents low
soil moisture and blue represents high soil moisture.

Table 1. R, RMSE, and MAE of soil moisture content of various products in Southwest China.

Area R RMSE MAE

Yunnan
GLDAS 0.843 * 0.047 0.0014
ERA5 0.718 * 0.051 0.0026

Chuanyu GLDAS 0.719 * 0.045 0.0024
ERA5 0.689 * 0.032 0.0010

Guizhou
GLDAS 0.816 * 0.040 0.0031
ERA5 0.70 * 0.052 0.0027

Guangxi GLDAS 0.86 * 0.047 0.0036
ERA5 0.701 * 0.052 0.0027

* The correlation passed the 95% significance test.

Figure 3 shows the scatter plots of CLM4.5-simulated soil moisture and ESA-CCI soil
moisture in four regions in the southwest. Combined with Table 2, it can be found that
the correlation between CLM4.5-simulated soil moisture and ESA-CCI soil moisture in all
four regions passed the 95% significance test, with the correlation coefficient above 0.6. The
RMSEs of model-simulated soil moisture and remotely sensed soil moisture were around
0.06, and the MAEs were below 0.05.
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Table 2. R, RMSE, and MAE of CLM4.5 simulated soil moisture and EAS-CCI soil moisture in
Southwest China.

Area R RMSE MAE

Yunnan 0.6811 * 0.0572 0.0032
Chuanyu 0.6027 * 0.0719 0.0049
Guizhou 0.7217 * 0.0405 0.0016

* The correlation passed the 95% significance test.

By comparing the validation indexes of CLM4.5 simulation results with reanalysis
data and remote sensing data, it can be found that the deviation between simulation results
and reanalysis soil moisture in Southwest China is smaller. This experiment speculates that
in addition to the model itself, the missing data of ESA-CCI itself may also be the reason for
the obvious variability of the validation results. Taking the spatial distribution of monthly-
scale ESA-CCI soil moisture in Southwest China from January to April 2005 (Figure 4) as
an example, it can be found that there are also obvious missing data of ESA-CCI monthly
soil moisture in Southwest China. In particular, the missing data of ESA-CCI soil moisture
in the Sichuan and Chongqing regions are particularly serious, and considering the low
correlation between CLM4.5-simulated soil moisture and ESA-CCI soil moisture in the
Sichuan and Chongqing regions in Figure 4 as well as Table 2, the missing data may be the
reason for the discrepancy in the validation results. Combined with the above validation
results, we can conclude that the soil moisture data simulated by Opportunity CLM4.5
are in good agreement with the soil moisture products at this stage and can be used for
further research.
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Figure 4. Spatial distribution of ESA-CCI soil moisture in Southwest China from January to April
2005. Red represents low soil moisture and blue represents high soil moisture.

4.2. Spatio-Temporal Correlation Analysis of VPD, SM, and SIFyield in Southwest China

To more effectively analyze the relationship among SM, VPD, and SIFyield, we cal-
culated the spatial and temporal variations in the correlation between soil moisture (SM)
or VPD and SIFyield across Southwest China. Figure 5 illustrates the change curves of
average SIFyield, SM, and VPD in the southwest from 2005 to 2020. The changes in SIF
yield coincide with those in SM, while the change in SIFyield shows an opposite trend to the
change in VPD. For instance, the rise in SIF yield in 2012, 2014, and 2020 was accompanied
by a rise in SM and a fall in VPD, whereas the fall in SIF yield in 2011, 2013, and 2019
was accompanied by a rise in VPD. The correlation coefficients of average SIFyield, SM,
and VPD from 2005 to 2020 were calculated. It was found that the correlation coefficient
between SIFyield and SM in Southwest China was 0.375 (p < 0.05), and the correlation
coefficient between SIFyield and VPD was −0.28 (p < 0.05).

