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Abstract: Jamming recognition is a significant prior step to achieving effective jamming suppression,
and the precise results of the jamming recognition will be beneficial to anti-jamming decisions.
However, as the electromagnetic environment becomes more complex, the received signals may
contain both suppression jamming and deception jamming, which is more challenging for existing
methods focused on a single kind of jamming. In this paper, a recognition method for compound
jamming based on a dual-channel neural network and feature fusion is proposed. First, feature
images of compound jamming are extracted by the short-time Fourier transform and the wavelet
transform. Feature images are then employed as inputs for the proposed network. During parallel
processing in dual-channel, the proposed network can adaptively extract and learn task-relevant
features via the attention modules. Finally, the output features in dual-channel are fused in the fusion
subnetwork. Compared with existing methods, the proposed method can yield better recognition
performance with less inference time. Additionally, compared with existing fusion strategies, the
fusion subnetwork can further improve the recognition performance under low jamming-to-noise
ratio conditions. Results with the semi-measured datasets also verify the feasibility and generalization
performance of the proposed method.

Keywords: compound jamming; jamming recognition; feature fusion; neural network application

1. Introduction

In an increasingly complex and changeable battlefield environment, accurately obtain-
ing true target information by radar is key to the outcome of modern war [1]. With the
rapid development of radar jamming technology, there are many new types of jamming
patterns [2]. The jamming style has also changed rapidly from the previous single jam-
ming form to multi-class compound jamming. In particular, the feasibility of the existing
radar anti-jamming methods for a single specific type may be greatly influenced when
mainlobe and sidelobe jamming, deception, and suppression jamming are simultaneously
compounded. As a significant prior step in effective jamming suppression, compound
jamming sensing can accurately recognize the unknown jamming patterns in radar echoes,
which can provide vital prior information for the best anti-jamming strategies. Then, the
jamming will be suppressed effectively and the target detection ability will be improved [3].

In general, compound jamming mainly consists of mainlobe deception jamming
and sidelobe suppression jamming. The typical practical scenario is that the enemy in
the far area releases support suppression jamming received by victim radar from the
sidelobe, while the enemy aircraft in the near area uses the mounted jamming pod to
release self-defense deception jamming received by victim radar from the mainlobe [4]. The
mainlobe and sidelobe jamming, deception, and suppression jamming are compounded
to interfere with the victim radar. Since compound jamming recognition is mainly based
on intra-pulse information [5], it should be completed before pulse compression. Existing
anti-jamming strategies in modern radars are mainly adaptive beam-forming, which can
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suppress sidelobe jamming to a certain extent, but the suppression performance of mainlobe
jamming is poor. Considering the strong energy of sidelobe suppression jamming [6] and
the high deception characteristic of mainlobe deception in practice, we mainly focus on the
residual sidelobe suppression jamming combined with mainlobe deception after adaptive
beam-forming in this paper.

Existing jamming recognition methods generally rely on better feature extraction and
the selection of classifiers to improve recognition performance. As for feature extraction,
there are kinds of commonly used features from different domains, including features in the
time-frequency domain, bi-spectral features, singular spectrum features, power spectrum
features, and so on. Thanks to the rapid development of machine learning, classifiers such
as the decision tree, the random forest (RF), the K-nearest neighbor (KNN) algorithm, and
the support vector machine (SVM) are also widely used to classify and recognize these
features of jamming signals. Focusing on smeared spectrum (SMSP) jamming and chopping
and interleaving (C&I) jamming, a shape feature based recognition method via the two-
dimensional feature map, is proposed in [7]. The bi-spectral features of received jamming
signals are calculated and these features are then converted into gray-scale maps. An SVM
is finally used to classify the features of two jamming signals. In [8], an unconventional
jamming recognition method for wideband radar based on visibility graphs is designed.
The received time series signals are converted into visibility graphs and four types of
features on visibility graphs are then extracted. The RF classifier is used to recognize five
kinds of active jamming signals. Results show that the average accuracy is over 90% when
the jamming-to-noise ratio (JNR) is 0 dB.

Later, learning from the successful experience of deep learning in image classification
problems in the computer vision field and text classification problems, various neural
networks are also introduced to jamming recognition problems. Considering the number of
input dimensions, existing methods can be roughly categorized as feature sequence-based
methods, feature image-based methods, and corresponding combination methods. In [9],
a signal recognition method based on autocorrelation feature sequence is proposed. The
backbone structure of the method is a bi-directional long short-term memory (BiLSTM)
network enhanced by a self-attention module, and simulations verify its effectiveness. A
jamming recognition method based on singular value decomposition (SVD) and a back-
propagation (BP) neural network is proposed in [10]. The difference singular values of
jamming signals are obtained by the SVD and then they are employed as inputs to the
BP network. Simulation results show the average recognition accuracy of four kinds of
active jamming signals is 90% when the JNR is 5 dB. However, it is required to select
hyper-parameters manually. In [11], an LSTM network and a ResNet are combined to
extract high-dimensional features of raw jamming signal sequences in the time domain
and recognize four kinds of jamming signals. Simulations show the recognition method
achieves more than 98.3% average accuracy when the JNR is 0 dB.

Due to the outstanding performance of convolutional neural networks (CNNs) in
image classification, lots of methods based on CNNs and feature images are proposed
to realize jamming recognition. A compound jamming recognition method based on
power spectrum feature images and JRNet is proposed in [12]. The method can effectively
recognize ten kinds of compound jamming signals under low JNRs, while paying more
attention to suppression jamming. Using the fractional Fourier transform, a multi-branch
CNN enhanced by an attention mechanism is proposed to recognize eight types of jamming
signals in [13]. Simulation results indicate that the proposed CNN achieves more than 99%
accuracy when the JNR is −3 dB. In [14], a lightweight improved MobileViT for TFIs is
employed to recognize six kinds of jamming signals and the method can effectively reduce
the computational complexity. Similarly, using time-frequency images (TFIs) by the STFT,
an inverse ResNet enhanced by a channel attention module is designed to recognize eight
kinds of jamming signals in [15], where features in the time-frequency domain and image
channel domain are combined to promote recognition performance. Simulation results
show the average recognition accuracy is close to 100% when JNR is −8 dB. In [16], a
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jamming signal classification method for cognitive unmanned aerial vehicles radios via a
generalized dynamic Bayesian network is investigated.

