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Abstract: Microwave hyperspectral instruments represent one of the main atmospheric sounders
of China’s next-generation Fengyun meteorological satellites. In order to better apply microwave
hyperspectral observations in the fields of atmospheric parameter retrieval and data assimilation, this
paper analyzes the sensitivity of trace gases to five selected bandwidth channels using a radiative
transfer model based on the simulated data of microwave hyperspectral radiances at 50–60 GHz.
This method uses information entropy and a weighting function to select channels and analyze the
impact of this on the retrieval accuracy of atmospheric profiles before and after channel selection.
The experimental results show that channel selection can reduce the number of channels by approxi-
mately 74.05% while maintaining a large amount of information content, and this retrieval effect is
significantly better than that of MWTS-III. After channel selection, the 10 MHz, 30 MHz, and 50 MHz
bandwidths have the best retrieval results in the stratosphere, whole atmosphere, and troposphere,
respectively. When considering the number of channels, computational scale, and retrieval results
comprehensively, the channel selection method is effective.

Keywords: microwave hyperspectral; 50–60 GHz; channel selection; retrieval

1. Introduction

Temperature is an important physical parameter of the atmosphere that can charac-
terize the thermal state of the atmosphere and determine its thermodynamic processes.
The effective detection of atmospheric temperature profiles in real time is useful for de-
scribing atmospheric evolution, monitoring the climate, and evaluating numerical weather
prediction models, and it is equally important for other meteorological protection work [1].
Meteorological satellite observations have the advantages of greater information content,
wide coverage, and high spatiotemporal resolution. In areas where conventional data are
difficult to observe, satellite observations are particularly important. In recent years, with
the development of multi-channel meteorological satellites and the continuous improve-
ment of grid resolution in weather prediction models, hyperspectral sounders with high
spatiotemporal resolution and high spectral resolution have been widely developed and
applied [2,3]. With the use of sounders such as the infrared atmospheric sounding interfer-
ometer (IASI) onboard MetOp, the atmospheric infrared sounder (AIRS) onboard Aqua,
the cross-track infrared sounder (CrIS) onboard SNPP, and the high spectral resolution
infrared atmospheric sounder (HIRAS) onboard FY-3D/E, atmospheric sounding has been
greatly improved by hyperspectral measurements, which yield greater vertical resolution
throughout the atmosphere. The atmospheric thermodynamic parameters obtained by
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infrared hyperspectral sounders can effectively invert atmospheric parameters and are an
important source of data for climate studies [4–7].

Although infrared has been applied to the detection of temperature profiles, obser-
vations in the microwave spectrum can sound atmospheric temperature and humidity
information below thin clouds and retrieve weather structures [8]. Therefore, it is very
important to use microwave sounders to detect the atmospheric profile, which can make
up for the shortcomings of other means of atmospheric detection. In order to obtain more
detailed information about the atmosphere and improve the atmospheric detection accu-
racy of microwave sounders, the application of hyperspectral technology in microwave
sounders is an inevitable trend. Microwave sounders have been developed since the
1960s, initially with a small number of channels. With the continuous development of
research and technology, microwave sounders are gradually moving towards increasing
the number of channels, reducing volume, and reducing power consumption. In 1998,
AMSU, which had more sounding channels and a higher spatial resolution, was launched
so that the temperature distribution at high altitudes could be obtained by channels close
to strong oxygen absorption lines [9]. The Microwave Temperature Sounder-III (MWTS-III)
onboard the FY-3E satellite and the microwave sounder (MWS) of the European Meteo-
rological Satellite (EUMETSAT) refine the sounding channels at 53 GHz [10]. In theory,
using hyperspectral microwave sounders to detect the atmosphere can improve the de-
tection accuracy compared to ordinary microwave sounders while positively impacting
atmospheric retrieval.

The microwave absorption spectrum of oxygen has a clear frequency partition, with
absorption lines mainly located at 118.75 GHz and 50–70 GHz, and these two absorption
bands can be used to detect the atmospheric temperature profile. The results show that the
detection channel located in the absorption band of 118 GHz has a certain ability to detect
the vertical distribution of temperature, but it is more seriously affected by precipitation;
the perturbation of 118 GHz by clouds and precipitation is twice as much as that of
60 GHz [11,12]. Therefore, the 50–60 GHz band can be selected as the detection band for
atmospheric temperature profiles, and the microwave fine spectrum detection of future
meteorological satellites mainly seeks to finely divide this frequency band and improve the
vertical resolution of detection [13]. Therefore, the application of hyperspectral technology
at 50–60 GHz is very worthy of study.

Microwave sounders can obtain more detection information, but at the same time, this
also means more noise and a larger computational scale for assimilation prediction. There-
fore, it is necessary to analyze the relevant methods of channel selection. In this paper, based
on the simulated microwave hyperspectral radiances, we analyze the information content,
weighting function, channel bandwidth, and other information of channels at 50–60 GHz
at different bandwidths; this allows us to obtain appropriate channels and demonstrate
their effects before and after channel selection via the retrieval results. The remainder of
this paper is organized as follows: Section 2 introduces the channel-selection methods and
radiative transfer model, Section 3 introduces the channel-selection experiments, Section 4
introduces the retrieval results, and the conclusion is presented in Section 5.

