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Abstract: Object tracking in satellite videos has garnered significant attention due to its increasing
importance. However, several challenging attributes, such as the presence of tiny objects, occlusions,
similar objects, and background clutter interference, make it a difficult task. Many recent tracking
algorithms have been developed to tackle these challenges in tracking a single interested object, but
they still have some limitations in addressing them effectively. This paper introduces a novel corre-
lation filter-based tracker, which uniquely integrates attention-enhanced bounding box regression
and motion constraints for improved single-object tracking performance. Initially, we address the
regression-related interference issue by implementing a spatial and channel dual-attention mecha-
nism within the search area’s region of interest. This enhancement not only boosts the network’s
perception of the target but also improves corner localization. Furthermore, recognizing the limita-
tions in small size and low resolution of target appearance features in satellite videos, we integrate
motion features into our model. A long short-term memory (LSTM) network is utilized to create a
motion model that can adaptively learn and predict the target’s future trajectory based on its historical
movement patterns. To further refine tracking accuracy, especially in complex environments, an
anti-drift module incorporating motion constraints is introduced. This module significantly boosts the
tracker’s robustness. Experimental evaluations on the SatSOT and SatVideoDT datasets demonstrate
that our proposed tracker exhibits significant advantages in satellite video scenes compared to other
recent trackers for common scenes or satellite scenes.

Keywords: single object tracking; satellite video; correlation filter; motion constraints

1. Introduction

Visual object tracking, predicting the dynamic state of targets based on initial video
frame cues, is fundamental research for applications such as visual surveillance [1], human-
computer interaction [2], and autonomous driving [3,4]. In the Earth observation field,
remarkable advancements in video satellite technology [5,6] have been witnessed in recent
years. By employing a stare observation approach [7], video satellites are capable of
continuously observing specific regions, providing valuable video data of the Earth’s
surface. The development has facilitated the emergence of a new task: tracking an interested
object using satellite videos. This task enables real-time monitoring and tracking of various
objects of interest, such as vehicles, aircraft, ships, and trains, on a broad region of the
Earth’s surface, leading to a wide range of substantial applications including traffic and
environmental monitoring [8], military reconnaissance [9], and disaster management [10].

However, tracking objects in satellite videos presents a series of complex challenges.
Satellite video frames typically offer a wide field of view, capturing small, low-resolution
objects. Consequently, this results in a pervasive lack of texture, color, and other distin-
guishing features that are essential for accurate target perception. Furthermore, single
object tracking in satellite videos frequently encounters issues of occlusion and interfer-
ence. While these issues also exist in general tracking scenarios, they are intensified in the
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satellite context due to the top-down viewing angle. For instance, moving vehicles often
face full occlusion from buildings or natural landscapes in satellite videos. Moreover, inter-
ference factors, such as atmospheric turbulence, changes in illumination, similar objects,
and background clutter, further hinder the object tracking process, leading to tracking drift.

Single object tracking algorithms are broadly classified into three categories: corre-
lation filter-based [11,12], Siamese network-based [13,14], and Transformer-based [15,16].
Correlation filter-based methods optimize target models using historical frames, construct-
ing efficient filters that precisely localize targets by correlating them with the search region
in the current frame. Siamese network-based approaches view object tracking as a similarity
learning problem, focusing on offline training of shared feature networks used to extract
similarity features between the target template and the search region. The more recent
Transformer-based trackers utilize attention mechanisms for global interaction of features
between the template and the search region, resulting in a significant representation of the
target. These algorithms typically rely on robust visual feature descriptions for efficacy.

This paper aims to enhance object tracking performance in challenging satellite video
scenes. A significant limitation that exists in current tracking algorithms based on Siamese
network and Transformer is their lack of inherent mechanisms for online target template
updating. This shortfall is particularly problematic in satellite video contexts, where the
appearance features of objects frequently change due to interference factors, making the
tracking task more complex and demanding. In response to this issue, our research turns
to trackers based on correlation filters. These trackers are inherently equipped with the
ability for online optimization of the target model, a capability that allows them to adeptly
adapt to changing target appearances. This attribute is a substantial advantage in the
context of satellite video tracking. We develop our tracker based on the correlation filter
framework, specifically building it upon the DiMP [17]. The baseline tracker regresses
target bounding boxes based on dense sampling proposals strategy. However, the dense
sampling process in satellite video scenes potentially introduces a significant number of
false samples due to small-size targets and various interferences. These false samples
can greatly hinder the accurate prediction of optimal bounding box proposals, leading
to tracking drift. In this study, we firstly improve the bounding box regression strategy.
Subsequently, we implement a motion model based on a long short-term memory network
(LSTM) [18] and integrate an anti-drift strategy, aiming to enhance target position prediction
and effectively reduce tracking drift. In summary, our contributions include:

1. We propose an attention-enhanced bounding box regression branch to improve the
baseline tracker’s performance in satellite video scenes. Instead of dense sampling
proposals, we focus on the regions of interest in the search area and integrate a dual
spatial and channel attention mechanism to enhance the tracker’s perception ability of
the target.

2. We design a learnable motion model based on LSTM to realize trajectory distribution
estimation. The model effectively utilizes the historical trajectory of the target to
extract short-term motion features for estimating the trajectory as well as the motion
trend distribution. It serves to compensate for the common issue of limited appearance
features in satellite video scenes.

3. We propose an anti-drift module for satellite video single object tracking, which models
the difference between the observation distribution and motion trend distribution of
the target to detect drift. By incorporating this module, we appropriately introduce
motion constraints during the tracking process, effectively solving the drift problem
and improving overall tracking performance.

2. Related Literature
2.1. Correlation Filter-Based Object Tracking

The correlation filter-based trackers are fundamentally centered on predicting the
optimal parameters of a filter model from target samples through online optimization.
The highest response of cross-correlation on the search region of the current frame with
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the template region indicates the target’s location. MOSSE [11] is a pioneering work that
introduced correlation filters to the field of object tracking. To enhance the robustness of
models, MOSSE employs sparse sampling to generate multiple training samples. CSK [19]
implicitly constructs a dense sampling matrix by cyclically shifting to replace MOSSE’s
sparse sampling strategy. The approach increases the number of training samples while
reducing redundancy. KCF [12], building upon CSK, introduces multi-channel HoG [20]
features as a replacement for grayscale features and employs a kernel function, resulting in
enhanced tracker performance. SAMF [21] combines features from HoG, color names [22],
and grayscale, while employing a scaling pool strategy to perform cross-correlation on
multi-scale candidate regions to enable adaptive target scale estimation. Recognizing
that cyclically shifted samples may produce negative samples with boundary effects that
do not accurately represent real-world negative samples, BACF [23] improves sample
quality by sampling true negative samples from the background to optimize the prediction
model. C-COT [24] integrates the deep neural network VGG [25] for feature extraction.
To address the issue of different resolutions in feature maps from various convolutional
layers, C-COT employs frequency domain implicit interpolation to extend feature maps of
different resolutions to a continuous spatial domain while maintaining high localization
accuracy. ECO [26] employs a factorized convolution approach for simplified feature
extraction. Additionally, ECO uses a Gaussian mixture model for grouping and simplifying
the training sample set, ensuring diversity while effectively avoiding overfitting of the
filter model.

With the evolution of deep learning, some of the latest correlation filter algorithms
have begun adopting offline end-to-end training modes to enhance algorithm performance.
CFNet [27] combines convolutional neural networks with correlation filters, enabling end-
to-end training of correlation filter-based trackers. DiMP, PrDiMP [28], and SuperDiMP [29]
apply the end-to-end training strategy to the filter-based prediction module. They effec-
tively utilize large-scale datasets to perform offline training on the prediction module,
thereby enhancing the model’s discriminative capability of the prediction model for targets
and backgrounds.