Further, lots of methods are trying to incorporate the advantages of sequence-based
methods and image-based methods, and features in multiple domains are combined via
various fusion algorithms to improve the robustness of recognition methods. A parallel
network structure of one-dimensional CNN and two-dimensional CNN is designed in [17],
which uses feature sequences in the frequency domain and TFIs as inputs. Simulation
results show the parallel structure is capable of effectively recognizing ten kinds of com-
pound jamming signals when JNR is greater than 0 dB. Similarly focused on features in the
frequency domain and time-frequency domain, a parallel network structure of the ResNet
and the LSTM is proposed in [18]. Experiments indicate that the method can achieve 94.8%
average accuracy for six kinds of active jamming signals. In [19], a recognition method
based on Bayesian decision theory and feature fusion is designed, where multiple features
are extracted by the bi-spectrum transformation. The kernel density estimation is then used
to improve the Bayesian decision theory, and simulations verify that the method is capable
of classifying three kinds of deception jamming.

In general, most existing recognition methods focus on a single kind of jamming
signals, instead of multiple compound jamming signals. Nevertheless, there may be more
than one enemy jammer on the complex electromagnetic battlefield. In received jamming
samples, suppression jamming and deception jamming are supposed to be additively
compounded in the time domain, and recognition methods focused on a single kind of
jamming may not be effective. On the other hand, suppression jamming signals are more
likely to cover some distinguishable features of deception jamming signals once suppression
jamming and deception jamming coexist, which may cause performance degradation of
recognition methods. Because of the various and complex characteristics of compound
jamming signals, features in a single dimension can hardly tell distinguishable differences
between compound jamming signals.

Fortunately, feature fusion in multiple dimensions and domains provides a promising
solution that is capable of taking full advantage of multiple features to describe compound
jamming signals. Moreover, attention modules are supposed to adaptively strengthen
significant features and suppress useless features, that is, it is a viable way to promote
the learning ability of networks and yield robust recognition performance against noise
suppression jamming. Thus, we design a novel dual-channel network architecture, which
combines the advantages of feature fusion and the benefit of attention modules. In order
to obtain a stable feature representation of jamming signals, we originally introduce time-
frequency features and wavelet transform features simultaneously for jamming recognition.
The main novelties and contributions are summarized for clarity as follows:

1. Compound jamming signals consisting of noise suppression jamming and deception
jamming are considered. In order to enrich the feature space and boost the representa-
tion ability of compound jamming, features obtained by the time-frequency transform
and the wavelet transform are simultaneously inputted in parallel to the designed
dual-channel network.

2. To enhance the extraction and learning ability for task-relevant features, the diverse
branch block (DBB) structure and a parameter-free attention module are incorporated
into the proposed network. Then, a gated recurrent unit (GRU)-based subnetwork is
designed for feature fusion to further improve the recognition performance.

3. Compared with the existing three recognition methods, the proposed method achieves
higher recognition accuracy with lower time complexity under different JNRs. More
importantly, we have used the semi-measured jamming signals to validate the feasi-
bility and generalization ability of the proposed method.

The rest of this paper is organized as follows: the mathematical models of ten kinds
of compound jamming and features in both the time-frequency domain and the wavelet
domain are derived in Section 2. The detailed backbone structure of the proposed network
and feature fusion subnetwork are introduced in Section 3. The results of the proposed
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method and comparisons with existing methods are analyzed in terms of recognition accu-
racy and computational complexity in Section 4. Some discussions about the performance
with the semi-measured datasets are analyzed in Section 5. Finally, conclusions and future
works are summarized in Section 6.

2. Materials

In this section, mathematical models of each kind of jamming are provided and two
transforms used for feature extraction are introduced in detail, namely, the STFT and the
wavelet transform.

2.1. Jamming Models

The radar jammer in modern electronic countermeasures often uses digital radio fre-
quency memory (DRFM) technology, which samples and copies the received signal [20].
Then the sampled signal is modulated and returned to the victim radar. With the devel-
opment of its wide application in electronic countermeasures, the jammer can generate
jamming signals with flexible and complex modulation styles. Focused on the topic of
compound jamming, we first introduce mathematical models of seven kinds of single
jamming and then provide the compound models.

2.1.1. Intermittent Sampling and Forwarding Jamming (ISFJ)

The ISFJ can effectively reduce the minimum forwarding delay of the jammer by low-
speed sampling and forwarding the radar signal. Considering that the existing radar mainly
transmits linear frequency modulation (LFM) signals, LFM signals s(t) can be expressed as

s(t) = eiπkt2
, 0 ≤ t ≤ T, (1)

where T is the pulse width and k is the frequency modulation slope. According to the
principle of jamming generation, the intermittent sampling rectangular pulse train p(t) is

p(t) = rect(
t − τ/2

τ
)∑N−1

n=0 δ(t − nTs), (2)

where Ts is intermittent sampling period, τ is the sampling pulse width, N is the number
of pulses, and δ(·) denotes the impulse function. Intermittent sampling signals j(t) can be
expressed as

j(t) = s(t)p(t). (3)

By controlling forwarding delay and times, j(t) could be interrupted-sampling direct
forwarding jamming (ISDJ), interrupted-sampling repetitive forwarding jamming (ISRJ),
and interrupted-sampling loop forwarding jamming (ISLJ). The mathematical models of
each of the above jamming methods [21,22] are

jISDJ(t) = j(t − τ), (4)

jISRJ(t) = ∑M
m=1 j(t − mτ), (5)

jISLJ(t) = ∑R−1
r=0 j{t − τ − r(τ + Ts)}, (6)

where M = [Ts/τ] and R = min(N, M). The true target echo is cut into Q slices, Q = NM.
The diagram of the true target echo and three kinds of ISFJ are shown in Figure 1 [20],
where N = 4, M = 5, Q = 20. There are two obvious differences between the true echo and
the jamming signal. In detail, the true echo is continuous while the jamming signal is not
continuous in the time domain. Also, the jamming slice is different from the corresponding
true echo slice. For example, slice 7 of the true echo corresponds to slice 6 of ISDJ, ISRJ, and
ISLJ. Slice 8 of the true echo corresponds to slice 6 of ISRJ and slice 1 of ISLJ. The above two
characteristics provide a basis for recognition jamming.
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Figure 1. The diagram of true target echo and the ISFJ.