2. Method and Model
2.1. Channel Selection Algorithm

Information entropy can measure the uncertainty of the information source, so many
scholars have applied this method to hyperspectral channel selection. The method we
used for channel selection is the one suggested by Rodgers, which relies on evaluating
the impact of the single channel on a figure of merit [14]. In this paper, entropy reduction
(ER) is chosen for channel selection, which focuses on selecting the channels that have the
greatest impact on information entropy [15].

Channel selection using the information entropy method is mainly based on Equation (1):
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Ai = Ai−1(I − hi(Ai−1hi)
T

1 + (Ai−1hi)Thi
) (1)

where Ai is the analysis error covariance matrix after selecting i channels. When i = 0,
A0 = B, and B is the background error covariance matrix. hi is the vector corresponding to
a line in H

′
. The normalization of the Jacobian matrix is defined by Equation (2):

H
′
= R−1/2H (2)

where R denotes the measurement error covariance matrix, which generally includes the
observation error and the forward modeling error.

Some useful information theory concepts can be used to quantify the gain in informa-
tion brought by data. In particular, we used ER method:

ER = −1
2

log2 det(AiB−1) (3)

where det denotes the determinant [16].
By using the ER method for channel selection, we selected the channel corresponding

to the maximum value of ER in each iteration and then used the unselected channels in
this iteration process as the candidate channels for the next iteration. Finally, when the
entropy change was no longer significant, the iteration stopped, and the selected channel
set was obtained. In the channel selection method of information entropy, the calculation
of ER depends on the background error covariance matrix and analysis error covariance
matrix. In the first iteration, the computation of the analysis error covariance matrix also
depends on the given background error covariance matrix. In this paper, the background
error covariance is based on the statistical results of global samples [17].

After channel selection using the ER method, further selection is required based on
the weighting function. The weighting function represents the radiation contribution of the
atmosphere to the satellite instruments at different altitudes in different bands. The ideal
weighting function of the channel should only have a single peak. If there are multiple
peaks, it indicates that the detection height of the channel is not unique. Therefore, channels
with multiple peaks in the weighting function will be prioritized for elimination during
channel selection. In order to obtain high vertical resolution data, the detection height
of the selected channel set should cover as many height layers as possible. Among the
channels with the same detection height, the channel with the largest peak value of the
weighting function is selected [18]. This channel selection method ensures that a large
amount of information content is retained while reducing the number of channels.

2.2. Radiative Transfer Simulation Model

Atmospheric Radiative Transfer Simulator (ARTS) is a modular program, and it is
a relatively general and flexible model. ARTS can simulate brightness temperatures in
microwave hyperspectral bands, calculate the absorption coefficient, calculate the Jacobian
matrix, and more [19]. ARTS can perform line-by-line absorption calculations to calculate
the absorption coefficient, but it also includes some predefined complete absorption models.
The absorption can be calculated explicitly for each position along the propagation path,
which gives the highest possible accuracy [20].

The absorption coefficient α, as defined by Equation (4), is

α(v, p, T, x1, ..., xn) =
N

∑
i=1

pXi
KBT

Mi

∑
j=1

Sij(T)F
(
ṽij, v, p, T, x1, ..., xn

)
+ C1(v, p, T, x1, ..., xn) + ... + CL(v, p, T, x1, ..., xn)

(4)

where v is the frequency, T is the temperature, p is the pressure, and x1, ..., xn are the
volume-mixing ratios of the various gas species. The index i goes over all N gas species,
and the index j covers the overall Mi spectral lines of each gas species. KB is Boltzmann’s
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constant, which means that this term is nothing other than the partial density, ni, of a gas
species, i. The contribution of each spectral line is given by the product of the line intensity,
Sij(T), and the line shape function, F(ṽij, . . .), and ṽij is the line center frequency. C1 to CL
represent the functions of frequency, pressure, temperature, and gas volume-mixing ratios.

The atmospheric radiative transfer model ARTS uses a Jacobian matrix calculation
with the following mathematical Equation (5):

Kx =
∂y
∂xi

(5)

where y refers to the brightness temperature TB, and xi refers to the atmospheric state
variables in layer i. The mathematical significance of the Jacobian matrix is the sensitivity
of the brightness temperature to the state variables. This may be calculated by either using
the perturbation method or semi-analytical approach. In order to improve the speed of
computation, this paper uses the semi-analytical approach.

In the semi-analytical approach, it is possible to derive analytical expressions for the
Jacobian for some atmospheric variables:

Kp = H
∂i

∂xp
= H

[
∂i

∂βp

∂βp

∂xp
+

∂i
∂ap

∂ap

∂xp

]
(6)

where Kp is column p of the K matrix, and βp and ap are the Planck function and total
absorption, respectively, at the vertical altitude corresponding to xp. i is the vector holding
monochromatic pencil beam spectral values, and H is the response matrix [19,21].

The atmospheric profile dataset used for the simulation studies in this paper was
obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) Nu-
merical Weather Prediction (NWP) global model. The profiles are given in a 137-level
vertical grid, extending from the surface up to 0.01 hPa [22].