2.2. Siamese Network-Based Object Tracking

Siamese convolutional neural network trackers represent a distinct paradigm from the
correlation filter trackers. SiamFC [13] pioneered the use of an end-to-end offline-trained
fully convolutional Siamese network for object tracking. It views tracking as a similarity
learning problem and, through extensive offline training, transforms the Siamese network
into a universal similarity evaluator. During online tracking, it estimates the similarity
between the template and the search region features using the Siamese network, thereby
determining the target’s position and obtaining the optimal bounding box through a multi-
scale strategy. SiamRPN [30] incorporates the region proposal network (RPN) [31] structure
from object detection into the Siamese network tracking framework. In SiamRPN++ [14],
the spatial distribution of targets is adjusted by uniform sampling from training samples,
reducing bias towards positive samples being centered in the search region. It incorpo-
rates multi-level feature aggregation, with shallow layers for localization and deep layers
for semantic encoding. DaSiamRPN [32], focusing on the balance between positive and
negative samples during training, enhances the tracker’s discriminative capability and
generalization performance by increasing positive samples and hard negative samples.
Both SiamCAR [33] and SiamBAN [34] introduce anchor-free strategies to replace the RPN
structure, reducing the number of hyperparameters and simplifying parameter settings
during training. CGACD [35] utilizes correlation-guided attention during the regression
phase and develops a high-performance corner-based bounding box regression method.

2.3. Transformer-Based Object Tracking

With the effective feature representation facilitated by attention mechanisms, Trans-
former [36] has gained significant recognition in the field of computer vision, and Transformer-
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based object tracking algorithms have attracted substantial attention from researchers.
Transt [37] introduces an attention-based feature fusion network, which employs both
self-attention and cross-attention to combine template and search region features, replacing
correlation operations, and resulting in a more effective representation of the similarity.
STARK [15] leverages Transformer to combine spatial and temporal features of the target,
generating global spatio-temporal feature dependencies for target localization. Addition-
ally, STARK simplifies the tracking pipeline by eliminating post-processing steps such as
cosine window and bounding box smoothing. TCTrack [38] proposes an online temporally
adaptive convolution in the feature extraction stage to incorporate temporal information
for enhancing spatial features. In the refinement of similarity maps, an adaptive temporal
Transformer is introduced to effectively encode and decode temporal context informa-
tion between consecutive frames. Mixformer [16] employs the Mix-Attention Module to
simultaneously perform template and search region feature extraction and information
interaction. Additionally, it utilizes a custom asymmetric attention strategy to eliminate
unnecessary cross-attention regions while ensuring template robustness by implementing
a score-based template updating mechanism.

2.4. Single Object Tracking in Satellite Video

Due to the distinctive characteristics of satellite videos as compared to common videos,
object tracking algorithms developed for common videos often yield unsatisfactory results
when directly applied to satellite videos. Researchers have explored various tracking
algorithms for satellite videos.

Du et al. [39] propose a tracker for satellite video that combines kernelized correlation
filters (KCF) with a three-frame difference motion detection method. KCF locates the target
based on appearance features, while the three-frame difference method introduces target
motion features into the tracking process. Liu et al. [40] use a second-order parabolic
model based on Taylor expansion to fit discrete target response values, achieving sub-pixel
precision in target localization. It introduces an adaptive Kalman filter (AKF) to compensate
and correct tracking results. Du et al. [41] employ a multi-frame differential optical flow
method to distinguish moving objects from the background. It utilizes the HSV color sys-
tem to describe motion targets based on the optical flow field and employs integral image
techniques to precisely locate the tracking targets. Xuan et al. [42] combine Kalman filter-
ing and motion trajectory averaging methods, introducing prior target state information
into the KCF tracking process, which effectively reduces performance degradation caused
by boundary effects and alleviates the problem of tracking failure caused by occlusion.
Li et al. [43] introduce feature fusion (HOG, color names, and color histograms) to boost
the performance of the correlation filter-based tracker in complex scenes. It also presents a
cost-effective motion estimation method, combining Kalman and particle filters, to enhance
tracker robustness against occlusion in linear and nonlinear motion scenes. Shao et al. [44]
introduce a lightweight parallel high-resolution network to detect small targets in satellite
videos, enhancing tracking precision. Additionally, a pixel-level refinement model based
on motion target detection and adaptive fusion is proposed to improve tracking robustness.
Hu et al. [45] construct a model regression network using a single-layer convolutional
structure. It extracts target appearance features from the VGG network and fuses them with
optical flow motion features. The network is updated online using gradient descent, lever-
aging both background information and motion features for target tracking. Yang et al. [46]
adaptively fuse multi-stage feature cross-correlation response maps to enhance localization
for small targets. Chen et al. [47] fuse response maps for target texture and spectral features
to enhance discrimination between the target and the background.

In the current single object tracking methods for satellite videos, strategies like fea-
ture fusion, super-resolution, and response fusion are frequently employed to adapt to
satellite video scenes, primarily aiming to enhance foreground–background discrimination.
The impact of the bounding box regression process on tracker performance has not been
sufficiently considered. In this context, drawing inspiration from the CGACD [35], this
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paper introduces satellite scene-specific enhancements to the DiMP regression process.
Moreover, the challenges in satellite videos can directly or indirectly lead to tracking drift.
Existing research typically introduces target motion information into the tracking process
using motion models [40,42,43,47] or motion detection methods [39,41,44,45]. These meth-
ods typically rely on specific motion assumptions, restricting the model’s generalization
performance. We introduce a trajectory distribution estimation strategy to model target mo-
tion and learn motion patterns adaptively. Simultaneously, we present a learnable anti-drift
strategy in conjunction with the trajectory distribution estimation strategy, to incorporate
motion constraints into the tracking process, ensuring robustness across different scenes.

3. Methodology

In this section, we present the details of our proposed tracking method for satellite
video scenes, comprising three main components: the target classification branch (TCB),
the attention-enhanced regression branch (AERB), and the motion constraint branch (MCB),
which consists of the trajectory distribution estimation module (TDEM) and the anti-drift
module (ADM).

As illustrated in Figure 1, TCB leverages features of the training set to generate a
discriminative target model, applying this model to classify the search region in the test
frame and thereby determine the target observation center. Based on the target observation
center and associated features, AERB regresses the target’s bounding box in the test frame.
MCB utilizes TDEM to extract trajectory motion features from the historical states of previ-
ous n frames for estimating the target’s trajectory as well as the motion trend distribution,
which are then applied by ADM to constrain and compensate for the result of regression,
enhancing the overall accuracy and robustness of the tracking process.
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Figure 1. The architecture of the proposed tracker. TCB takes the output of the feature extraction
network as input, and combines AERB to observe the target state in the current frame. In MCB,
TDEM uses the historical motion information of the target to estimate the trajectory distribution,
ADM detects the tracking state and introduces motion constraints into the tracking process according
to the trajectory distribution estimated by TDEM.

3.1. Target Classification Branch

The baseline method DiMP consists of two branches: the target classification branch
and the bounding box regression branch. The target classification branch (TCB) is mainly
employed to predict a discriminative target model f , which is embedded in the form of
the convolutional kernel within a convolutional layer and classifies the foreground and
background in the test frame. To achieve online prediction of the target model, while



Remote Sens. 2024, 16, 1347 6 of 23

ensuring computational efficiency, the TCB utilizes discriminative learning loss L( f ) for
iterative optimization of the target model. The form is as follows:

L( f ) =
1

|Strain| ∑
(e,c)∈Strain

∥r(φ(e) ∗ f , gc)∥2 + ∥λ f ∥2, (1)

where Strain =
{(

ej, cj
)}n

j=1 is a training set comprising historical frames, including the
initial template frame. Each sample frame ej is paired with the corresponding target center
coordinates cj ∈ R2. The feature extraction network φ is used for extracting deep features.
The symbol ∗ represents the convolution operation. Through s = φ(e) ∗ f , foreground
and background classification is performed on input sample features, resulting in a target
correlation classification response map. The parameters gc are the desired target scores at
each location, set to a Gaussian function centered at c. The function r(s, gc) computes the
residual between s and gc at each spatial position. By steepest descent with Gauss–Newton
iterations, the optimal solution for Equation (1) with respect to f is sought, accomplishing
the prediction of the target model.

Leveraging the convolutional layer of the target model, cross-correlation operations
are performed on the features of the search region in the test frame, generating corre-
sponding classification response maps for the foreground and background. The target
observation center P̂(x,y)

t is determined based on the maximum response position within
the response maps.