2.1.2. Chopping and Interleaving Jamming

C&I is similar to ISRJ, but C&I fills the entire pulse width. According to the C&I
generation method, the sampling pulse train can be expressed as [23]

p(t) = rect
(

t
τ

)
∑+∞

n=−∞ δ(t − nTs). (7)

The sampling signal is obtained by sampling the radar signal with p(t),

j1(t) = rect
(

t
Tp

)
eiπkt2

∑+∞
n=−∞ rect

(
t − nTs

τ

)
. (8)

By copying j1(t) N times, C&I can be defined as

jC&I(t) = ∑N−1
n=0 j1(t − nτ), (9)

where N = ⌊Ts/τ⌋ and ⌊·⌋ means the round-down operation. The comparison between
C&I jamming and ISRJ is shown in Figure 2 [23].
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2.1.3. Smeared Spectrum Jamming

By changing the internal form of the signal, SMSP consists of multiple LFM sub-signals
in the time domain [24]. After forwarding once, high-density comb false target groups
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can be generated around the true target, which can deceive and suppress LFM pulse
compression radars. According to the SMSP generation method, the first LFM sub-signal is

j1(t) = rect(
t − 2Tp/N

Tp/N
)eiπkjt2

, (10)

where k j = Nk is the frequency modulation slope and k = B/Tp, B is the bandwidth, N is
the number of sub-signals. j1(t) is copied N − 1 times and spliced to obtain SMSP as

jSMSP(t) = ∑N−1
n=0 rect(

t − 2Tp/N − nTp/N
Tp/N

)eiπNk(t−nTp/N)2
. (11)

The instantaneous frequency of SMSP [25] is

f j(t) = ∑N−1
n=0 rect(

t − 2Tp/N − nTp/N
Tp/N

)(Nkt − nB). (12)

The instantaneous frequency of SMSP consists of N straight line segments with the
same slope and different intercepts. The time domain width of each line segment is Tp/N,
the slope is Nk, and the intercept is −nB.

2.1.4. Noise Convolutional Jamming (NCJ)

Compared with traditional active suppression jamming, NCJ has the characteristics
of adaptive radar signals. In NCJ signals, modulated noise is convolved with LFM radar
signals, which can be expressed in the time domain [26] as

jNCJ(t) = n(t)⊗ s(t), (13)

where n(t) represents the Gaussian white noise, s(t) indicates the LFM signal received by
the jammer, and “⊗” represents the convolution operator.

2.1.5. Noise Productive Jamming (NPJ)

In NPJ, modulated noise is multiplied with LFM radar signals, which can be expressed
in the time domain [27] as

jNPJ(t) = n(t)× s(t). (14)

2.1.6. Compound Jamming Models

In this paper, we mainly focus on additive compound jamming that combines sup-
pression jamming and deception jamming in the time domain. That is, compound jamming
J(t) can be expressed as [28]

J(t) = jsupp(t) + jdece(t), (15)

where jsupp(t) denotes a kind of noise suppression jamming introduced above and jdece(t)
denotes a kind of deception jamming introduced above. Two kinds of noise suppression
jamming and five kinds of deception jamming are modeled above, thus there are ten kinds
of compound jamming under recognition. Furthermore, as discussed in the Introduction,
we pay more attention to the scenario that compound jamming consists of residual sidelobe
suppression jamming and mainlobe deception jamming. Taking existing adaptive beam-
forming under a certain error into consideration, residual JNR of the sidelobe suppression
jamming is about 10 dB, which is the premise for the following experiments.

2.2. Feature Extraction

The goal of feature extraction for jamming signals is to find more distinct and dis-
tinguishable features from different dimensions, which is supposed to be conducive to
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jamming signal analysis and recognition. Herein, the STFT and the wavelet transform are
introduced in brief.

2.2.1. The Short-Time Fourier Transform

The STFT is an important member of the time-frequency energy density function,
which is a widely-used signal analysis tool with the advantages of simple calculation. Its
time domain expression is

STFT(t, f ) =
∫ +∞

−∞
x(τ)η*(τ − t)e−j2πfτdτ, (16)

where t and f represent time and frequency, respectively. x(t) indicates the radar signal.
“*” represents the conjugation of complex numbers. η(t) is the window function. When
the window function is 1, the STFT will become the traditional fast Fourier transform.
Commonly used window functions include the Hanning window, rectangular window,
and Hamming window.

However, when the window function is fixed, the time-frequency resolution of the
STFT is also fixed. For complicated and variable radar signals, time resolution or frequency
resolution often cannot be in a good state at the same time. There is an unavoidable conflict
between the time resolution and the frequency resolution. The STFT cannot keep the
time-frequency resolution in an ideal state through adaptive adjustment.

2.2.2. The Continuous Wavelet Transform (CWT)

The CWT is capable of dealing with the conflict between time resolution and frequency
resolution. The CWT is implemented by convolving the signal with a parent wavelet
function that can be frequency-shifted and scaled. By adjusting the frequency shift and
scaling parameters, the CWT can provide spectrum information at different scales, thus
providing a multi-scale analysis of the local characteristics of the signal.

The time domain expression of the CWT is

Ws(a, b) =
1√
a

∫ +∞

−∞
s(t)ψ*

(
t − b

a

)
dt, (17)

where s(t) is the radar signal. a and b represent the scale function and the time translation,
respectively. ψ(a, t) is the mother wavelet function.

3. Approach
3.1. The Structure of the Proposed Network

Since there is residual suppression jamming within received signals under recognition,
helpful features obtained by the time-frequency transform and the wavelet transform are
more likely to be covered by the noise characteristics of residual suppression jamming. Thus,
plain CNNs may be powerless to capture helpful features, and it is an urgent requirement
to boost the feature extraction and representation abilities of CNNs. On the other hand,
useless noise and suppression jamming are supposed to pollute a large part of the areas
in feature images. It would be better for CNNs to capture task-relevant and significant
features. To deal with these problems, the proposed network takes the ResNet as the
backbone structure. Meanwhile, a DBB [29] structure and a simple parameter-free attention
module [30] are incorporated to strengthen the extraction ability of vital features and the
adaptive selection ability of task-relevant features. Concretely, the proposed network has
two channels, and two input features are processed parallelly in each channel. At the end
of the proposed network, there is a subnetwork designed for feature fusion. The flowchart
of the proposed method is shown in Figure 3, where “1 × 1” and “k × k” denote the size of
convolution kernels, and “AVG” is the average pooling layer.
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Figure 3. The flowchart of the proposed method.

Learning from the success of the Inception network, the DBB combines the multi-
branch and multi-scale idea with structural re-parameterization. By integrating multi-scale
convolutions and obtaining different sizes of reception fields, abundant feature spaces are
gained to improve representation performance. In a single channel of the proposed network,
let X ∈ RC×H×W denote an input feature map with C channels, where H and W denote the
width and length of the input feature map. The corresponding output O ∈ RD×H′×W ′

can
be calculated as

O = X
⊗

F + REP(b), (18)

where D is the number of output channels, H′ and W ′ denote the width and length of
the input feature map, and “

⊗
” is the convolution operation. F ∈ RD×C×K×K is the

convolution kernel, where K is the size of the convolution kernel. REP(b) denotes an
optional bias item. Then the output Oj,h,w at (h, w) in j-th channel is calculated as

Oj,h,w = ∑C
i ∑K

k ∑K
m Fj,i,k,mX(c, h, w)k,m + bj, (19)

where, X(c, h, w) ∈ RK×K is the element under convolution of the input map X at (h, w),
and bj is a bias.