To examine the detailed spatial–temporal correlations among soil moisture, vapor
pressure deficit, and SIFyield in Southwest China, we calculated the annual scale correlation
coefficients for each parameter individually (Figure 6). Figure 6 reveals that, from 2005 to
2020, soil moisture (SM) and SIFyield exhibited a significant positive correlation in over
78% of the vegetation ecological zones in Southwest China, with a correlation coefficient
of around 0.4 (p < 0.05). Conversely, the vapor pressure deficit (VPD) and SIFyield were
negatively correlated in more than 80% of the areas, showing a correlation coefficient of
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approximately −0.5. Analysis by vegetation type indicates that SM and SIFyield correla-
tions are predominantly positive in shrub and forest ecosystems, whereas grasslands show
a negative correlation with SIFyield. Additionally, the spatial and temporal correlation
patterns between VPD and SIFyield display a clear contrast to those observed between SM
and SIFyield.
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Figure 6. Spatio-temporal correlation between SM, VPD, and SIFyield in Southwest China. Red
represents positive correlation, blue represents negative correlation, and white represents non-
vegetated areas.

A strong coupling exists among VPD, SM, and SIFyield within vegetation ecosystems
in Southwest China. To more effectively discern the individual impacts of SM and VPD
on SIFyield, it is essential to decouple their strong interrelationship. Figure 7 illustrates a
notable decline in the correlation between soil moisture (SM) and vapor pressure deficit
(VPD) as the temporal resolution increases. On an annual scale, the correlation coefficient
in Southwest China is approximately −0.53, decreasing to about −0.43 on a monthly
scale, and further to around −0.39 on an 8-day scale. Despite the significant reduction
in correlation coefficients with the increasing temporal scale, a certain level of coupling
between SM and VPD persists even at the 8-day scale. To mitigate the correlation between
the two drivers, a data binning approach was employed on SM and VPD at the 8-day scale.
The correlation coefficient between SM and VPD dropped to about −0.03 in the binning of
SM and about −0.07 in the data binning of VPD. This result indicates that the data binning
can effectively decouple SM and VPD. Consequently, in subsequent experiments, we used a
data binning approach and Formulas (2) and (3) in conjunction with an 8-day scale dataset
to calculate the respective abilities of SM and VPD to influence regional ecosystems.
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4.3. Analysis of the Respective Impact of SM and VPD on SIFyields

Following the data binning process, we utilized Equations (2) and (3) to calculate the
individual effects of SM and VPD on SIFyield in Southwest China. To obtain more spatially
comparable results, we normalized the calculation on an image-by-image basis using the
image value at 90% of its position. Figure 8 reveals that the increase in SIFyield, attributed
to the influence of low SM, predominantly occurs in the southwestern part of the study area,
where forests and shrubs are the primary vegetation types. Conversely, areas experiencing
a decline in SIFyield due to low SM encompass a larger portion of the study region. The
fluctuation in SIFyield induced by low SM ranges from −0.3 to 0.3. Approximately 79% of
the southwestern vegetated ecosystem experienced a decrease in SIFyield attributed to low
SM, while about 21% of the area saw an increase in SIFyield under similar conditions of
low SM.
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In Southwest China, vegetation ecosystems primarily exhibit a declining SIFyield
trend in response to high VPD. An analysis of land use classification in the southwest
reveals that grasslands, which constitute approximately 19% of the region’s area, mainly
show increases in SIFyield due to high VPD. Conversely, areas experiencing decreases in
SIFyield due to high VPD predominantly feature forests and shrubs. On the whole, the
ratio of areas with increased versus decreased SIFyield attributable to high VPD is about
1 to 4. The variation in SIFyield associated with high VPD, ranging between −0.4 and 0.4,
is significantly more pronounced than that caused by low soil moisture.

To quantify and visualize the differences observed in this experiment, we used the
absolute values of the changes in SIFyield resulting from low SM and high VPD, as depicted
in Figure 9. This figure demonstrates that the change in SIFyield caused by high VPD is
more significant than that caused by low SM. Specifically, ∆SIFyield (SM|VPD) was less
than ∆SIFyield (VPD|SM) in approximately 75% of the vegetated ecosystems in Southwest
China, whereas around 25% of the areas showed more significant effects caused by SM,
primarily involving shrubs and some grassland vegetation types. Overall, these findings
suggest that VPD is more critical than SM for ecosystem production in Southwest China.
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Figure 9. Absolute differences in the impact of SM and VPD on SIFyield in Southwest China.