3. Channel Selection Experiments
3.1. Experimental Design

When conducting channel selections for microwave hyperspectral instruments, since
there is no existing sounder, it is necessary to design different bandwidths to analyze the
channel selection results for 50–60 GHz. In this study, we set the bandwidth to 10 MHz,
20 MHz, 30 MHz, 50 MHz, and 100 MHz, respectively, and the corresponding total number
of channels was calculated using Equation (7):

ch =
λ

∆λ
(7)

where ch represents the number of channels, λ represents the frequency band, and ∆λ
represents the bandwidth. The total number of channels based on 10 MHz, 20 MHz,
30 MHz, 50 MHz, and 100 MHz bandwidths in the 50–60 GHz frequency band is 1000, 500,
334, 200, and 100, respectively.

We analyzed the spectral absorption for the 50–60 GHz frequency band and the
impact of different gas perturbations on brightness temperature; if the impact was too
significant, the corresponding frequency band was removed. After that, we calculated
the noise equivalent temperature difference (NEDT) values at different bandwidths as the
observation error covariance, and we calculated the background error covariance based
on global samples. Based on this, we used the ER method for channel selection. After
selecting channels using the ER method, we calculated the weighting functions of the
selected channels, removed the channels with multiple peaks, and removed the channels
with a strong correlation. After obtaining the selected channels, the retrieval RMSE was
used to compare the results of the channel selections at different bandwidths.
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3.2. Spectral Absorption

With its complex and numerous absorption lines, the 60 GHz band provides good
sensitivity to temperature all along the atmospheric profile. Figure 1 illustrates the absorp-
tion coefficients calculated by ARTS for different absorbers in the 50–60 GHz frequency
band, where water vapor data and oxygen data were sourced from the MPM89 model
and MPM93 model, respectively. In the 50–60 GHz band, the O2 absorption is dominant,
and there are several O2 absorption lines with different intensities, among which there are
bi-modal absorption lines near 56 GHz and 58 GHz. In the 50–60 GHz band, H2O and N2
are continuously absorbing, and the absorption of O3 fills the whole frequency band, but it
is generally weaker than that of O2.

Figure 1. Absorption coefficients of O2, H2O, N2, and O3 at the top of the atmosphere in the
50–60 GHz band.

In order to show the influence of different absorbers, changes in brightness tempera-
ture were obtained by altering the perturbation values of the absorbers layer by layer, with
perturbations of 10% for H2O, N2, and O3 and 1 K for temperature (T). The Jacobian matrix
of T, H2O, N2, and O3 is shown in Figure 2. Figure 2 shows that based on 10 MHz, when the
temperature is perturbed, the variation in brightness temperature is mainly between 0.02 K
and 0.1 K. When H2O, N2, and O3 are perturbed, the variation in brightness temperature
is mainly between 10−5 K and 10−3 K. It can be seen that the influence of H2O, N2, and
O3 have very little effect on brightness temperature compared to temperature, so it can
be ignored. The amplitude of the Jacobians is lower for the coarser spectral resolution.
The absorption lines are thinner and sound higher in the vertical with the highest spectral
resolution [23]. A higher spectral resolution captures more information within 50–60 GHz.
Consequently, when the perturbations of the absorbers can be neglected based on 10 MHz,
they can also be ignored based on coarser spectral resolution.
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Figure 2. The Jacobian matrix of T, H2O, N2, and O3.

3.3. NEDT Calculation Results

The measurement error consists of the observation error and forward modeling error.
The observation error refers to radiometer sensitivity, which is the noise generated in
the measurement. The forward model error arises from the inaccuracies of the forward
model itself and the inaccurate measurement of atmospheric state parameters. Since the
method in this paper employs the same forward model for calculating radiative brightness
temperature and utilizes the same atmospheric profile database, the forward model errors
can be disregarded, with us only needing to consider observation errors in our calculations.
Usually, when analyzing observation errors, the correlation between channels is not taken
into account, and the observation error covariance matrix is assumed to be a diagonal
matrix, with the diagonal elements representing the square of the sensitivity [24].

The observation errors should be specified. The NEDT can be calculated using the
classical radiometric Equation [23]:

NEDT = (Treceiver + Tantenna)/
√

Bandwidth • t (8)

Treceiver = 4.5 × F(Ghz) + 30 (9)

where Treceiver represents the equivalent noise temperature of the receiver, Tantenna repre-
sents the antenna temperature that is approximately equal to the scene brightness tem-
perature, Bandwidth is the bandwidth of the receiver, t is the integration time, and the
constants are measured in kelvin (K). An average Tantenna of 290 K is assumed. The selected
integration time (t) is 16 ms for all channels, and the constants are measured in kelvin [25].
It can be seen that the NEDT theoretically varies with changes in channel bandwidth and
the equivalent noise temperature of the receiver. The NEDT can be used as the observation
error covariance to calculate information entropy. The random noise generated when using
NEDT as the standard deviation can also be used as the noise input for subsequent retrieval.