During the offline training, TCB is optimized by minimizing the classification loss of
target models on the test frames. The form is as follows:

Lcls =
1

Niter

Niter

∑
a=0

∑
(e,c)∈Stest

∥∥∥l
(

φ(e) ∗ f (a), zc

)∥∥∥2
, (2)

where Stest is the test set, including the test frame and corresponding target center coor-
dinates. Zc represents Gaussian pseudo-labels generated based on the target center in
the test frame. Niter denotes the number of optimization iterations for the optimal target
model, and f (a) is the intermediate model obtained in each iteration. l is a hinge-like
residual function.

We reuse the target classification branch of DiMP. We will focus on elaborating the
improvement of the regression branch in Section 3.2 and the newly proposed adaptive
anti-drift motion constraints in Sections 3.3 and 3.4.

3.2. Attention-Enhanced Regression Branch

For bounding box regression, the baseline tracker DiMP employs a strategy of densely
sampling bounding box proposals. Based on the coarse target center localization provided
by TCB, a set of bounding box proposals is randomly sampled, and for each proposal,
its intersection over union (IoU) with the ground truth is predicted using IoU-Net [48].
During online tracking, the optimization of these proposals is performed by maximizing
the predicted IoU. However, in satellite video scenes with substantial interference and
targets lacking distinctive features, this dense sampling may introduce numerous hard
negative samples, potentially leading to confusion and diminished regression accuracy.

In this section, we improve the bounding box regression branch for satellite video
scenes, using an attention-enhanced regression strategy instead of the dense sampling re-
gression strategy. For features extracted from the test frame and template frame, we employ
precise ROI pooling (prpool) [48] to obtain the corresponding test patch Xp ∈ RC×H×W

and template patch Zp ∈ RC×h×w based on their respective ROI. The patches are then used
as inputs for the attention-enhanced regression branch (AERB).

Specifically, the template frame’s ROI corresponds to the ground truth region in
the template frame. The test frame’s ROI is constructed based on the target observation
center. Utilizing the height and width of the target from the adjacent frame as size priors,
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denoted as wprior and hprior, we create a square ROI in the test frame with a length of

l =
√
(wprior + v)× (hprior + v), where v = (wprior + hprior)/2. In contrast to the regression

approach involving densely sampling proposals, the ROI-based regression mitigates the
introduction of excessive interference in satellite video scenes. Simultaneously, it preserves
rich contextual information, which is advantageous for subsequent regression operations.

As illustrated in Figure 2, AERB employs the test patch Xp and template patch Zp

to regress the left top (lt) and right bottom (rb) corners of the target in the test frame.
To enhance the regression network’s perceptual capability, we introduce a spatial attention
mechanism into the regression branch through effective interaction between the template
patch and the test patch. We reshape Zp and Xp into Q, K, and V, where Q ∈ RC×(h×w) and
K = V ∈ RC×(H×W). By performing matrix multiplication to combine Q and K, we obtain
the spatial attention weight matrix for the test patch, denoted as SM ∈ R(h×w)×(H×W). We
utilize hourglass-like networks HG [49] to process the spatial attention weight matrix and
generate spatial attention weight vectors for capturing the local corner features of the target,
denoted as SVd ∈ R1×(H×W) (visualized in Figure 3), d ∈ {lt, rb}. By performing element-
wise multiplication, we combine the spatial attention weight vector with V, followed by
further reshaping, to obtain enhanced features Xp

d that are sensitive to corner features of
the target. The form is as follows:

SM = QTK, (3)

Xp
d = Re[HGd(SM) ·V]. (4)

Different channels of Xp
d exhibit varying responses to target corners. To further enhance

the precision in localizing target corners, we introduce a channel attention mechanism. This
mechanism allows the regression network to adaptively learn which channels are most
crucial for corner regression. Following the spatial attention mechanism, we incorporate
SENet [50] for channel attention operations.

After enhancing the features using both spatial and channel attention mechanisms, we
feed the top-left and bottom-right corner features into basic convolutional networks Convd.
The networks generate heatmaps that represent the probability distribution of corners.
The heatmaps are then used to calculate the expected corner coordinates for bounding box
regression, enabling the prediction of the target bounding box PB.
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Figure 2. The architecture of AERB. Using the template patch and the test patch as input, the branch
introduces spatial attention by considering interactions between patches. HG and SE networks are
utilized to enhance corner localization perception in both spatial and channel dimensions.
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Figure 3. Visualization of the spatial attention weight vectors for the left top and right bottom corner
features of the target.

For AERB, we employ a combination of L1 and L2 loss functions between the ground
truth bounding box GT and the predicted bounding box PB as the objective function.

Lreg = λ1L1(GT, PB) + λ2L2(GT, PB). (5)

During the offline training, we utilize the loss function Lta to jointly optimize both
TCB and AERB.

Lta = αLcls + βLreg, (6)

where α = 10−2 and β = 102 represent the weights for the two types of losses in Lta, while
λ1 = λ2 = 1 denote the weights for L1 loss and L2 loss in Lreg.

3.3. Trajectory Distribution Estimation Strategy

In satellite videos, objects often lack distinctive visual features but exhibit rich motion
features. In this section, we introduce how the proposed trajectory distribution estima-
tion module (TDEM) leverages the motion features of targets for trajectory distribution
estimation, compensating for the deficiency of visual features.

TDEM takes historical trajectory segments of the tracked target as input rather than
the entire trajectory. During satellite observation, the movement mode of the target may
change, such as turning, accelerating, slowing down, etc. Modeling target motion using
the entire trajectory may not promptly reflect these changes in motion patterns, leading to
unreliable estimates. Estimating using trajectory segments allows for a more responsive
reflection of the object’s evolving motion patterns, thereby enhancing short-term prediction
accuracy. We use T(t−n:t−1) to denote the historical trajectory segment of the target in
Frame t.

T(t− n : t− 1) =
{

BB(x,y)
t−n , BB(x,y)

t−n+1, · · · , BB(x,y)
t−1

}
, (7)

where BB(x,y)
t−1 represents the center position (x, y) of the target in Frame t− 1.

As shown in Figure 4, we input T(t−n + 1:t−1) in sequential form into the LSTM
network. By extracting interdependencies between different time steps within the trajectory
segment, LSTM generates the hidden state Ht ∈ R1×128 at time step t, which serves as the
local feature for estimating the trajectory distribution of the target in Frame t. We further
utilize a fully connected layer to map this local feature to the space of target trajectory
regression, resulting in an estimate of the target trajectory, denoted as P(x,y)

t . We combine the

prior information from the bounding box BB(w,h)
t−1 with P(x,y)

t and use them as compensation
to refine the predictions made by AERB for the target bounding box.

P(x,y)
t = w1(LSTM(T(t− n : t− 1))) + b1, (8)

where w1 and b1 represent the parameters of the fully connected layer (FC).
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In our approach, we extensively utilize the dynamic dependencies present in historical
trajectories. Instead of merely predicting the target’s trajectory distribution at the current
time step for compensatory corrections during tracking, our method also incorporates
trajectory predictions from multiple frames. This approach establishes a comprehensive
distribution of the target’s motion trends, aiding in the evaluation of the tracking status.

After obtaining the estimated target location at time step t, it is concatenated se-
quentially with T(t−n + 1:t−1) and then inputted into TDEM. The process is repeated
to estimate the target trajectory at time steps t + 1, t + 2, ..., t + m− 1, thereby achieving
multi-frame trajectory predictions. We model the trajectory distribution at a single time
step as a two-dimensional Gaussian distribution Ni(µi, Σ), i ∈ [0, m):

µi =

[
xt+i
yt+i

]
, Σ =

[
εr 0
0 εr

]
, (9)

where (xt+i, yt+i) represents the estimated target trajectory at time step t + i, while r =√
wres × hres, wres and hres represent the size of the classification response map output by

TCB. ε is a distribution hyperparameter in this context.
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Figure 4. The architecture of TDEM. Motion features are extracted from the historical trajectory of the
target using LSTM to estimate the target’s trajectory distribution at step t.

To capture the motion trends of the target, we combine multiple frame trajectory
predictions and employ a mixture Gaussian distribution model to describe the distribution
of motion trends.