Further, the homogeneity of convolutions can be defined as

X
⊗

(pF) = p
(

X
⊗

F
)

, (20)

where the equation is true for all p ∈ R. As for two convolution kernels F1 and F2 with the
same configuration (including the same numbers of channels, same sizes of kernels and
zero-paddings, and same convolution strides), the additivity of convolutions is defined as

X
⊗

F1 + X
⊗

F2 = X
⊗

(F1 + F2). (21)

Thanks to the above homogeneity and additivity of convolutions, the multi-branch
and multi-scale convolutions in the DBB can be converted to an equivalent single-branch
convolution by a series of linear combinations. The equivalent convolutions are employed
during inference for the sake of deployment, which is supposed to reduce the inference
time and total parameters.

On the other hand, to capture task-relevant and essential features and simultaneously
suppress useless features, lots of attention modules have been designed recently. Most of
these attention modules will introduce extra learnable parameters. Taking the requirements
of real-time processing and lightweight deployment into consideration, a simple parameter-
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free attention module is employed to enhance the proposed network. For the input feature
map X, an energy function in the attention module is defined as

et(wt, bt, y, xi) =
(
yt − t̂

)2
+

1
M − 1∑M−1

i=1 (yo − x̂i)
2, M = H × W (22)

where, wt and bt denote the weight and bias, respectively, t̂ = wtt + bt denotes a linear
transform of t, and x̂i = wtxi + bt denote a linear transform of xi. t and xi denote the
targetneuron and other neurons in the current area, respectively. yt and yo denote labels
and binary labels are used herein for simplicity, i.e., yt = 1 and yo = −1.

Then, the energy function can be rewritten as

et(wt, bt, y, xi) =
1

M − 1∑M−1
i=1 (−1 − (wtxi + bt))

2 + (1 − (wtt + bt))
2 + λw2

t , (23)

where, λw2
t is the regularization item. Fortunately, there is an analytical minimum solution

e*
t for the energy function as follows [31]

e*
t(wt, bt, y, xi) =

4(σ̂ + λ)

(t − µ̂)2 + 2σ̂2 + 2λ
, (24)

where µ̂ = 1
M ∑M

i=1 xi and σ̂2 = 1
M ∑M

i=1(xi − µ̂)2. The smaller value of e*
t indicates the

more important feature in the target neuron. Further, the values of energy functions in
different neurons are scaled by a Sigmoid function, and then these scaled values are directly
multiplied with the corresponding features as follows:

Oa = sigmoid
(

1
E

)
⊙ O f , (25)

where Oa is the final output of the attention module and O f is the input feature. “⊙”
indicates an element-wise multiplication and E is a vector of all scaled values of the
energy function.

For clarity, detailed structural parameters in a single channel of the proposed network
are listed in Table 1. Herein, “Module × 2” means there are two cascaded modules with
similar structural parameters. “DBB” and “Attention” mean the DBB structure and the
attention module are used in the corresponding layer, respectively. Finally, the outputs of
the linear layer in two channels are concatenated and employed as inputs of the subnetwork
for feature fusion.

Table 1. Structure in one channel of the proposed network.

Input Size Output Size Layers/Modules Kernel, Stride, Padding

224 × 224 × 3 112 × 112×64 Conv-1 7, 2, 3

112 × 112 × 64 56 ×56 × 64 Max pool 3, 2, 1

56 × 56 × 64 56 ×56 × 64 Module-1 × 2
DBB

3, 1, 1 + Attention

56 × 56 × 64 28× 28 × 128 Module-2 × 2
DBB

3, 1, 1 + Attention

28 × 28 × 128 14× 14 × 256 Module-3 × 2
DBB

3, 1, 1 + Attention

14 × 14 × 256 7× 7 × 512 Module-4 × 2
DBB

3, 1, 1 + Attention

7 × 7 ×512 1× 1 × 512 Average pool 7, 1, 0

512 10 Linear -
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3.2. The Subnetwork for Feature Fusion

An appropriate feature fusion is supposed to gain more improvement than recognition
methods based on a single feature dimension, and it can make full use of the advantages of
features by the STFT and the wavelet transform. Existing recognition methods based on
features in multi-domains often use machine learning approaches for feature fusion, such
as the Bayesian theory, the random forest, and the SVM. However, these approaches can
only fuse the outputs of corresponding neural networks after the training of these neural
networks. In other words, two separate steps, namely processing by neural networks and
fusion strategy, are needed to complete the entire recognition process. Differently, the
subnetwork designed for feature fusion is integrated into the whole recognition network,
which can be trained along with the previous dual-channel network jointly to achieve better
fusion performance.

Two feature vectors of the dual-channel network are concatenated and employed as the
inputs of the fusion subnetwork; hence, the task of the fusion subnetwork can be regarded
as a sequence processing problem. Thanks to the special structure of recursions and nodes,
recurrent neural networks (RNNs) have unique advantages in sequence processing. The
GRU, famous for its concise structure and efficient training, can deal with the shortcomings
of the shot memory and the gradient exploration through the gate mechanism [31]. There
are two gates in the GRU, namely the update gate and the reset gate.

Let Ot denote the input feature vector of the GRU, then the outputs of the update gate
ut and the reset gate rt are calculated as:

ut = sigmoid(Wu·[ht−1, Ot]), (26)

rt = sigmoid(Wr·[ht−1, Ot]), (27)

where Wu and Wr denote the weight matrix in the ut and rt, respectively. ht−1 is the hidden

state at the previous moment. Then, the candidate hidden state
∼
ht and hidden state ht at

this moment can be calculated as:

∼
ht = tanh

(
Wh·Ot + Wh·(rt

⊕
ht−1)

)
, (28)

ht = (1 − ut)
⊕

ht−1 + ut
⊕ ∼

ht, (29)

where “
⊕

” denotes the Hadamard product and tanh(·) denotes the Tanh function. Next,
the feature vectors processed by the GRU are employed as inputs for a linear layer, where
the fused features will be mapped to reduce dimensions. Herein, there is one GRU in the
designed subnetwork and the GRU has 128 hidden units. The numbers of input neurons
and output neurons in the linear layer are 128 and 10, respectively.

3.3. Simulation and Training Configurations

Two kinds of suppression jamming and five kinds of deception jamming signals are
considered in this paper, where these jamming signals are additively compounded in
the time domain. As for detailed simulation parameters, the pulse width is 40 us, the
bandwidth is from 40 MHz to 60 MHz, the sampling frequency is 240 MHz, the JNR of
deception jamming is from 0 dB to 20 dB, and the residual JNR of suppression jamming is
10 dB.