The closer the value of NEDT is to 0, the higher the observation accuracy. In this paper,
the NEDT at different bandwidths is calculated according to Equations (8) and (9), and the
NEDT values of MWTS-III were obtained from the website of the China National Satellite
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Meteorological Center (https://satellite.nsmc.org.cn/portalsite/default.aspx, accessed on
16 December 2023). The noise errors at different bandwidths are shown in Figure 3, where
the blue curve indicates the random noise error and the red curve indicates the standard
deviation of the measurement noise error, which approximates the NEDT; the orange bar
shows the NEDT of MWTS-III. It can be seen that as the spectral resolution increases, the
noise error also tends to increase. The mean values of NEDT based on 10, 20, 30, 50, and
100 MHz bandwidths are 1.37, 0.97, 0.79, 0.61, and 0.43 K, respectively. The corresponding
NEDT value for the detection channel of MWTS-III set at 50–56 GHz is approximately 0.3 K,
while the detection channels set at 57 GHz have a higher spectral resolution, resulting in a
larger NEDT value. The NEDT of the channels in MWTS-III is generally closer to the NEDT
calculated in the 100 MHz bandwidth.

Figure 3. The measurement noise errors and std at bandwidths of (a) 10 MHz, (b) 20 MHz, (c) 30 MHz,
(d) 50 MHz, (e) 100 MHz, and MWTS-III.

3.4. Background Error

The background error covariance matrix is calculated as shown in Equation (10):

B =
(x − x̄)(x − x̄)T

n − 1
(10)

where x denotes the atmospheric temperature profile, x̄ denotes the sample mean, and n
denotes the number of atmospheric profile samples.

In this paper, the background error covariance is based on the statistical results
of global samples, and the background error covariance matrix reflects the statistical
characteristics of atmospheric temperature; this is related to the selection of temperature
profiles, and the selected atmospheric profile is shown in Figure 4, where the different
color lines represent different atmospheric temperature profiles. Since the background
error covariance matrix represents the correlation between atmospheric temperatures at
different altitudes, the background error covariance matrix can be represented by the
correlation coefficient matrix, as shown in Figure 5. It can be seen that the correlation
coefficient ranges from −0.8 to 1, where red indicates the region with a large correlation
coefficient, which is mainly distributed near the diagonal and indicates a strong correla-
tion between adjacent atmospheres. In the lower atmosphere, the temperature field has

https://satellite.nsmc.org.cn/portalsite/default.aspx
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a strong vertical correlation, with a correlation coefficient greater than 0.6, and there is a
strong negative correlation at 200 hPa.

Figure 4. The distribution of atmospheric temperature profiles used to calculate background
error covariance.

Figure 5. Correlation coefficient matrix of atmospheric temperature profiles.

3.5. Information Entropy Method

Based on different bandwidths, the information entropy method was used to select
the channels. When the bandwidth was set to 10, 20, 30, 50, and 100 MHz, the total
number of channels in the 50–60 GHz band was 1000, 500, 334, 200, and 100, respectively.
Figure 6 shows the number of channels versus the total information content for different
bandwidth conditions. It can be seen that as the channel bandwidth becomes wider, the
total information content contained gradually decreases. The total information content
extracted increases with the number of channels selected. When fewer channels are selected,
the total information entropy increases rapidly with the increase in the number of channels,
but when the number of selected channels reaches a certain level, the increasing trend of
the total information entropy slows down.
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Figure 6. Variation in information content with the number of channels at different bandwidths of
(a) 10 MHz, (b) 20 MHz, (c) 30 MHz, (d) 50 MHz, and (e) 100 MHz.

This shows that a portion of the channels ranked at the top of the channel selection
contains a large amount of information and that the channels ranked at the bottom have
very low information content. Therefore, in the 50–60 GHz frequency band, we selected an
appropriate number of channels while ensuring that most of the channel information con-
tent was included to reduce the computational scale of the atmospheric temperature profile
retrieval model and improve the retrieval efficiency of the atmospheric temperature profile.

When using the information entropy method for channel selection, 90% of the total
information content was taken as the criterion, at which point the selected channel contains
most of the information [26]. The frequency distribution of selected channels at different
bandwidths is shown in Figure 7. The blue curve in Figure 7 indicates the curve of
radiation brightness temperature versus frequency, and orange symbol represents the
center frequency of the selected channel. It can be seen that most of the selected channels
are located at the abrupt changes in the radiation brightness temperature curve and are
mainly concentrated between 53 and 60 GHz. After channel selection using the information
entropy method, the number of channels at bandwidths of 10, 20, 30, 50, and 100 MHz was
435, 225, 152, 93, and 47, respectively.

The channels were selected based on the information entropy method, and the infor-
mation content of the selected channels at different bandwidths was calculated. Figure 8
shows the information content of each channel for MWTS-III and the different bandwidths.
It can be seen that the channels of MWTS-III set near 57.29 GHz, 55.5 GHz, and 53 GHz
contain more information. The channels with different bandwidth settings at 57 GHz,
58 GHz, 53 GHz, and 59 GHz contain more information content. The number of channels
and information content at each frequency band for MWTS-III and the different bandwidths
are shown in Table 1. It can be seen that most of the selected channels at different band-
widths are located within 53–60 GHz, with the highest number of selected channels within
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59–60 GHz; no channels were selected within 51–52 GHz, indicating that the information
content contained in the channels within this band is minimal and has been eliminated. The
channels within 50–51 GHz and 52–53 GHz at different bandwidths contain little informa-
tion content, whereas the channels within 57–60 GHz contain a lot of information content.
Specifically, the channels within 57–58 GHz at the 100 MHz bandwidth contain the highest
amount of information content, reaching up to 6.39. Compared to MWTS-III, the number of
selected channels at different bandwidths is greater and contains more information content.