P(x, y) =
m−1

∑
i=0

Ni(x, y|µi, Σ)
m

. (10)

During the training phase, we supervise the training of TDEM by calculating L2 loss
between the estimated target trajectory P(x,y)

t and the ground truth in Frame t. In Section 3.4,
we will describe how to utilize the target motion trends to implement our proposed anti-
drift strategy, thereby enhancing the robustness of the tracker.

3.4. Anti-Drift Strategy

In satellite video tracking, tracking drift greatly affects accuracy, making it a critical
issue. To address this, we have developed an anti-drift module (ADM), which leverages the
target motion trend distribution produced by TDEM. ADM integrates motion constraints
into the tracking algorithm via a learnable drift detection strategy, thus improving the
tracker’s robustness and generalization ability. The implementation process is as follows:

We model the tracker observation distribution by using the target observation center
P̂(x,y)

t on the classification response map of the test frame as the mean vector µ̂ of a two-
dimensional Gaussian distribution P̂(x, y), with Σ as the covariance matrix.

P̂(x, y) = N(x, y | µ̂, Σ). (11)
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The motion trend distribution of the target over m consecutive frames is fused with
the tracker observation distribution to obtain the discrepancy distribution P̄(x, y).

P̄(x, y) = P(x, y)− P̂(x, y). (12)

We utilize a grid-based uniform sampling strategy to discretize and reshape the dis-
crepancy distribution according to the response map size, resulting in a discrete differential
distribution feature description D ∈ R1×(hres×wres). The description is then inputted into
ADM composed of the multi-layer perceptron. Through two linear layers, the module
predicts the current tracking state probability distribution SP. This process can be described
as follows:

SP = Softmax(w3[RELU(w2D + b2) + b3]), (13)

where w2 and b2, w3 and b3 represent the parameters of the fully connected layers in the
multi-layer perceptron.

During the training of ADM, we label the tracking state based on whether the target
observation center P̂(x,y)

t is inside the ground truth bounding box. If it is inside the ground
truth bounding box, we consider the tracking state as normal; otherwise, we consider it
as abnormal. Using this labeling scheme, we calculate the loss for ADM, which is defined
as the cross-entropy loss between the label distribution and the predicted probability
distribution. During the online tracking, TDEM requires n frames as input for motion
modeling. After the initial n frames, we use ψ as an indicator to determine whether to
employ motion features for compensatory correction in the tracking process.

ψ = Argmax(SP). (14)

Expanding upon trajectory distribution estimation, our proposed ADM incorporates
historical trajectory into the target tracking process through drift detection. The approach
enables the tracker to accurately identify and rectify drift-related issues, regardless of
whether they are caused by interference or occlusion. Algorithm 1 summarizes the pro-
posed motion constrained tracking.
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Algorithm 1 The procedure of motion constraint for tracking.
Input:
T(t−n : t−1): The historical trajectory segment of the target;
P̂(x,y)

t : The target observation center in Frame t;
Σ: The covariance matrix of the trajectory distribution;
PB: The prediction of the target bounding box by the AERB;
BB(w,h)

t−1 : The prior information about the bounding box;
Output:
TRt: The tracking result of Frame t;

1: P̂(x, y)
Equation (11)←−−−−−−−

{
P̂(x,y)

t , Σ
}

2: T = T(t− n, t− 1)
3: TP = {}
4: for i < m do
5: P(x,y)

t+i
Equation (8)←−−−−−−− T

6: TP = TP ∪
{

P(x,y)
t+i

}
7: T Concatenate←−−−−−−

{
T(t− n + 1 + i : t− 1 + i), P(x,y)

t+i

}
8: end for
9: CB =

[
P(x,y)

t , BB(w,h)
t−1

]
10: P(x, y)

Equation (10)←−−−−−−−
{

TP, Σ
}

11: ψ
Equations (12)−(14)←−−−−−−−−−−−

{
P(x, y), P̂(x, y)

}
12: if ψ then
13: TRt = CB
14: else
15: TRt = PB
16: end if
17: return Output

4. Experiments and Results Analysis
4.1. Experimental Settings
4.1.1. Datasets

We employ the SatVideoDT challenge dataset [51], which was collected from the Jilin-1
video satellite, for both training and testing. We also report results on the SaSOT benchmark
dataset [52]. The SaSOT dataset consists of data from three video satellites: Jilin-1, Skybox,
and Carbonite-2 [6]. Due to the partial overlap between SaSOT and SatVideoDT, we remove
the repeated video sequences from the SatVideoDT dataset, resulting in 8301 sequences for
training and 1126 sequences for testing. The SaSOT dataset remains unchanged.

The SaSOT dataset includes four classes of tracking objects: cars, trains, airplanes,
and ships, with an average of 263 frames per video sequence. The dataset includes 11 chal-
lenging attributes, as listed in Table 1. The distribution of object sizes in the dataset spans
a wide range, from 21 to 780,605 pixels. The SatVideoDT dataset primarily comprises
small-sized objects, such as vehicles, with over 98% of the bounding box sizes being less
than 100 pixels, aiming at evaluating the performance of tracking tiny objects in satellite
videos. The average video sequence length is 217 frames.
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Table 1. Definitions of the 11 challenging attributes in the SatSOT dataset.

Attribute Definition

BC background clutter: the background has similar appearance to the target
IV illumination variation: the illumination of the target region changes significantly
LQ low quality: the image is in low quality and the target is difficult to be distinguished

ROT rotation: the target rotates in the video
POC partial occlusion: the target is partially occluded in the video
FOC full occlusion: the target is temporally fully occluded in the video
TO tiny object: at least one ground truth bounding box has less than 25 pixels

SOB similar object: there are objects of similar shape or same type around the target
BJT background jitter: background jitter occurs by the shaking of satellite camera
DEF deformation: non-rigid object deformation

ARC aspect ratio change: the ratio of the box aspect ratio of the first and the current frame
is outside the range [0.5, 2]

4.1.2. Evaluation Metrics

We follow the OTB paradigm [53], utilizing a precision plot and a success plot to
demonstrate the performance of trackers.

The precision plot evaluates the performance of a tracker using the center location error
(CLE) between the predicted target center (xp, yp) and the ground truth center (xg, yg).

CLE =
√
(xp − xg)2 + (yp − yg)2. (15)

In the precision plot, the horizontal axis denotes the CLE threshold, and the vertical
axis illustrates the percentage of frames in the video sequences where the CLE of the
predicted target center is below the specified threshold. As objects in satellite videos are
typically small, we establish the rankings of the precision (Prec.) for trackers based on their
performance at the CLE threshold of five pixels.

The success plot evaluates the performance of a tracker using the IoU between the
predicted bounding box (Ap) and the ground truth bounding box (Ag).

IoU =
Ap

⋂
Ag

Ap
⋃

Ag
. (16)

In the success plot, the horizontal axis represents the IoU threshold, and the vertical
axis represents the proportion of frames in the video sequences where the IoU of the
predicted bounding box is greater than the specified threshold. The success rate (Succ.) of
trackers is ranked based on the area under the curve of the success plot.

Additionally, we utilize the frames per second (FPS) metric to illustrate the speed of
trackers. A higher FPS value indicates faster tracking speed.

4.1.3. Implementation Details

We implement our tracker using the PyTorch deep learning framework and train it
on an Ubuntu 20.04 platform equipped with an NVIDIA RTX A6000 GPU. For feature
extraction, we utilize the ResNet50 [54] pre-trained on ImageNet [55]. The training process
of our tracker comprised three stages.

In the first stage, we jointly train TCB and AERB for 50 epochs. The TCB learning
rates are the same as in the baseline tracker, and the AERB learning rate is set to 1× 10−3.
In the second stage, we sample continuous sequences of n + 1 frames from video sequences
as training samples for training TDEM. The learning rate is set to 1× 10−3, and this stage
involves 50 epochs of training. In the third stage, we freeze the weights of the models
trained in the preceding two stages. Similar to the second stage, we sample continuous
sequences of n + 1 frames as training samples to train ADM. The learning rate is set to
1× 10−3, and we conduct training for 40 epochs. We use ADAM [56] with a learning rate
decay of 0.2 every 15th epoch for every training stage.
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The online tracking experiments are conducted on an Ubuntu 18.04 platform with
an NVIDIA GeForce GTX 1060 GPU. In our tracking protocol, if the trajectory estimation
results serve as the final tracking outcome for m consecutive frames, it is inferred that the
target has disappeared from the search area. In such cases, we expand the search area to
three times its original size to search for the target.