As for the hyper-parameters for network training, the initial learning rate is 1 × 10−3

and the cosine-annealing-warm-restart mechanism is employed to dynamically adjust the
learning rate during training. A total of 80% of the simulation dataset is used for network
training and 20% of the simulation dataset is used for validation. The batch size is 128
and the epoch is 100. The optimization algorithm is the Adam [32] algorithm and the loss
function is cross-entropy loss. The software platform includes Python 3.8.5, PyTorch 1.7.1,
and CUDA 11.0. The hardware platform includes an Intel Xeon Gold 6226R CPU with a
RAM of 256 G and a Nvidia Quadro RTX 6000 GPU with a video memory of 24 G.
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4. Results
4.1. Recognition Performance of the Proposed Method

As introduced in Section 2, we have focused on compound jamming recognition under
residual suppression jamming, where the JNR of the residual suppression jamming is 10 dB
within the compound jamming. Thus, the recognition performance versus the JNR of the
deception jamming within the compound jamming is analyzed and shown in Figure 4. The
recognition performance when five kinds of deception jamming signals and the NPJ are
compounded is provided in Figure 4a. When the JNR of the deception jamming is 0 dB,
the recognition accuracy of the ISDJ + NPJ jamming is about 70%, while the recognition
accuracies of the other four kinds of compound jamming signals are lower than 50%. The
power of the residual NPJ is still high and the jamming noise overwhelms distinguishable
features of the STFT and the wavelet transform. With the increase in JNRs, recognition
accuracies of the proposed method for these five kinds of compound jamming steadily
increase. When the JNR of the deception jamming is 4 dB, recognition accuracies are all
close to 100%.
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The recognition performance when five kinds of deception jamming signals and the
NCJ are compounded is provided in Figure 4b. Since the frequency modulation slope
of the SMSP is significantly different from that of other deception jamming, the time-
frequency features of the SMSP are more obvious. Thereby, the recognition accuracy of
the SMSP + NCJ is more than 90% even though the JNR is 0 dB. However, the recognition
accuracies of the other four kinds of compound jamming are all lower than 40%. Since the
residual NCJ has strong power in the time-frequency domain, it also overwhelms significant
features of deception jamming. With the increase in JNRs, the recognition performance of
the proposed method has also improved. When the JNR is greater than 8 dB, the recognition
accuracies of five kinds of compound jamming are close to 100%. However, when the
JNR is relatively low, the recognition accuracies of the ISRJ + NCJ and the ISDJ + NCJ
fluctuate up and down rather than continuing to increase with the increase in JNRs, because
the suppression energy of the NCJ is more concentrated and denser around the features
of deception jamming in the time-frequency domain and the wavelet transform domain,
which seriously influence the features of deception jamming. Thus, the proposed method
fails to capture important features of the above compound jamming. The phenomenon also
reveals the significance and difficulty of compound jamming recognition.

On the other hand, as shown in Figure 4a,b, the recognition accuracies of the proposed
method for five kinds of compound jamming can reach 100% when the JNR is 4 dB, while
the recognition accuracies of the five kinds of compound jamming in Figure 4b can reach
100% only when the JNR is greater than 8 dB. In other words, from the perspective of
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compound jamming recognition, compound jamming containing the NCJ is more difficult
to recognize.

To further analyze the recognition performance of the proposed method at lower JNRs,
the confusion matrix for ten kinds of compound jamming at 5 dB is shown in Figure 5. The
proposed method achieves satisfactory recognition performance for ISRJ + NPJ, SMSP + NPJ,
SMSP + NCJ, C&I + NPJ, ISLJ + NPJ, and ISDJ + NPJ. The recognition accuracy of ISRJ
+ NCJ is about 81.09%. In the test samples of ISRJ + NCJ, about 11.44% of the samples
are incorrectly recognized as C&I + NCJ, and about 4.97% of the samples are incorrectly
recognized as ISDJ + NCJ. The recognition accuracy of ISLJ + NCJ is about 91.54%, and
in the test samples of ISLJ + NCJ, about 4.97% of the samples are incorrectly recognized
as ISDJ + NCJ. The recognition performance of ISDJ + NCJ is the worst, and about 18.9%
of the test samples are incorrectly recognized as ISLJ + NCJ. About 13.43% of the test
samples are incorrectly recognized as ISRJ + NCJ and about 8.45% of the test samples are
incorrectly recognized as C&I + NCJ. On the whole, the features of ISRJ + NCJ, ISLJ + NCJ,
and ISDJ + NCJ are similar to each other at lower JNRs.
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With the further increase in JNRs, the energy of the deception jamming is gradually
higher and their features by the STFT and the wavelet transform become more and more
distinct. The confusion matrix for ten kinds of compound jamming at 7 dB is shown in
Figure 6. The recognition accuracies for nine kinds of compound jamming are close to 100%.
Only 1% of the test samples of ISRJ + NCJ are incorrectly recognized as C&I + NCJ. The
recognition accuracy of ISDJ + NCJ is also significantly improved. Most incorrect samples
of ISDJ + NCJ are recognized as ISLJ + NCJ, which indicates that the characteristics of
several kinds of interrupted sampling jamming are very similar.

Since the proposed method is based on a dual-channel neural network and a fusion
structure, it is necessary to assess the effectiveness of the designed fusion structure. We
have compared the recognition performance of the designed fusion structure with that of
the methods without fusion, shown in Figure 7. Herein, “STFT” and “CWT” denote the
recognition performance using features by the STFT and the wavelet transform, respectively.
“Fusion” denotes the recognition performance after the designed fusion structure. When
the JNR is 0 dB, the recognition accuracy after fusion is almost the same as the accuracy of
the wavelet transform, which is higher than the accuracy of the STFT. That is, the wavelet
transform may be more effective in characterizing the important features of compound
jamming when the JNR is low. With the improvement of JNRs, the recognition performance
after fusion is gradually better than that only using features in one domain. Especially,
when the JNR is 3 dB, the recognition accuracy after fusion is about 3.03% and 11.75%
higher than that of the wavelet transform and the STFT, respectively. In summary, the
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recognition accuracy after fusion is basically the highest under each JNR, and the recogni-
tion performance after fusion is better than that using only a single domain feature. That
is, the designed fusion structure can combine the advantages of features by the STFT and
wavelet transform features, so as to further promote the recognition performance of the
proposed method.
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4.2. Comparisons with Existing Methods
4.2.1. Recognition Performance Comparison

For a fair comparison, several recognition methods based on neural networks and
feature images are employed as comparison methods, namely, the JRNet [12], the MBv2 [14],
and the IResNet [15]. The overall accuracy (OA) of each method for each compound
jamming is listed in Table 2, where the OA is defined as:

OA =
∑

NJNR
1 Ncorrect

NJNR × Ntest
, (30)

where NJNR, Ntest, and Ncorrect denote the number of JNRs, the size of the test dataset
at each JNR, and the number of correct samples, respectively. The mean OA (mOA)
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is calculated by averaging the OAs of ten kinds of compound jamming. Herein, bold
values indicate the best recognition performance in each row. Compared with the three
existing methods, the proposed method can achieve the best recognition performance for
ISRJ + NPJ, SMSP + NPJ, SMSP + NCJ, ISLJ + NPJ, ISLJ + NCJ, and ISDJ + NPJ. Especially
for SMSP + NPJ, SMSP + NCJ, ISLJ + NPJ, and ISDJ + NPJ, the proposed method can gain
more than 90% accuracy. In spite of the fact that the OAs of the JRNet for C&I + NPJ
and C&I + NCJ are higher than those of the proposed method, the OA of the JRNet for
ISLJ + NCJ is 28.9%. Similarly, although the OAs of the IResNet for ISRJ + NCJ and
ISDJ + NCJ are higher than those of the proposed method, the OA for C&I + NCJ is
36.23%. Thus, according to the mOA, the proposed method achieves the best recognition
performance by comprehensively considering the OAs of ten kinds of compound jamming.
To sufficiently compare the performance of each recognition method, the F1-score metric is
also employed to explore recognition ability. The F1-score values of each method for each
jamming are listed in Table 3. The F1-score values of the proposed method are the highest
except SMSP + NCJ jamming. The average F1-score value of the proposed method is about
0.8478 and is also the highest compared with the four existing methods.

Table 2. OA and mOA of four methods for each jamming.

Proposed Method (%) MBv2 (%) JRNet (%) IResNet (%)

ISRJ + NPJ 88.69 86.20 82.81 82.14
ISRJ + NCJ 72.59 54.14 47.04 77.02

SMSP + NPJ 93.98 82.18 89.23 87.83
SMSP + NCJ 99.14 99.59 71.23 98.37
C&I + NPJ 86.07 77.02 89.14 82.86
C&I + NCJ 79.10 45.77 90.95 36.23
ISLJ + NPJ 91.81 82.41 75.40 83.94
ISLJ + NCJ 74.90 71.28 28.90 43.19
ISDJ + NPJ 93.22 92.63 89.60 90.64
ISDJ + NCJ 67.80 65.90 37.99 75.58

mOA 84.73 75.71 70.23 75.78

Table 3. The F1-score values of four methods for each jamming.

Proposed Method MBv2 JRNet IResNet

ISRJ + NPJ 0.8915 0.845 0.8389 0.8405
ISRJ + NCJ 0.7231 0.6401 0.5588 0.5856

SMSP + NPJ 0.9475 0.8885 0.8239 0.9186
SMSP + NCJ 0.9956 0.9979 0.8319 0.9917
C&I + NPJ 0.8989 0.8453 0.8015 0.8454
C&I + NCJ 0.8093 0.6163 0.5344 0.5257
ISLJ + NPJ 0.9262 0.8361 0.8432 0.8652
ISLJ + NCJ 0.7409 0.5848 0.4479 0.5691
ISDJ + NPJ 0.8755 0.7993 0.8021 0.8118
ISDJ + NCJ 0.6698 0.5532 0.4998 0.6071

Average 0.8478 0.7603 0.6981 0.7561

Next, we have assessed the recognition performance of each method versus different
JNRs of the deception jamming, shown in Figure 8. When the JNR is 0 dB, the accuracy
of the proposed method is about 44.18%, which is the highest. When the JNR is 3 dB,
the accuracy of the proposed method is more than 80%, while the accuracies of the three
comparison methods are less than 70%. When the JNR is 5 dB, the accuracy of the proposed
method is more than 93%, while the accuracies of the three comparison methods are less
than 82%. When the JNR is greater than 7 dB, the accuracy of the proposed method is
close to 100%. To conclude, the proposed method outperforms these comparison methods,
especially when the JNR is relatively low.
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4.2.2. Fusion Strategy Comparison

There are various fusion strategies used in recognition methods, such as the SVM [7],
the random forest [8], and the Bayesian decision theory [19]. Thus, the recognition perfor-
mance of each fusion strategy versus JNRs is shown in Figure 9, where “Bayesian” denotes
the Bayesian decision theory. Herein, the inputs of each fusion strategy are the same as
those of the designed fusion structure. When the JNR of the deception jamming is relatively
low, the designed fusion structure can gain the best recognition performance. In spite of
the fact that the Bayesian decision theory achieves slightly better performance than the
designed fusion structure when the JNR is 4 dB to 6 dB, the accuracy of Bayesian decision
theory is much lower than that of the designed fusion structure when the JNR is 0 dB to
1 dB.
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Figure 9. Recognition performance of each fusion strategy versus JNRs.

On the whole, the proposed method has more stable and superior recognition perfor-
mance compared with three existing fusion strategies. More importantly, the existing three
fusion strategies cannot be integrated into the optimization training of the network; each
channel of these methods needs to be recognized and then fused step by step. In contrast,
the designed fusion structure can be trained jointly with the front dual-channel neural
network to gain the best fusion performance.
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4.2.3. The Computational Complexity

In the practical application of radar systems, real-time processing is also a vital de-
mand besides recognition performance. So, it is necessary to assess the computational
complexity of the above recognition methods. For CNN-based methods, three commonly
used indicators are employed to reveal the computational complexity, namely the inference
time, the number of learnable parameters (LPs), and the floating-point operations per
second (FLOPs). The computational complexity of each method is listed in Table 4. In
terms of LPs, the proposed method has 11.4 M parameters, which is slightly lower than the
JRNet method. Because the MBv2 is a lightweight neural network specially designed by the
authors, it has a small number of learnable parameters. In terms of FLOPs, the FLOPs of
the proposed method is 1.82 G, which is similar to that of the JRNet method. The IResNet
method uses the MobileNet as the backbone structure, so it has fewer FLOPs.

Table 4. Computational complexity of each method.

Proposed Method MBv2 JRNet IResNet

Time (ms) 11.38 24.23 24.56 11.71
LPs (M) 11.4 2 11.69 4.04

FLOPs (G) 1.82 0.82 1.82 0.398

The inference time of the proposed method is only 11.38 ms, which is slightly lower
than that of the IResNet method, while the inference time of the MBv2 method and the
JRNet is about 24 ms. Although the IResNet method has the smallest number of FLOPs, its
inverse residual structure and depth-wise convolution will occupy more inference time.
Therefore, the proposed method has the advantage of parallel processing. To conclude, al-
though the proposed method occupies more learnable parameters and FLOPs, the inference
time of the proposed method is less than that of the comparison methods.

5. Discussion

In spite of the fact that high-quality simulation datasets can partly evaluate the recog-
nition performance of the proposed method, the actual electromagnetic environment is far
more complex than the simulation conditions. So, the feasibility of the proposed method
on the measured datasets should be verified. However, actual jammers are almost al-
ways designed for military equipment with high confidentiality, and the countermeasure
experiments are complicated. It is difficult to collect adequate measured compound jam-
ming samples, which is also the reason why most existing methods fail to analyze the
performance with measured datasets.