Figure 7. The frequency distribution of selected channels at bandwidths of (a) 10 MHz, (b) 20 MHz,
(c) 30 MHz, (d) 50 MHz, and (e) 100 MHz.

Table 1. A comparison of the number of channels and information content at each frequency band for
MWTS-III and different bandwidths.

10 MHz 20 MHz 30 MHz 50 MHz 100 MHz MWTS-III

50–51 GHz 24/0.29 13/0.31 9/0.32 6/0.35 3/0.35 1/0.03
51–52 GHz 0/0 0/0 0/0 0/0 0/0 1/0.17
52–53 GHz 28/0.55 14/0.54 9/0.52 5/0.48 3/0.47 1/0.51
53–54 GHz 44/3.07 22/3.09 16/3.14 11/3.22 6/3.33 3/2.26
54–55 GHz 53/1.79 28/1.75 18/1.68 10/1.86 5/1.89 2/0.74
55–56 GHz 45/1.57 25/1.63 17/1.63 10/1.31 5/1.23 1/2.51
56–57 GHz 42/1.40 21/1.38 15/1.41 9/0.99 4/0.79 0/0
57–58 GHz 42/3.86 22/3.69 13/5.20 8/3.76 5/6.39 6/1.89
58–59 GHz 61/5.26 30/4.88 22/2.82 14/2.55 6/1.32 0/0
59–60 GHz 96/4.29 50/3.89 33/3.81 20/5.28 10/4.10 0/0
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Figure 8. A comparison of the information content of each channel for MWTS-III and different bandwidths.

3.6. Weighting Function

After selecting channels using the information entropy method, the weighting function
was calculated for the selected channel according to Equation (11):

WF =
∂τ(v, θ, P)

∂lnP
(11)

where ∂τ(v, θ, P) represents the transmittance of the channel corresponding to wave number
v, which depends on the absorption coefficient of the absorbing gas in the atmosphere. θ
represents the zenith angle observed by satellites, and P represents the atmospheric pressure.

The ideal weighting function should exhibit a single peak. If the weighting function
exhibits multiple peaks, the detection altitude corresponding to the channel will not be
unique, making it difficult to determine from which altitude the information detected by
the channel originates. Therefore, channels with multiple peaks in the weighting function
should be eliminated. In order to minimize the number of detection channels, when the
detection layers of channels are at the same altitude, the channel with the largest weighting
function value should be selected.

After the weighting function was used for channel selection, the weighting function
for MWTS-III and for different bandwidths was calculated and is shown in Figure 9, where
different color lines represent different channels. It can be seen that the selected channels
at different bandwidths cover more detection layers than MWTS-III. Additionally, as the
bandwidth narrows, the effective detection height increases. Each altitude retains at least
one detection channel, which ensures high vertical resolution for detecting the atmosphere.
After channel selection by the weighting function, the number of channels based on the 10,
20, 30, 50, and 100 MHz bandwidths is 186, 112, 86, 54, and 36, respectively.
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Figure 9. The distribution of weighting functions after selection at bandwidths of (a) 10 MHz,
(b) 20 MHz, (c) 30 MHz, (d) 50 MHz, (e) 100 MHz, and (f) MWTS-III (50–60 GHz).

4. Comparison of Experimental Results

In order to compare the results of the channel selections at different bandwidths, the
Qpack tool and statistical retrieval method OEM were used for retrieval verification based
on the selected frequencies [21]. The retrieval atmospheric profiles used in this study are
shown in Figure 10, where different color lines represent different atmospheric profiles.
The prior profile is set as the average of the atmospheric profile dataset. The cost function
is defined as Equation (12) [27]:

χ2 = [y − F(x, b)]T A−1[y − F(x, b)] + [x − xa]
T B−1[x − xa] (12)

where y is the simulated real brightness temperature, which is the sum of the simulated
true profile brightness temperature and Gaussian noise, where the system sensitivity is the
standard deviation, F(x, b) is the ARTS model, x is the profile produced by each iteration,
xa is the background profile, B is the background error covariance, and A is the observation
error covariance.

The iteration stops when
X2

n+1−X2
n

X2
n

< 0.01 or the number of iterations exceeds 20. The
Marquardt–Levenberg algorithm was used for the iteration process. The retrieval results
were counted and compared, and the RMSE is defined as
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RMSE =

√√√√ 1
N

N

∑
i=1

(xtrue − xretrieval)
2 (13)

where xtrue denotes the true profile, xretrieval denotes the retrieval profile, and N denotes
the number of samples.

Figure 10. The distribution used for retrieval of (a) atmospheric profiles and (b) std values.