4.2. Ablation Study
4.2.1. Study on Key Components

The proposed tracker consists of three components: TCB, AERB, and MCB. To evaluate
the impact of each component on performance, we conducted ablation experiments on the
SatSOT dataset, and the baseline method is DiMP. The results are presented in Table 2.

Table 2. Ablation study of TCB, AERB, and MCB on SatSOT, with the best results highlighted in red.

Tracker TCB AERB MCB Prec. (%) Succ. (%)

Baseline ✓ - - 56.7 41.9
TCB + AERB ✓ ✓ - 61.6 46.2
TCB + MCB ✓ - ✓ 60.5 42.9

TCB + AERB + MCB ✓ ✓ ✓ 66.3 49.0

The ablation experiments demonstrate that both AERB and MCB independently
contribute to improving the performance of the baseline tracker. Specifically, AERB leads
to an improvement of 4.9% in precision and 4.3% in success rate. The results indicate that
in satellite video scenes, the attention-enhanced regression strategy in the region of interest
employed by AERB is superior to the dense sampling regression strategy in the baseline
tracker. Furthermore, MCB, which constrains the tracking process using the historical
trajectory information, results in a 3.8% improvement in precision and a 1% improvement
in success rate. The results suggest that introducing historical trajectory information into
the tracking process is effective in enhancing tracking performance.

By incorporating both AERB and MCB into the tracker, we achieve a 9.6% improvement
in precision and a 7.1% improvement in success rate. The experiments highlight the crucial
roles played by AERB and MCB in our tracker.

4.2.2. Study on Attention-Enhanced Regression Branch

In the AERB, two types of attention mechanisms are incorporated: spatial attention
and channel attention. We facilitate interaction between the test patch and the template
patch by introducing spatial attention during the bounding box regression. This enhances
the regression network’s ability to perceive the corners of targets, and the results in Table 3
demonstrate that this mechanism leads to effective performance gains. Furthermore, we
employ channel attention operations to capitalize on the significant variations in corner
response across different feature channels. This further augments the network’s capability
to precisely locate the target corners. As indicated by the results in Table 3, the combination
strategy significantly improves both the precision and success rate of the tracker.

Table 3. Ablation study of spatial (S) and channel (C) attention in the AERB on SatSOT, with the best
results highlighted in red.

Tracker S C Prec. (%) Succ. (%)

TCB + MCB - - 60.5 42.9
TCB + MCB + S ✓ - 61.7 45.2

TCB + MCB + S + C ✓ ✓ 66.3 49.0

4.2.3. Study on Motion Constraint Branch

The proposed MCB consists of two main components: TDEM and ADM. TDEM
utilizes historical trajectory information to estimate trajectory distribution, while ADM
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utilizes TDEM to detect tracking drift and implement motion constraints and compensation
during the tracking process. The effectiveness of TDEM and ADM is demonstrated through
ablation experiments conducted on the SatSOT dataset. Without ADM, we utilize peak
responses in the response map outputted by TCB to evaluate the current tracking state.
When the value of the peak response falls below a given threshold, indicating tracking un-
certainty, TDEM is employed for motion compensation. The results in Table 4 indicate that
the improvement in tracking performance is influenced by the specified threshold. The best
performance is achieved when the threshold is set to 0.3. Furthermore, the combination of
ADM and TDEM brings a more significant improvement in tracker performance compared
to introducing TDEM alone, further confirming the effectiveness of MCB.

Table 4. Ablation study of TDEM and ADM in the MCB on SatSOT, where “/0.1”, “/0.2”, “/0.3”,
and “/0.4” denote setting the response threshold to 0.1, 0.2, 0.3, and 0.4, respectively, with the best
results highlighted in red.

Tracker TDEM ADM Prec. (%) Succ. (%)

TCB + AERB - - 61.6 46.2
TCB + AERB + TDEM/0.1 ✓ - 60.9 45.6
TCB + AERB + TDEM/0.2 ✓ - 61.3 45.9
TCB + AERB + TDEM/0.3 ✓ - 63.5 47.2
TCB + AERB + TDEM/0.4 ✓ - 62.2 46.3

TCB + AERB + MCB ✓ ✓ 66.3 49.0

4.2.4. Study on Trajectory Distribution Estimation Strategy

In the process of constructing the motion model, we utilize trajectory segments to
extract historic target motion features and predict the distribution of the current frame’s
target trajectory. Simultaneously, we employ multi-frame trajectory predictions to model
the trend distribution of the target motion. We conduct ablation experiments on the length
of trajectory segments (denoted as n) and the number of frames (denoted as m) for multi-
frame predictions, with the results presented in Figure 5.

Figure 5. Study on the length of input trajectory segment and the number of frames for multi-frame
predictions on SatSOT.

The proposed tracker’s performance initially improves and then diminishes with
increasing trajectory segment length when the number of prediction frames is fixed. This
suggests that in satellite video scenes, there is limited reliance on long-term historical
trajectories for target motion. Utilizing long-term trajectories to constrain target tracking
may lead to performance degradation due to error accumulation and possible motion mode
change. We also conduct ablation experiments on the number of prediction frames with a
fixed trajectory segment length. Specifically, when the number of prediction frames is set to
1, indicating the absence of a multi-frame trajectory prediction strategy, the results from
the ablation experiments show that using the multi-frame trajectory prediction strategy
generally outperforms not using it. When n = 25 and m = 4, the network achieves the
best results.
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4.2.5. Study on Distribution Hyperparameter

In the designed motion constraint branch, the distribution parameter ε needs to be
set for both the motion trend distribution and the observation distribution of the target.
According to the experimental results in Table 5, setting this parameter to 0.05 yields the best
tracking performance. With the optimal parameter setting, we also evaluated the tracking
efficiency. The tracker achieves 25.05 FPS, thereby meeting the real-time requirements of
satellite video processing.

Table 5. Study of the distribution parameter in MCB on SatSOT, with the best results highlighted
in red.

ε Prec. (%) Succ. (%) FPS

0.07 65.8 48.3 25.29
0.06 64.6 47.6 25.49
0.05 66.3 49.0 25.05
0.04 63.9 47.2 24.85
0.03 64.1 47.4 24.84

4.3. Results and Analysis
4.3.1. Overall Results

We conducted comparative experiments with representative tracking algorithms
in satellite video scenes, including conventional correlation filter trackers (KCF [12],
STRCF [57], and ECO [26]), deep learning-based correlation filter trackers (ATOM [58],
PrDiMP [28], and SuperDiMP [29]), Siamese network trackers (SiamBAN [34], Siam-
CAR [33], and CGACD [35]), Transformer trackers (STARK [15], and Mixformer [16]),
a specialized tracker for satellite video (CFME [42]), and the baseline tracker (DiMP). We
fine-tuned deep learning-based tracking methods on the satellite video dataset using their
respective open-sourced models.

Table 6 presents the precision and success rates of various trackers on the SatSOT
and SatVideoDT datasets. Our proposed tracker, benefiting from improvements in the
bounding box regression stage and the introduction of motion information, significantly
outperforms various trackers on both datasets. Among the deep learning trackers that use
Resnet50 as the feature extractor, our tracker achieves a significant gain of 7.7% in precision
and 5.8% in success rate compared to the second-based SiamCAR on the SatSOT dataset.
On the SatVideoDT dataset, our tracker outperforms the second-best SuperDiMP with a
6.7% improvement in precision and a 5.0% improvement in success rate. Additionally, our
proposed tracker exhibits a leading performance when compared to the Transformer-based
trackers (STARK and Mixformer).