The data binning can decouple the correlation between SM and VPD more effectively.
In order to better study the relationship between SM, VPD, and SIFyield, we assessed the
impact of VPD on the correlation strength between SM and SIFyield, as well as the influence
of SM on the correlation strength between VPD and SIFyield. The outcomes of this analysis
are presented in Figures 10 and 11. Figure 10 provides a clear visual representation of the
correlation coefficient between VPD and SIFyield, which decreases gradually from −0.5 to
−0.15, with an increase in SM from 10% to approximately 40%. However, the change in
correlation is negligible as SM increases from 50% to about 80%. Notably, as SM reaches its
maximum value of 100%, the correlation coefficient between VPD and SIFyield shows a
moderate increase, albeit with a smaller magnitude. This result implies that the process of
increasing the soil moisture from extremely low to a normal state significantly affects the
SIFyield, while the increase in soil moisture in a normal state affects the SIFyield to a very
small extent.
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Figure 11. Changes in correlation between SM and SIFyield under different VPD bins in Southwest
China. The black line in the box plot represents the median correlation.

As depicted in Figure 11, VPD significantly affects the correlation between SM and
SIFyield. Specifically, when VPD increases from 10% to approximately 50%, the correlation
coefficient between SM and SIFyield drops from 0.4 to about 0.2. The correlation between
SM and SIFyield remains relatively stable as VPD ranges from 50% to 70%. However, a
marked variability in the correlation coefficients between SM and VPD is observed when
VPD increases from 70% to 100%. Notably, within the 90–100% VPD bin, the correlation
coefficients between SM and SIFyield in Southwest China exhibit significant fluctuations,
ranging from −1 to 1, a variance considerably greater than in other VPD data bins. This
finding indicates that the variation in SIFyield caused by high VPD is significantly greater
than the variation caused by low SM.

To thoroughly examine the impacts of SM and VPD on the variations in SIFyield
across various ecosystems in Southwest China, we utilized MODIS land use classification
data. This approach enabled us to investigate the effects of SM and VPD on SIFyield
within the specific contexts of forest, shrub, and grassland vegetation types. The findings,
illustrated in Figure 12, reveal that the correlation between VPD and SIFyield within
woodland ecosystems exhibited a trend that initially decreased and then increased with
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a rising number of SM bins. Conversely, for shrub and grassland vegetation types, the
correlation between VPD and SIFyield demonstrated an increasing and then decreasing
trend as the number of SM bins increased.
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Figure 12. Changes in SM_SIFyield correlation by VPD and VPD_SIFyield correlation by SM under
different vegetation systems in Southwest China. The orange color represents the change in VPD
and SIFyield correlation under different SM bins. The blue color represents the variation in SM and
SIFyield correlation under different VPD bins. When the amount of data in the data bins of SM and
VPD is less than 50, the results of that partition are excluded.

With an increasing number of VPD bins, the correlation between SM and SIFyield
tended to decrease and then increase under the forest type. The correlation between SM
and SIFyield showed highly significant decreasing trends with increasing VPD under shrub
type. The effect of VPD on the correlation between SM and SIFyield was more complex
under the grassland type. In order to gain a deeper insight into the effect of VPD on the
correlation between SM and SIFyield, we calculated the slope of the linear regression line
of the SIFyield correlation curve for each vegetation type and used the magnitude of the
slope as a measure of this effect. Our results, presented in Table 3, show that the effect of
VPD on the correlation between SM and SIFyield was significantly greater than the effect
of SM on VPD. This phenomenon was particularly evident in forest and shrub ecosystems,
where the difference between the two effects on the correlation with each other and with
SIFyield was most pronounced. In grassland ecosystems, the impact of SM on VPD and
SIFyield was found to be similar to, yet slightly greater than, the impact of VPD on SM
and SIFyield.

Table 3. Statistics on the trend of correlation between VPD, SM, and SIFyield for different vegetation
types, as influenced by another element.