Figure 11 shows the retrieval results before and after channel selection. It can be seen
that the retrieval results before and after channel selection at different bandwidths are
better than those of MWTS-III, and the performance is particularly evident in the middle
and upper atmosphere.

Figure 11. The retrieval results when (a) using total information content (all channels), (b) using 90%
information content, and (c) after channel selection based on weighting functions.
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The retrieval results using total information content are shown in Table 2. Additionally,
the retrieval results utilizing 90% information content are summarized in Table 3, and
the retrieval results after weighting function selection are detailed in Table 4. It can be
seen that the retrieval results using the total information content at different bandwidths
are the best in the troposphere, stratosphere, and whole atmosphere. Furthermore, these
results basically abide by the rule that the higher the spectral resolution, the better the
retrieval. When using information entropy for channel selection, the number of channels
decreases by about 54.44%, and its RMSE increases slightly. After selecting channels using
weighting functions, the number of channels was further reduced, and the channel selection
method reduces the number of channels by a total of about 74.05%. It can be seen that the
channel selection method eliminates too many channels in the 10 MHz bandwidth, and the
increase in noise caused by its narrow bandwidth has largely offset the beneficial effects
of having multiple channels, resulting in poorer retrieval performance in the troposphere.
After channel selection, the performance of the 50 MHz bandwidth is the best in the
troposphere, the performance of the 10 MHz bandwidth is the best in the stratosphere, and
the performance of the 30 MHz bandwidth is the best in the whole atmosphere.

Table 2. Retrieval results using total information content.

Channel Troposphere
RMSE (K)

Stratosphere
RMSE (K)

Whole Atmosphere
RMSE (K)

10 MHz 1000 0.9001 1.5182 1.7428
20 MHz 500 0.9283 1.5577 1.7766
30 MHz 334 0.9298 1.6262 1.8558
50 MHz 200 0.9926 1.6904 1.9373

100 MHz 100 0.9408 1.7579 1.9762
MWTS-III 15 1.2024 2.0732 2.3531

Table 3. Retrieval results utilizing 90% information content.

Channel Troposphere
RMSE (K)

Stratosphere
RMSE (K)

Whole Atmosphere
RMSE (K)

10 MHz 435 1.0020 1.5318 1.8307
20 MHz 225 1.0079 1.6163 1.8667
30 MHz 152 0.9829 1.6444 1.8730
50 MHz 93 0.9994 1.6983 1.9376

100 MHz 47 0.9526 1.7694 1.9734
MWTS-III 15 1.2024 2.0732 2.3531

Table 4. Retrieval results after weighting function selection.

Channel Troposphere
RMSE (K)

Stratosphere
RMSE (K)

Whole Atmosphere
RMSE (K)

10 MHz 186 1.1922 1.6709 1.9533
20 MHz 112 1.1230 1.7078 1.9554
30 MHz 86 1.0334 1.7129 1.9162
50 MHz 54 0.9630 1.7543 1.9828

100 MHz 36 0.9944 1.7792 2.0036
MWTS-III 15 1.2024 2.0732 2.3531

Overall, the retrieval results before and after channel selection all show positive
effects compared to MWTS-III. Although the retrieval results after channel selection are
slightly worse than those using all channels, the channel selection scheme is effective
when considering the number of channels, the size of the computation, and the retrieval
results comprehensively. At different altitudes, the selected channels based on different
bandwidths perform differently. Therefore, when designing channels, it is advisable to
consider different bandwidths for different altitudes to achieve better retrieval results.
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5. Conclusions

Compared to infrared, microwaves can sound atmospheric temperature and humidity
information below thin clouds. Therefore, it is important to apply hyperspectral technology
to the microwave band. Considering that the detection of atmospheric temperature profiles
helps to describe atmospheric evolution and monitor climate, the research in this paper
sought to apply hyperspectral technology within the 50–60 GHz band. In this study, we
performed channel selection based on the channel bandwidth, information entropy, and
weighting function. In order to investigate the influence of channel selection at different
bandwidths, we used the retrieval RMSE as the standard to measure the effectiveness
of channel selection. The experimental results show that trace gases do not affect the
forward modeling accuracy of the channel for the selected five bandwidths when per-
forming spectral analysis on the 50–60 GHz frequency band. When selecting channels
containing 90% of the total information content, the selected five bandwidths retained 435,
225, 152, 93, and 47 channels, respectively. The channels were further selected using the
weighting function to eliminate the channels with high correlation, and the final number
of channels retained for the selected five bandwidths was 186, 112, 86, 54, and 36. The
experimental results show that channel selection can reduce the number of channels by
about 74.05% while maintaining a large amount of information content, and the retrieval
effect is significantly better than that of MWTS-III. After channel selection, the 10 MHz,
30 MHz, and 50 MHz bandwidths have the best retrieval results in the stratosphere, whole
atmosphere, and troposphere, respectively. At different altitudes, the selected channels
based on different bandwidths perform differently. Therefore, when designing channels,
it is advisable to consider different bandwidths for different altitudes to achieve better
retrieval results. Considering the number of channels, computational scale, and retrieval
results comprehensively, the channel selection method is effective.

However, the atmospheric profiles used for channel selection in this paper were those
under clear-sky conditions, which may not apply to other weather conditions; therefore,
our subsequent work will focus on channel selection based on complex weather conditions
such as clouds and rain.