Compared to CFME on the SatSOT dataset, our tracker shows an improvement of
11.7% in precision and 7.2% in success rate. Nevertheless, conventional correlation-based
trackers still demonstrate competitive precision in target localization compared to deep
learning-based trackers in satellite video scenes. Specifically, the STRCF tracker achieves
the second-highest tracking precision on the SatVideoDT dataset, but its performance in
estimating the size of the bounding box is poor at a low success rate due to the lack of
effective regression strategies.
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Table 6. Comparison of SatSOT and SatVideoDT; the top three results are highlighted in red, green,
and blue. For methods, CF: traditional correlation filter methods, DCF: Deep learning-based correla-
tion filter methods, SN: Siamese network methods, and TF: Transformer methods. For features, HoG:
HoG features, CNN: Convolutional networks, TF: Transformer networks.

Tracker Method Feature
SatSOT SatVideoDT

Prec. (%) Succ.(%) Prec. (%) Succ. (%)

KCF CF HOG 21.5 22.2 8.7 3.2
STRCF CF HOG 52.3 36.8 56.1 20.6
ECO CF CNN 55.2 36.8 44.8 15.0

CFME CF HOG 54.6 41.8 35.6 19.0
ATOM DCF CNN 55.6 39.4 40.9 19.0
DiMP DCF CNN 56.7 41.9 52.9 26.2

PrDiMP DCF CNN 49.8 35.8 44.0 20.6
SuperDiMP DCF CNN 57.3 42.6 54.2 27.6
SiamBAN SN CNN 57.2 41.6 50.5 23.8
SiamCAR SN CNN 58.6 43.2 52.8 26.4
CGACD SN CNN 56.5 42.2 38.1 16.4
STARK TF CNN 51.1 36.6 47.4 25.0

Mixformer TF TF 54.0 43.6 51.9 27.7
Ours DCF CNN 66.3 49.0 60.9 32.6

4.3.2. Against Different Challenges

In satellite video scenes, trackers face challenges, such as similar object interference,
background clutter, low quality imaging, partial occlusion, etc. We evaluate different
trackers on various challenge attributes described by the SatSOT dataset. We generate
success plots and precision plots for the trackers on each challenge.

As shown in Figure 6, the proposed tracker ranks first in precision under six challenge
attributes: background clutter, partial occlusion, tiny object, similar object, rotation, and low
quality. As illustrated in Figure 7, the proposed tracker ranks first in success rate under
seven challenge attributes: background clutter, partial occlusion, tiny object, similar object,
rotation, low quality, and illumination variation. Compared to other trackers, the proposed
tracker demonstrates strong performance in both precision and success rate when facing
complex challenges.

However, the proposed tracker exhibits limitations in handling background jitter,
deformation, aspect ratio changes, and full occlusion challenges. For deformation and
aspect ratio change, we find that these challenges mainly occurred with the category of
trains in satellite video scenes. The long shape of a train leads to extreme aspect ratios in
its bounding box. When a train makes turns and changes shape, the size of the bounding
box also changes significantly. As the proposed tracker does not incorporate specific
adaptation strategies for these challenges, it may struggle to accurately represent train
features, leading to tracking failures. Among the trackers that use Resnet50 as the feature
extractor, the proposed tracker demonstrates relatively good performance in handling
deformation and aspect ratio change.

In terms of handling background jitter and full occlusion challenges in satellite video
scenes, our proposed tracker ranks second only behind the top-performing CFME, which
also utilizes a motion model. The reason could be that introducing motion constraints into
the tracking process through a learnable approach often requires a substantial amount of
training data to learn how to model target motion patterns when background jitter and full
occlusion challenges occur. If these factors are not captured adequately during training, it
can limit the performance of the tracker. Nevertheless, our tracker is not constrained by
specific motion assumptions, theoretically offering better adaptability to complex scenes.
In future works, we plan to simulate such challenging scenes for training, which will
address the lack of enough case samples and benefit the learnable approach.
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Figure 6. Precision plots of trackers across 11 challenge attributes.
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Figure 7. Success plots of trackers across 11 challenge attributes.
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4.3.3. Qualitative Results

We present the tracking results for eight satellite videos from the SatSOT dataset,
with their challenge attributes detailed in Table 7. For visual comparison, we selected five
representative trackers: SiamCAR (a Siamese network tracker), ECO (a conventional corre-
lation filter tracker), CFME (a tracker specifically designed for satellite videos), Mixformer
(a Transformer tracker), and SuperDiMP (a deep learning-based correlation filter tracker).

Table 7. Selected video sequences with challenge attributes. (FOC: full occlusion, POC: partial
occlusion, ROT: rotation, TO: tiny object, SOB: similar object, BC: background clutter, ARC: aspect
ratio change, DEF: deformation, LQ: low quality.)

Video Name Challenge Attributes

Car_24 FOC, POC, ROT
Car_34 FOC, TO, SOB, ROT, BC
Car_40 TO, POC, ROT, BC
Car_53 SOB, TO

Plane_09 ROT
Train_08 BC, ARC
Train_01 BC, DEF, ARC, ROT
Car_50 BC, ROT, LQ, POC, SOB

The video sequences Car_53, Car_34, and Car_40 shown in Figure 8 reflect the rep-
resentation of small targets in satellite videos. Most trackers fail to effectively extract
distinctive appearance features for such small targets, especially in background clutter.
Taking Car_53, for example, it can be observed that trackers like SiamCAR and CFME are
affected by the small target size and drift to the surrounding road or nearby similar objects,
leading to tracking failures. In contrast, our tracker benefits from improvements in the
bounding box regression strategy and can more stably identify the target from various
types of background interference compared to other trackers. In the video sequences
Car_24, Car_34, and Car_40, there are brief disappearances of the targets due to being
obscured by overpasses or building shadows, especially in Car_24, where the target is
occluded twice around the 70th and 210th frames. We observe that our tracker effectively
identifies the occlusion and disappearance of the target in Car_24, thanks to the assistance
of the motion model. Unlike other trackers, our tracker can resume tracking when the
target reappears. In the Plane_09 video sequence, which represents the rotation challenge
in satellite videos, several trackers fail. Due to the timely updates of the discriminative
target model, our tracker can capture changes in target features during the rotation process,
achieving relatively accurate tracking.

Although the proposed tracker has shown excellent performance facing various scenes
and challenges, it occasionally fails in some challenging scenarios. In Figure 9, we present
visualized results of our tracker when it faces the ARC and DEF challenges in the Train_01
sequence. It can be seen that although we have not set specific strategies for these two at-
tributes, our tracker demonstrates relatively stable performance compared to other trackers.
However, when facing extreme ARC and DEF challenges after the 90th frame in the
Train_01 sequence, all trackers including ours fail to track. This indicates that ARC and
DEF attributes in the satellite video scene remain a challenging task.

As shown in video sequence Car_50 in Figure 9, the low-quality attribute makes
it difficult for trackers to extract distinguishable target features, leading to an unstable
tracking process where almost all trackers lose track of the target after the 200th frame.
To mitigate this issue, better feature extraction or image enhancement strategies are needed
to assist trackers in handling low-quality scenes.
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Figure 8. Tracking visualization on the Car_24, Car_34, Car_40, Car_53, Plane_09, and Train_08 video
sequences of the SatSOT dataset. The yellow number at the top left of the image represents the video
frame number.

Figure 9. Failure cases of the proposed tracker on the Train_01, and Car_50 of the SatSOT dataset.
The yellow number at the top left of the image represents the video frame number.
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5. Conclusions

In this article, we propose a correlation filter-based learnable tracker for satellite videos.
The tracker utilizes an attention-enhanced bounding box regression branch to improve the
network’s ability to distinguish between the target and complex backgrounds during the
regression stage, and accurately locate and regress target corners. Additionally, the motion
constraints branch that includes the trajectory distribution estimation module (TDEM)
and the anti-drift module (ADM) is proposed to assist the tracking process, to effectively
constrain and compensate tracking drift. We conducted extensive experiments on two
satellite video datasets, SatSOT and SatVideoDT, and compared our method to state-of-the-
art trackers including common ones and those specially designed for satellite videos. Our
algorithm demonstrates superior performance, as confirmed by the experimental results
on the SatSOT and SatVideoDT datasets. In future work, we plan to explore more effective
strategies for tracking trains that undergo extreme aspect ratio changes and non-rigid
deformations, as well as for addressing low-quality issues in satellite videos.