Forest Shrub Grassland

VPD_bins 0.083 0.063 0.018
SM_bins 0.043 0.026 0.024

5. Discussion and Conclusions

This study utilized the CLM4.5 surface process model, integrated with GLDAS atmo-
spheric data, to simulate soil moisture and additional variables in Southwest China from
2005 to 2020. Employing data binning and other analytical techniques, we quantitatively
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evaluated the impacts of soil moisture and vapor pressure deficit on ecosystem productivity
within the region. Furthermore, the interplay between soil moisture, vapor pressure deficit,
and vegetation productivity was examined across various land use types, incorporating
land use data. The analysis led to several key conclusions:

(1) In Southwest China, the spatial and temporal distributions of the correlation coeffi-
cients between soil moisture and SIFyield, and between vapor pressure deficit and SIFyield,
were largely inversely proportional. The ratio of positive to negative correlations between
SM and SIFyield was approximately 4:1. Specifically, in forest and shrub ecosystems, a
positive correlation was observed between SM and SIFyield. Conversely, in grassland
ecosystems, a negative correlation was found between SM and SIFyield.

(2) The correlation between SM and VPD decreased significantly as the time scale of
the data increased. The combination of the 8-day-scale data and the data binning method
reduced the correlation between SM and VPD to about 0.03, which effectively decoupled
SM and VPD.

(3) In Southwest China, high VPD significantly influenced vegetation productivity
in approximately 75% of vegetated areas more than low SM did. Forests and shrubs
experienced greater impacts from high VPD, whereas grassland ecosystems were more
susceptible to the effects of low SM.

In this study, we meticulously explored and examined the criticality of the influence
of low SM and high VPD on regional ecosystem productivity, utilizing a comprehensive
set of soil moisture, vapor pressure deficit, and SIF data. This finding unequivocally
demonstrated that high VPD had a more substantial impact on the production of ecosystems
in Southwest China than low SM. Further scrutinizing the data with respect to various
vegetation types in the region, the effect of VPD variations on the correlation between SM
and SIFyield was found to be significantly more prominent, particularly in the forest and
shrub vegetation types. Conversely, the influence of SM on the correlation between VPD
and SIFyield was more potent under the grassland type. These results confirm that VPD
has a significantly higher influence on regional ecosystem production than SM.

This study introduces several innovations compared to previous research. Firstly,
it synthesizes the methodologies of prior studies and incorporates temperature, vapor
pressure deficit, PAR, and FPAR data. This approach significantly reduces the influence
of temperature, solar radiation, and precipitation, thereby enhancing the accuracy of our
findings. Secondly, we utilized the CLM4.5 model, a highly sophisticated land surface
process model, to accurately simulate regional hydrological variables. This model enables
the generation of temporally and spatially continuous soil moisture data across Southwest
China over an extended period. The study not only confirms the applicability of the
CLM4.5 model in Southwest China, but also provides a comprehensive set of soil moisture
and VPD data. Finally, by quantitatively analyzing the impact of changes in SM_bins
on VPD and SIFyield, as well as the impact of changes in VPD_bins on SM and SIFyield,
we reaffirm the critical influence of high VPD on vegetation productivity in Southwest
China. Incorporating land use data, we further examine and discuss the variability of these
impacts across different vegetation types. Our findings indicate that soil moisture has a
more pronounced effect on grassland productivity, whereas VPD more significantly affects
the productivity of shrubs and forests.

This study also acknowledges certain limitations. Primarily, the constraints inherent to
the GLDAS atmospheric data led to a lower spatial resolution in the CLM4.5 simulated data.
This limitation restricts our capacity to acquire more detailed spatial information. Moreover,
this study primarily concentrates on contrasting the impacts of VPD and SM on regional
productivity, employing various methods to minimize the influences of temperature, radia-
tion, and other factors wherever feasible. However, it is important to acknowledge that
completely eliminating the effects of these elements may not be entirely achievable, which
could influence our findings to some extent. Hence, future research might incorporate
different scenario simulations to more effectively isolate and reduce the impacts of these
additional factors.
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