Thanks to a certain military jammer and corresponding countermeasure experiments
organized by our laboratory, we have tried our best to collect a large number of measured
jamming samples. However, due to the limited hardware condition, the measured samples
all belong to the NPJ. Hence, the simulation deception jamming samples are added to the
measured NPJ to construct semi-measured compound jamming samples. Finally, we have
collected five types of semi-measured compound jamming signals, namely, ISRJ + NPJ,
SMSP + NPJ, C&I + NPJ, ISLJ + NPJ, and ISDJ + NPJ.

The recognition fusion matrix of the proposed method for five compound jamming
signals is shown in Figure 10. The recognition accuracies of the proposed method for
SMSP + NPJ and ISLJ + NPJ are 100%, which indicates that the proposed method can
effectively recognize these three types of semi-measured compound jamming. The accuracy
of the proposed method for ISRJ + NPJ is 93.75%, and 6.25% of the test samples are
incorrectly recognized as C&I + NPJ. The accuracy of the proposed method for ISDJ + NPJ
is 93.36%, and 3.91% of the test samples are incorrectly recognized as ISLJ + NPJ. For these
five types of semi-measured compound jamming, the proposed method can achieve an
average recognition accuracy of about 97.18%, which verifies the potential feasibility and
valid generalization ability of the proposed method on the semi-measured data.
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6. Conclusions

To deal with the problem of compound jamming recognition, a recognition method
based on a dual-channel neural network and the feature fusion strategy is proposed in this
paper. Taking the noise characteristics caused by suppression jamming into account, the
proposed method uses features by the STFT and the wavelet transform to enrich the feature
maps and enhance the representation abilities of compound jamming. The DBB structure
and the attention module are also incorporated into the designed dual-channel network to
boost the ability of feature extraction and adaptive selection. Simulation results verify that
the proposed method based on feature fusion outperforms the methods using only one
feature. The proposed method can gain an average recognition accuracy of more than 93%
for ten types of compound jamming when the JNR is 5 dB, and when the JNR is 7 dB, the
average accuracy is close to 100%, which demonstrates that the proposed method has better
recognition performance with less inference time compared with three existing methods.
Furthermore, compared with the three fusion strategies, the designed fusion structure can
further promote recognition performance under low JNR conditions. The results with
the semi-measured datasets also verify the potential feasibility and generalization ability
of the proposed method. To conclude, the proposed method is capable of recognizing
ten kinds of simulation compound jamming and five kinds of semi-measured compound
jamming, thanks to the elaborately designed network architecture with feature fusion
strategy and stable feature representation of the STFT and the wavelet transform. On the
other hand, when the power of suppression jamming is too high, the proposed method
could be insufficient to recognize compound jamming correctly. The selection of input
features is also significant for recognition. Inappropriate input features are supposed to
introduce performance degradation of the feature fusion strategy.

Nevertheless, as the electromagnetic environment on the battlefield becomes more
and more complex, limited simulation datasets and semi-measured datasets may be in-
sufficient to completely assess the actual recognition performance. In the future, we will
attempt to collect more perfect measured datasets to verify and facilitate the performance
of the proposed method in real-world electromagnetic environments. Additionally, more
advanced signal processing techniques and neural network architectures could be ex-
plored. Furthermore, more comparative studies with state-of-the-art techniques will be
conducted to help benchmark the proposed method’s performance and identify areas for
further improvement.



Remote Sens. 2024, 16, 1325 18 of 19

Author Contributions: Conceptualization, H.C. (Hao Chen) and Y.W.; methodology, H.C. (Hao Chen)
and L.Z.; software, H.C. (Hui Chen) and J.Z.; validation, B.L., L.Z. and Y.W.; writing—original draft
preparation, H.C. (Hao Chen); writing—review and editing, H.C. (Hui Chen), Z.L. and Y.W.; funding
acquisition, B.L. and H.C. (Hao Chen). All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grants 62001510 and the Enhance Foundation Project of the Wuhan Electronic Information
Institute under Grants HJGC-2023-028.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Meng, Y.; Yu, L.; Wei, Y. Multi-Label Radar Compound Jamming Signal Recognition Using Complex-Valued CNN with Jamming

Class Representation Fusion. Remote Sens. 2023, 15, 5180. [CrossRef]
2. Lei, Z.; Zhang, Z.; Zhou, B.; Chen, H.; Dou, G.; Wang, Y. Transient Interference Suppression Method Based on an Improved TK

Energy Operator and Fuzzy Reasoning. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5106214. [CrossRef]
3. Zhang, H.; Yu, L.; Chen, Y.; Wei, Y. Fast Complex-Valued CNN for Radar Jamming Signal Recognition. Remote Sens. 2021, 13, 2867.

[CrossRef]
4. Lei, Z.; Qu, Q.; Chen, H.; Zhang, Z.; Dou, G.; Wang, Y. Mainlobe Jamming Suppression with Space–Time Multichannel via Blind

Source Separation. IEEE Sens. J. 2023, 23, 17042–17053. [CrossRef]
5. Zhou, H.; Wang, Z.; Wu, R.; Xu, X.; Guo, Z. Jamming Recognition Algorithm Based on Variational Mode Decomposition. IEEE

Sens. J. 2023, 23, 17341–17349. [CrossRef]
6. Lv, Q.; Quan, Y.; Sha, M.; Feng, W.; Xing, M. Deep Neural Network-Based Interrupted Sampling Deceptive Jamming Countermea-

sure Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 9073–9085. [CrossRef]
7. Yang, X.; Ruan, H. A Recognition Method of Deception Jamming Based on Image Zernike Moment Feature of Time-frequency

Distribution. Mod. Radar 2018, 40, 91–95.
8. Du, C.; Tang, B. Novel Unconventional-Active-Jamming Recognition Method for Wideband Radars Based on Visibility Graphs.

Sensors 2019, 19, 2344. [CrossRef]
9. Wei, S.; Qu, Q.; Zeng, X.; Liang, J.; Shi, J.; Zhang, X. Self-Attention Bi-LSTM Networks for Radar Signal Modulation Recognition.

IEEE Trans. Microw. Theory Tech. 2021, 69, 5160–5172. [CrossRef]
10. Feng, M.; Wang, Z. Interference Recognition Based on Singular Value Decomposition and Neural Network. J. Electron. Inf. Technol.

2020, 42, 2573–2578.
11. Zhengtu, S.H.A.O.; Dengrong, X.U.; Wenli, X.U. Radar Active Jamming Recognition Based on LSTM And Residual Network.

Syst. Eng. Electron. 2023, 45, 416–423.
12. Qu, Q.; Wei, S.; Liu, S.; Liang, J.; Shi, J. JRNet: Jamming Recognition Networks for Radar Compound Suppression Jamming

Signals. IEEE Trans. Veh. Technol. 2020, 69, 15035–15045. [CrossRef]
13. Zhou, H.; Wang, L.; Guo, Z. Recognition of Radar Compound Jamming Based on Convolutional Neural Network. IEEE Trans.