Author Contributions: Methodology, J.F.; resources, S.J.; writing—original draft preparation, J.F.;
writing—review and editing, S.J.; supervision, S.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (grant
No. 42171430) and the State Key Program of the National Natural Science Foundation of China (grant
No. 42030102).

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://doi.org/10.1109/TGRS.2022.3140809, https://doi.org/10.1109/ICPR56361.2
022.9956153.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Tsakanikas, V.; Dagiuklas, T. Video surveillance systems-current status and future trends. Comput. Electr. Eng. 2018, 70, 736–753.

[CrossRef]
2. Singha, J.; Roy, A.; Laskar, R.H. Dynamic hand gesture recognition using vision-based approach for human–computer interaction.

Neural Comput. Appl. 2018, 29, 1129–1141. [CrossRef]
3. Grigorescu, S.; Trasnea, B.; Cocias, T.; Macesanu, G. A survey of deep learning techniques for autonomous driving. J. Field Robot.

2020, 37, 362–386. [CrossRef]
4. Wilson, D.; Alshaabi, T.; Van Oort, C.; Zhang, X.; Nelson, J.; Wshah, S. Object Tracking and Geo-Localization from Street Images.

Remote Sens. 2022, 14, 2575. [CrossRef]
5. d’Angelo, P.; Kuschk, G.; Reinartz, P. Evaluation of Skybox Video and Still Image products. Int. Arch. Photogramm. Remote Sens.

Spatial Inf. Sci. 2014, XL-1, 95–99. [CrossRef]
6. Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art. Proc. IEEE 2017,

105, 1865–1883. [CrossRef]
7. Cui, K.; Xiang, J.; Zhang, Y. Mission planning optimization of video satellite for ground multi-object staring imaging. Adv. Space

Res. 2018, 61, 1476–1489. [CrossRef]
8. Xian, Y.; Petrou, Z.I.; Tian, Y.; Meier, W.N. Super-Resolved Fine-Scale Sea Ice Motion Tracking. IEEE Trans. Geosci. Remote Sens.

2017, 55, 5427–5439. [CrossRef]
9. Melillos, G.; Themistocleous, K.; Papadavid, G.; Agapiou, A.; Prodromou, M.; Michaelides, S.; Hadjimitsis, D.G. Integrated

use of field spectroscopy and satellite remote sensing for defence and security applications in Cyprus. In Proceedings of the
Conference on Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXI, Baltimore, MD, USA, 18–21
April 2016. [CrossRef]

10. Alvarado, S.T.; Fornazari, T.; Cóstola, A.; Morellato, L.P.C.; Silva, T.S.F. Drivers of fire occurrence in a mountainous Brazilian
cerrado savanna: Tracking long-term fire regimes using remote sensing. Ecol. Indic. 2017, 78, 270–281. [CrossRef]

11. Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y.M. Visual object tracking using adaptive correlation filters. In Proceedings of the
2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010;
pp. 2544–2550. [CrossRef]

12. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. High-Speed Tracking with Kernelized Correlation Filters. IEEE Trans. Pattern
Anal. Mach. Intell. 2015, 37, 583–596. [CrossRef]

https://doi.org/10.1109/TGRS.2022.3140809
https://doi.org/10.1109/ICPR56361.2022. 9956153
https://doi.org/10.1109/ICPR56361.2022. 9956153
http://doi.org/10.1016/j.compeleceng.2017.11.011
http://dx.doi.org/10.1007/s00521-016-2525-z
http://dx.doi.org/10.1002/rob.21918
http://dx.doi.org/10.3390/rs14112575
http://dx.doi.org/10.5194/isprsarchives-XL-1-95-2014
http://dx.doi.org/10.1109/JPROC.2017.2675998
http://dx.doi.org/10.1016/j.asr.2017.10.056
http://dx.doi.org/10.1109/TGRS.2017.2699081
http://dx.doi.org/10.1117/12.2223438
http://dx.doi.org/10.1016/j.ecolind.2017.02.037
http://dx.doi.org/10.1109/CVPR.2010.5539960
http://dx.doi.org/10.1109/TPAMI.2014.2345390


Remote Sens. 2024, 16, 1347 22 of 23

13. Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H.S. Fully-Convolutional Siamese Networks for Object Tracking.
In Proceedings of the Computer Vision—ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–16 October 2016; pp. 850–865.
[CrossRef]

14. Li, B.; Wu, W.; Wang, Q.; Zhang, F.; Xing, J.; Yan, J. SiamRPN++: Evolution of Siamese Visual Tracking With Very Deep Networks.
In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA,
15–20 June 2019; pp. 4277–4286. [CrossRef]

15. Yan, B.; Peng, H.; Fu, J.; Wang, D.; Lu, H. Learning Spatio-Temporal Transformer for Visual Tracking. In Proceedings of the 2021
IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021; pp. 10428–10437.
[CrossRef]

16. Cui, Y.; Jiang, C.; Wang, L.; Wu, G. MixFormer: End-to-End Tracking with Iterative Mixed Attention. In Proceedings of the
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022;
pp. 13598–13608. [CrossRef]

17. Bhat, G.; Danelljan, M.; Van Gool, L.; Timofte, R. Learning Discriminative Model Prediction for Tracking. In Proceedings of the
2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 6181–6190. [CrossRef]

18. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
19. Henriques, J.F.; Caseiro, R.; Martins, P.; Batista, J. Exploiting the Circulant Structure of Tracking-by-Detection with Kernels. In

Proceedings of the European Conference on Computer Vision (ECCV), Florence, Italy, 7–13 October 2012; pp. 702–715. [CrossRef]
20. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; pp. 886–893.
[CrossRef]

21. Li, Y.; Zhu, J. A Scale Adaptive Kernel Correlation Filter Tracker with Feature Integration. In Proceedings of the Computer
Vision—ECCV 2014 Workshops, Zurich, Switzerland, 6–12 September 2015; pp. 254–265. [CrossRef]

22. van de Weijer, J.; Schmid, C.; Verbeek, J.; Larlus, D. Learning Color Names for Real-World Applications. IEEE Trans. Image Process.
2009, 18, 1512–1523. [CrossRef]

23. Galoogahi, H.K.; Fagg, A.; Lucey, S. Learning Background-Aware Correlation Filters for Visual Tracking. In Proceedings of the
2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 1144–1152. [CrossRef]

24. Danelljan, M.; Robinson, A.; Khan, F.S.; Felsberg, M. Beyond Correlation Filters: Learning Continuous Convolution Operators for
Visual Tracking. In Proceedings of the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16
October 2016; pp. 472–488. [CrossRef]

25. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015. [CrossRef]

26. Danelljan, M.; Bhat, G.; Khan, F.S.; Felsberg, M. ECO: Efficient Convolution Operators for Tracking. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6931–6939.
[CrossRef]

27. Valmadre, J.; Bertinetto, L.; Henriques, J.; Vedaldi, A.; Torr, P.H.S. End-to-End Representation Learning for Correlation Filter
Based Tracking. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI,
USA, 21–26 July 2017; pp. 5000–5008. [CrossRef]

28. Danelljan, M.; Van Gool, L.; Timofte, R. Probabilistic Regression for Visual Tracking. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 7181–7190. [CrossRef]

29. Danelljan, M.; Bhat, G.; Mayer, C.; Paul, M. pytracking. Available online: https://github.com/visionml/pytracking (accessed on
21 January 2024).