Author Contributions: All authors, M.Z., G.M., J.H. and C.Z. participated in the design, data
collection, data interpretation, and critical review of the article. All authors approved the final version.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Key Research and Development Program
of China (2022YFB3902601) and the Youth Cross Team Scientific Research Project of the Chinese
Academy of Sciences (JCTD-2021-10).

Data Availability Statement: The FY-3E MWTS-III data can be downloaded from the website of the
China National Satellite Meteorological Center (http://satellite.nsmc.org.cn/portalsite/default.aspx,
accessed on 16 December 2023). The atmospheric profile dataset can be downloaded from the
European Centre for Medium-Range Weather Forecasts (ECMWF) Numerical Weather Prediction
(NWP) global model.

Acknowledgments: We thank the National Satellite Meteorological Center for providing data from
Fengyun 3 Satellite/Microwave Temperature Sounder-III; the ARTS and Qpack development teams
for assistance with configuration, the operation model, and the data; and the editors and anonymous
reviewers for their suggestions on modifying the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ohring, G. Impact of Satellite Temperature Sounding Data on Weather Forecasts. Bull. Am. Meteorol. Soc. 1979, 60, 1142–1147. [CrossRef]
2. Le Marshall, J.; Jung, J..; Derber, J.; Chahine, M.; Treadon, R.; Lord, S.J.; Goldberg, M.; Wolf, W.; Liu, H.C.; Joiner, J.; et al.

Improving Global Analysis and Forecasting with AIRS. Bull. Am. Meteorol. Soc. 2006, 87, 891–895. [CrossRef]
3. Le Marshall, J.; Jung, J.; Derber, J.; Treadon, R.; Lord, S.J.; Goldberg, M.; Wolf, W.; Liu, H.C.; Joiner, J.; Woollen, J.; et al. Impact of

atmospheric infrared sounder observations on weather forecasts. EoS Trans. 2005, 86, 109–116. [CrossRef]

http://satellite.nsmc.org.cn/portalsite/default.aspx
http://doi.org/10.1175/1520-0477(1979)060<1142:IOSTSD>2.0.CO;2
http://dx.doi.org/10.1175/BAMS-87-7-891
http://dx.doi.org/10.1029/2005EO110002


Remote Sens. 2024, 16, 1323 16 of 16

4. Pougatchev, N.; August, T.; Calbet, X.; Hultberg, T.; Oduleye, O.; Bingham, G. IASI temperature and water vapor retrievals –
error assessment and validation. Atmos. Chem. Phys. 2009, 9, 6453–6458. [CrossRef]

5. Mcnally, A.P.; Watts, P.D.; Smith, J.A.; Engelen, R.; Kelly, G.A.; Thépaut, J.N.; Matricardi, M. The assimilation of AIRS radiance
data at ECMWF. Q. J. R. Meteorol. Soc. 2006, 132, 935–957. [CrossRef]

6. Eresmaa, R.; Letertre-Danczak, J.; Lupu, C.; Bormann, N.; McNally, A.P. The assimilation of Cross-track Infrared Sounder
radiances at ECMWF. Q. J. R. Meteorol. Soc. 2017, 143, 3177–3188. [CrossRef]

7. Wang, P.; Li, Z.; Li, J.; Schmit, T.J. Added-value of GEO-hyperspectral Infrared Radiances for Local Severe Storm Forecasts Using
the Hybrid OSSE Method. Adv. Atmos. Sci. 2021, 38, 1315–1333. [CrossRef]

8. Solman, F.; Staelin, D.; Kerekes, J.; Shields, M. A microwave instrument for temperature and humidity sounding from geosyn-
chronous orbit. In Proceedings of the IGARSS ’98. Sensing and Managing the Environment. 1998 IEEE International Geo-
science and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174), Seattle, WA, USA, 6–10 July 1998; Volume 3,
pp. 1704–1707. [CrossRef]

9. Zou, X.; Qin, Z.; Weng, F. Impacts from assimilation of one data stream of AMSU-A and MHS radiances on quantitative
precipitation forecasts. Q. J. R. Meteorol. Soc. 2017, 143, 731–743. [CrossRef]

10. Zhang, P.; Hu, X.; Lu, Q.; Zhu, A.; Lin, M.; Sun, L.; Chen, L.; Xu, N. FY-3E: The First Operational Meteorological Satellite Mission
in an Early Morning Orbit. Adv. Atmos. Sci. 2022, 39, 1–8. [CrossRef]

11. Ali, S.; Rosenkranz, P.; Staelin, D. Atmospheric Sounding Near 118 GHz. J. Appl. Meteorol. 1980, 19, 1234–1238. [CrossRef]
12. Gasiewski, A.; Barrett, J.; Bonanni, P. Aircraft-based Radiometric Imaging of Tropospheric Temperature and Precipitation Using

the 118.75-GHz Oxygen Resonance. J. Appl. Meteorol. 1990, 29, 620–632. [CrossRef]
13. Blackwell, W.J.; Bickmeier, L.J.; Leslie, R.V.; Pieper, M.L.; Samra, J.E.; Surussavadee, C.; Upham, C.A. Hyperspectral Microwave