Aerosp. Electron. Syst. 2023, 59, 7380–7394. [CrossRef]
14. Zou, W.; Xie, K.; Lin, J. Light-weight Deep Learning Method for Active Jamming Recognition Based on Improved MobileViT. IET

Radar Sonar Navig. 2023, 17, 1299–1311. [CrossRef]
15. Jin, Z.; Zhang, X.; Tan, S.; Zhang, X.; Wei, J. Jamming Identification Based on Inverse Residual Neural Network with Integrated

Time-Frequency Channel Attention. J. Signal Process. 2023, 39, 343–355.
16. Krayani, A.; Alam, A.S.; Marcenaro, L.; Nallanathan, A.; Regazzoni, C. Automatic Jamming Signal Classification in Cognitive

UAV Radios. IEEE Trans. Veh. Technol. 2022, 71, 12972–12988. [CrossRef]
17. Wang, P.Y.; Cheng, Y.F.; Xu, H.; Shang, G. Jamming Classification Using Convolutional Neural Network-Based Joint Multi-Domain

Feature Extraction. J. Signal Process. 2022, 38, 915–925.
18. Kong, Y.; Xia, S.; Dong, L.; Yu, X.; Cui, G. Intelligent Recognition Method of Radar Active Jamming Based on Parallel Deep

Learning Network. Mod. Radar 2021, 43, 9–14.
19. Zhou, H.; Dong, C.; Wu, R.; Xu, X.; Guo, Z. Feature Fusion Based on Bayesian Decision Theory for Radar Deception Jamming

Recognition. IEEE Access 2021, 9, 16296–16304. [CrossRef]
20. Greco, M.; Gini, F.; Farina, A. Radar Detection and Classification of Jamming Signals Belonging to a Cone Class. IEEE Trans.

Signal Process. 2008, 56, 1984–1993. [CrossRef]
21. Xiao, J.; Wei, X.; Sun, J. Interrupted-Sampling Multi-Strategy Forwarding Jamming with Amplitude Constraints Based on

Simultaneous Transmission and Reception Technology. Digit. Signal Process. 2023, 147, 1051–2004. [CrossRef]
22. Wei, J.; Li, Y.; Yang, R.; Wang, J.; Ding, M.; Ding, J. A Nonuniformly Distributed Multipulse Coded Waveform to Combat Azimuth

Interrupted Sampling Repeater Jamming in SAR. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 9054–9066. [CrossRef]

https://doi.org/10.3390/rs15215180
https://doi.org/10.1109/TGRS.2023.3287280
https://doi.org/10.3390/rs13152867
https://doi.org/10.1109/JSEN.2023.3278709
https://doi.org/10.1109/JSEN.2023.3283397
https://doi.org/10.1109/JSTARS.2022.3214969
https://doi.org/10.3390/s19102344
https://doi.org/10.1109/TMTT.2021.3112199
https://doi.org/10.1109/TVT.2020.3032197
https://doi.org/10.1109/TAES.2023.3288080
https://doi.org/10.1049/rsn2.12420
https://doi.org/10.1109/TVT.2022.3199038
https://doi.org/10.1109/ACCESS.2021.3052506
https://doi.org/10.1109/TSP.2007.909326
https://doi.org/10.1016/j.dsp.2024.104416
https://doi.org/10.1109/TAES.2023.3313104


Remote Sens. 2024, 16, 1325 19 of 19

23. Zhang, L.; Wang, G.; Zhang, X.; Li, S.; Xin, T. Interrupted-Sampling Repeater Jamming Adaptive Suppression Algorithm Based
on Fractional Dictionary. Syst. Eng. Electron. 2020, 42, 1439–1448.

24. Zeng, L.; Chen, H.; Zhang, Z.; Liu, W.; Wang, Y.; Ni, L. Cutting Compensation in the Time-Frequency Domain for Smeared
Spectrum Jamming Suppression. Electronics 2022, 11, 1970. [CrossRef]

25. Han, X.; He, H.; Zhang, Q.; Yang, L.; He, Y.; Li, Z. Main-Lobe Jamming Suppression Method for Phased Array Netted Radar
Based on MSNR-BSS. IEEE Sens. J. 2022, 22, 22972–22984. [CrossRef]

26. Wang, Y.; Zhu, S.; Lan, L.; Xu, J.; Li, X. Suppression of Noise Convolution Jamming with FDA-MIMO Radar. J. Signal Process.
2023, 39, 191–201.

27. Sun, G.; Xing, S.; Huang, D.; Li, Y.; Wang, X. Jamming Method of Intermittent Sampling Against SAR-GMTI Based on Noise
Multiplication Modulation. Syst. Eng. Electron. 2022, 44, 3059–3071.

28. Lv, Q.; Quan, Y.; Feng, W.; Sha, M.; Dong, S.; Xing, M. Radar Deception Jamming Recognition Based on Weighted Ensemble CNN
With Transfer Learning. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5107511. [CrossRef]

29. Ding, X.; Zhang, X.; Han, J.; Ding, G. Diverse Branch Block: Building a Convolution as an Inception-like Unit. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 10886–10895.

30. Yang, L.; Zhang, R.Y.; Li, L.; Xie, X. SimAM: A Simple, Parameter-Free Attention Module for Convolutional Neural Networks.
In Proceedings of the 38th International Conference on Machine Learning, Virtual, 18–24 July 2021; Volume 139, pp. 11863–11874.

31. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Gated Feedback Recurrent Neural Network. In Proceedings of the 32nd International
Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2067–2075.

32. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.;
Cummings, R.; et al. Adam: A Method for Stochastic Optimization. In Proceedings of the International Conference on Learning
Representations, San Diego, CA, USA, 7–9 May 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/electronics11131970
https://doi.org/10.1109/JSEN.2022.3213986
https://doi.org/10.1109/TGRS.2021.3129645

	Introduction 
	Materials 
	Jamming Models 
	Intermittent Sampling and Forwarding Jamming (ISFJ) 
	Chopping and Interleaving Jamming 
	Smeared Spectrum Jamming 
	Noise Convolutional Jamming (NCJ) 
	Noise Productive Jamming (NPJ) 
	Compound Jamming Models 

	Feature Extraction 
	The Short-Time Fourier Transform 
	The Continuous Wavelet Transform (CWT) 


	Approach 
	The Structure of the Proposed Network 
	The Subnetwork for Feature Fusion 
	Simulation and Training Configurations 

	Results 
	Recognition Performance of the Proposed Method 
	Comparisons with Existing Methods 
	Recognition Performance Comparison 
	Fusion Strategy Comparison 
	The Computational Complexity 


	Discussion 
	Conclusions 
	References