30. Li, B.; Yan, J.; Wu, W.; Zhu, Z.; Hu, X. High Performance Visual Tracking with Siamese Region Proposal Network. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 8971–8980. [CrossRef]

31. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef] [PubMed]

32. Zhu, Z.; Wang, Q.; Li, B.; Wu, W.; Yan, J.; Hu, W. Distractor-Aware Siamese Networks for Visual Object Tracking. In Proceedings
of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 103–119. [CrossRef]

33. Guo, D.; Wang, J.; Cui, Y.; Wang, Z.; Chen, S. SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual
Tracking. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA,
USA, 13–19 June 2020; pp. 6268–6276. [CrossRef]

34. Chen, Z.; Zhong, B.; Li, G.; Zhang, S.; Ji, R.; Tang, Z.; Li, X. SiamBAN: Target-Aware Tracking With Siamese Box Adaptive
Network. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 5158–5173. [CrossRef] [PubMed]

35. Du, F.; Liu, P.; Zhao, W.; Tang, X. Correlation-Guided Attention for Corner Detection Based Visual Tracking. In Proceedings
of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 6835–6844. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-48881-3_56
http://dx.doi.org/10.1109/CVPR.2019.00441
http://dx.doi.org/10.1109/ICCV48922.2021.01028
http://dx.doi.org/10.1109/CVPR52688.2022.01324
http://dx.doi.org/10.1109/ICCV.2019.00628
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/978-3-642-33765-9_50
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1007/978-3-319-16181-5_18
http://dx.doi.org/10.1109/TIP.2009.2019809
http://dx.doi.org/10.1109/ICCV.2017.129
http://dx.doi.org/10.1007/978-3-319-46454-1_29
http://dx.doi.org/10.48550/arXiv.1409.1556
http://dx.doi.org/10.1109/CVPR.2017.733
http://dx.doi.org/10.1109/CVPR.2017.531
http://dx.doi.org/10.1109/CVPR42600.2020.00721
https://github.com/visionml/pytracking
http://dx.doi.org/10.1109/CVPR.2018.00935
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
http://dx.doi.org/10.1007/978-3-030-01240-3_7
http://dx.doi.org/10.1109/CVPR42600.2020.00630
http://dx.doi.org/10.1109/TPAMI.2022.3195759
http://www.ncbi.nlm.nih.gov/pubmed/35917573
http://dx.doi.org/10.1109/CVPR42600.2020.00687


Remote Sens. 2024, 16, 1347 23 of 23

36. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is All you Need. In
Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 5998–6008.

37. Chen, X.; Yan, B.; Zhu, J.; Wang, D.; Yang, X.; Lu, H. Transformer Tracking. In Proceedings of the 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 8122–8131. [CrossRef]

38. Cao, Z.; Huang, Z.; Pan, L.; Zhang, S.; Liu, Z.; Fu, C. TCTrack: Temporal Contexts for Aerial Tracking. In Proceedings of the
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022;
pp. 14778–14788. [CrossRef]

39. Du, B.; Sun, Y.; Cai, S.; Wu, C.; Du, Q. Object Tracking in Satellite Videos by Fusing the Kernel Correlation Filter and the
Three-Frame-Difference Algorithm. IEEE Geosci. Remote Sens. Lett. 2018, 15, 168–172. [CrossRef]

40. Liu, Y.; Liao, Y.; Lin, C.; Jia, Y.; Li, Z.; Yang, X. Object Tracking in Satellite Videos Based on Correlation Filter with Multi-Feature
Fusion and Motion Trajectory Compensation. Remote Sens. 2022, 14, 777. [CrossRef]

41. Du, B.; Cai, S.; Wu, C. Object Tracking in Satellite Videos Based on a Multiframe Optical Flow Tracker. IEEE J. Sel. Top. Appl. Earth
Observ. Remote Sens. 2019, 12, 3043–3055. [CrossRef]

42. Xuan, S.; Li, S.; Han, M.; Wan, X.; Xia, G.S. Object Tracking in Satellite Videos by Improved Correlation Filters With Motion
Estimations. IEEE Trans. Geosci. Remote Sens. 2020, 58, 1074–1086. [CrossRef]

43. Li, Y.; Bian, C.; Chen, H. Object Tracking in Satellite Videos: Correlation Particle Filter Tracking Method With Motion Estimation
by Kalman Filter. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [CrossRef]

44. Shao, J.; Du, B.; Wu, C.; Gong, M.; Liu, T. HRSiam: High-Resolution Siamese Network, Towards Space-Borne Satellite Video
Tracking. IEEE Trans. Image Process. 2021, 30, 3056–3068. [CrossRef]

45. Hu, Z.; Yang, D.; Zhang, K.; Chen, Z. Object Tracking in Satellite Videos Based on Convolutional Regression Network With
Appearance and Motion Features. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 783–793. [CrossRef]

46. Yang, J.; Pan, Z.; Wang, Z.; Lei, B.; Hu, Y. SiamMDM: An Adaptive Fusion Network With Dynamic Template for Real-Time
Satellite Video Single Object Tracking. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–19. [CrossRef]

47. Chen, Y.; Tang, Y.; Yin, Z.; Han, T.; Zou, B.; Feng, H. Single Object Tracking in Satellite Videos: A Correlation Filter-Based
Dual-Flow Tracker. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 6687–6698. [CrossRef]

48. Jiang, B.; Luo, R.; Mao, J.; Xiao, T.; Jiang, Y. Acquisition of Localization Confidence for Accurate Object Detection. In Proceedings
of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 816–832. [CrossRef]

49. Newell, A.; Yang, K.; Deng, J. Stacked Hourglass Networks for Human Pose Estimation. In Proceedings of the European
Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 483–499. [CrossRef]

50. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [CrossRef]

51. Guo, Y.; Yin, Q.; Hu, Q.; Zhang, F.; Xiao, C.; Zhang, Y.; Wang, H.; Dai, C.; Yang, J.; Zhou, Z.; et al. The First Challenge on Moving
Object Detection and Tracking in Satellite Videos: Methods and Results. In Proceedings of the 26th International Conference on
Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; pp. 4981–4988. [CrossRef]

52. Zhao, M.; Li, S.; Xuan, S.; Kou, L.; Gong, S.; Zhou, Z. SatSOT: A Benchmark Dataset for Satellite Video Single Object Tracking.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [CrossRef]

53. Wu, Y.; Lim, J.; Yang, M.H. Object Tracking Benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1834–1848. [CrossRef]
54. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [CrossRef]
55. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A large-scale hierarchical image database. In Proceedings of the

2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [CrossRef]
56. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on

Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015. [CrossRef]
57. Li, F.; Tian, C.; Zuo, W.; Zhang, L.; Yang, M.H. Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking. In

Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June
2018; pp. 4904–4913. [CrossRef]

58. Danelljan, M.; Bhat, G.; Khan, F.S.; Felsberg, M. ATOM: Accurate Tracking by Overlap Maximization. In Proceedings of the
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 4655–4664. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPR46437.2021.00803
http://dx.doi.org/10.1109/CVPR52688.2022.01438
http://dx.doi.org/10.1109/LGRS.2017.2776899
http://dx.doi.org/10.3390/rs14030777
http://dx.doi.org/10.1109/JSTARS.2019.2917703
http://dx.doi.org/10.1109/TGRS.2019.2943366
http://dx.doi.org/10.1109/TGRS.2022.3204105
http://dx.doi.org/10.1109/TIP.2020.3045634
http://dx.doi.org/10.1109/JSTARS.2020.2971657
http://dx.doi.org/10.1109/TGRS.2023.3271645
http://dx.doi.org/10.1109/JSTARS.2022.3185328
http://dx.doi.org/10.1007/978-3-030-01264-9_48
http://dx.doi.org/10.1007/978-3-319-46484-8_29
http://dx.doi.org/10.1109/CVPR.2018.00745
http://dx.doi.org/10.1109/ICPR56361.2022.9956153
http://dx.doi.org/10.1109/TGRS.2022.3140809
http://dx.doi.org/10.1109/TPAMI.2014.2388226
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.48550/arXiv.1412.6980
http://dx.doi.org/10.1109/CVPR.2018.00515
http://dx.doi.org/10.1109/CVPR.2019.00479

	Introduction
	Related Literature
	Correlation Filter-Based Object Tracking
	Siamese Network-Based Object Tracking
	Transformer-Based Object Tracking
	Single Object Tracking in Satellite Video

	Methodology 
	Target Classification Branch
	Attention-Enhanced Regression Branch
	Trajectory Distribution Estimation Strategy
	Anti-Drift Strategy

	Experiments and Results Analysis
	Experimental Settings
	Datasets
	Evaluation Metrics
	Implementation Details

	Ablation Study
	Study on Key Components
	Study on Attention-Enhanced Regression Branch
	Study on Motion Constraint Branch
	Study on Trajectory Distribution Estimation Strategy
	Study on Distribution Hyperparameter

	Results and Analysis
	Overall Results
	Against Different Challenges
	Qualitative Results


	Conclusions
	References