Atmospheric Sounding. IEEE Trans. Geosci. Remote Sens. 2011, 49, 128–142. [CrossRef]
14. Rodgers, C.D. Information content and optimisation of high spectral resolution remote measurements. Adv. Space Res. 1998,

21, 361–367. [CrossRef]
15. Collard, A.D. Selection of IASI channels for use in numerical weather prediction. Q. J. R. Meteorol. Soc. 2007, 133, 1977–1991. [CrossRef]
16. Rabier, F.; Fourrié, N.; Chafaï, D.; Prunet, P. Channel selection methods for Infrared Atmospheric Sounding Interferometer

radiances. Q. J. R. Meteorol. Soc. 2002, 128, 1011–1027. [CrossRef]
17. Carminati, F. A channel selection for the assimilation of CrIS and HIRAS instruments at full spectral resolution. Q. J. R. Meteorol.

Soc. 2022, 148, 1092–1112. [CrossRef]
18. Fan, H.; Wang, W.; Wang, J.; Han, W. Local comprehensive channel selection scheme for infrared high-spectral sounder data and

its preliminary. J. Trop. Meteorol. 2022, 38, 715–730. [CrossRef]
19. Buehler, S.; Eriksson, P.; Kuhn, T.; Von Engeln, A.; Verdes, C. ARTS, the atmospheric radiative transfer simulator. J. Quant.

Spectrosc. Radiat. Transf. 2005, 91, 65–93. [CrossRef]
20. Eriksson, P.; Buehler, S.; Davis, C.; Emde, C.; Lemke, O. ARTS, the atmospheric radiative transfer simulator, version 2. J. Quant.

Spectrosc. Radiat. Transf. 2011, 112, 1551–1558. [CrossRef]
21. Eriksson, P.; Jiménez, C.; Buehler, S.A. Qpack, a general tool for instrument simulation and retrieval work. J. Quant. Spectrosc.

Radiat. Transf. 2005, 91, 47–64. [CrossRef]
22. Eresmaa, R.; McNally, A.P. Diverse Profile Datasets from the ECMWF 137-Level Short-Range Forecasts; NWP SAF Report No.

NWPSAF-EC-TR-017; European Centre for Medium-range Weather Forecasts: Reading, UK, 2014.
23. Aires, F.; Prigent, C.; Orlandi, E.; Milz, M.; Eriksson, P.; Crewell, S.; Lin, C.; Kangas, V. Microwave hyperspectral measurements for

temperature and humidity atmospheric profiling from satellite: The clear-sky case. JGR Atmos. 2015, 120, 11334–11351. [CrossRef]
24. Wang, W.; Wang, Z.; Duan, Y. Performance evaluation of THz Atmospheric Limb Sounder (TALIS) of China. Atmos. Meas. Tech.

2020, 13, 13–38. [CrossRef]
25. Aires, F. WorkPackage 2—Clear Sky Analysis; Tech. Rep.; ESA, ESTEC: Noordwijk, The Netherlands, 2014.
26. Mahfouf, J.; Birman, C.; Aires, F.; Prigent, C.; Orlandi, E.; Milz, M. Information content on temperature and water vapour from a

hyper-spectral microwave sensor. Q. J. R. Meteorol. Soc. 2015, 141, 3268–3284. [CrossRef]
27. Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; Series on Atmospheric, Oceanic and Planetary Physics;

World Scientific: Singapore, 2000; Volume 2. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5194/acp-9-6453-2009
http://dx.doi.org/10.1256/qj.04.171
http://dx.doi.org/10.1002/qj.3171
http://dx.doi.org/10.1007/s00376-021-0443-1
http://dx.doi.org/10.1109/IGARSS.1998.692442
http://dx.doi.org/10.1002/qj.2960
http://dx.doi.org/10.1007/s00376-021-1304-7
http://dx.doi.org/10.1175/1520-0450(1980)019<1234:ASNG>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1990)029<0620:ABRIOT>2.0.CO;2
http://dx.doi.org/10.1109/TGRS.2010.2052260
http://dx.doi.org/10.1016/S0273-1177(97)00915-0
http://dx.doi.org/10.1002/qj.178
http://dx.doi.org/10.1256/0035900021643638
http://dx.doi.org/10.1002/qj.4248
http://dx.doi.org/10.16032/j.issn.1004-4965.2022.065
http://dx.doi.org/10.1016/j.jqsrt.2004.05.051
http://dx.doi.org/10.1016/j.jqsrt.2011.03.001
http://dx.doi.org/10.1016/j.jqsrt.2004.05.050
http://dx.doi.org/10.1002/2015JD023331
http://dx.doi.org/10.5194/amt-13-13-2020
http://dx.doi.org/10.1002/qj.2608
http://dx.doi.org/10.1142/3171

	Introduction
	Method and Model
	Channel Selection Algorithm
	Radiative Transfer Simulation Model

	Channel Selection Experiments
	Experimental Design
	Spectral Absorption
	NEDT Calculation Results
	Background Error
	Information Entropy Method
	Weighting Function

	Comparison of Experimental Results
	Conclusions
	References

