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Abstract: This study presents the first research that assimilates the ground-based NEXRAD observations-
derived two-dimensional (2D), azimuthally averaged radar radial velocity and reflectivity within
60 km of radius from the hurricane center to examine their influence on the analysis and prediction of
a hurricane near and after its landfall. The mesoscale community Weather Research and Forecasting
(WRF) model and its four-dimensional variational (4D-VAR) data assimilation system are utilized to
conduct data assimilation experiments for Hurricane Charley (2004). Results show that assimilation of
the radar inner-core data leads to better forecasts of hurricane tracks, intensity, and precipitation. The
improved forecast outcomes imply that the changes in dynamical, thermal, and moisture structures
from data assimilations made more reasonable conditions for the hurricane development near and
after its landfall. Overall results indicate that the assimilation of the radar-derived 2D inner-core
structure could be a feasible way to utilize the radar data for improved hurricane prediction.

Keywords: NEXRAD observations; radar data assimilation; hurricane landfall; WRF model

1. Introduction

Tropical cyclones (TCs), as one of the natural disasters, have led to tremendous
destruction of coastal and inland regions through extreme high wind speed and heavy
rainfall. Therefore, a better forecast of TC, especially near its landfall, is of great importance
to the public to effectively warn and reduce the economic damage and death [1].

Over the past several decades, the TC forecasts have improved significantly [1–5].
According to Rogers et al. [6], the official 48 h TC track and intensity forecast errors have
reduced by 45% and 17% in the past 15 years, respectively. Meanwhile, many studies
have acknowledged that the accurate forecasts of TCs from numerical simulations are
closely related to the initial thermal and dynamic structures of storm inner-core [7–10].
Improvements in the accuracy of TC inner-core structures could lead to better forecast
skills [3]. Therefore, it is necessary to assimilate more observation data into the numerical
models to produce a more accurate description of TC vortex structures, especially the TC
inner-cores.

TCs often spend most of their lifetimes over oceans where the conventional observa-
tions are relatively sparse [10–12]. As a result, the radar observation with high temporal
and spatial resolution, which has the capability of sampling the detailed TCs inner-core
three-dimensional (3D) structures [12–16], has become an important data source for data
assimilation (DA) in mesoscale and microscale weather analyses and forecasting [14,17].
Specifically, airborne radar data are mostly used in TC studies due to their mobility and
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capability of supplying additional observation over the ocean; thus, they also offer useful
data sources for numerical simulations with data assimilation [1,10,17,18]. Previous studies
indicated that the assimilations of radar observations have improved the environmental
conditions and caused a positive influence on TC forecasts near their landfalls. In most of
these studies, dual-Doppler radar-derived TC structures have been used. However, the
real-time application capability of these dual-Doppler radars is limited due to the elaborate
data processing requirements [19,20]. Therefore, assimilating single-Doppler radar data in
a model remains the primary option [20,21].

In addition, most of the aforementioned studies assimilate the airborne Doppler radar
data; the data from coastal ground-based radar are seldom used [14]. This is because the
locations of most coastal radars are far away from the TC inner-core before their landfalls,
and they could not capture the detailed inner-core structures unless the TCs have been very
close inland. Furthermore, most of the previous studies mainly focus on data assimilations
with high-resolution 3D radar data, which is composed of axisymmetric and asymmetric
structure data. And, compared to the complex and unclear asymmetric structure data, the
axisymmetric structure data has been derived and applied to WRF vortex initialization
successfully [19,20]. Therefore, whether the direct assimilation of an axisymmetric TC inner-
core structure with 2D azimuthally averaged radar data could improve the TC forecast
requires further study.

In this study, we will assimilate the data from a single Doppler radar, Key West (KBYX,
24.59◦N, 81.70◦W) coastal radar, on the sea-island, which is close to the TC inner-core prior
to its landfall inland, to examine whether the radar data from such type of location could
improve the TC forecasts as early as possible. Specifically, we will examine a new way to
assimilate the radar observations by direct assimilation of an axisymmetric TC inner-core
structure with 2D azimuthally averaged radar observations to see if that could improve
the TC forecast. Hurricane Charley (2004), which made landfall in Florida from 11 to 14 on
August 2004, was chosen as a case study based on the radar data availability.

2. Materials and Methods
2.1. A Brief Overview of Hurricane Charley (2004)

According to the National Hurricane Center (NHC) Report [22], the tropical storm
Charley became a hurricane on 11 August 2004. It continued to strengthen and reach the
Hurricane Category 2 status around 15:00 UTC on 12 August. After moving across Cuba,
the Charley turned toward the north-northwest of Florida at 00:00 UTC on 13 August.
It strengthened rapidly from Category 3 to Category 4 near its landfall around 19:45
UTC on 13 August with the maximum sustained winds near 66.88 ms−1. Continuing
north-northwestward at a slightly faster forward speed, the center of Charley passed near
Kissimmee and Orlando around 01:30 UTC on 14 August with maximum sustained winds
of 33.44–36.01 ms−1. By 06:00 UTC on 14 August, Charley passed through the Florida
state and moved toward the ocean. At the time, Charley was the most intense hurricane
landfall in the United States since Hurricane Andrew (1992) and its best track information
are shown in Table 1. During its landfall, it caused a swath of destruction across the state.
In this study, the focused time period is from 12:00 UTC on 13 August to 06:00 UTC on
14 August, which covers the near landfall and the hurricane evolution over land.

Table 1. The best track information on Hurricane Charley (2004) from NHC.

Time Latitude (◦) Longitude (◦) Maximum Wind
Speed (WS) (ms−1)

Minimum Sea-Level
Pressure (SLP) (hPa)

12:00 UTC on 13 August 24.4 −82.9 48.83 969
18:00 UTC on 13 August 26.1 −82.4 64.25 947
00:00 UTC on 14 August 28.1 −81.6 38.55 970
06:00 UTC on 14 August 30.1 −80.8 38.55 993
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2.2. Doppler Radar Data

The Weather Surveillance Radar-1988 Doppler (WSR-88D) program is a joint effort
of the Department of Commerce (DOC), the Department of Defense (DOD), and the
Department of Transportation (DOT) and this radar network was put into operation in
1996 [15]. The Doppler radar radial velocity and reflectivity observations used in this paper
(4 h period from 08:00 UTC to 12:00 UTC on 13 August 2004) are from the single coastal
radar station named KBYX with high temporal (<6 min) and spatial (~1 km) resolutions [21].
In order to obtain the 2D structure of TC from a single radar, a ground-based velocity track
display (GBVTD; see details in [19]) technique was utilized. With this GBVTD algorithm,
the 3D TC structure from radar can be deduced into 2D axisymmetric and asymmetric
structures. Following Lee and Bell [21], the available radar data used in this study were
the axisymmetric structure of radar data, available as azimuthally averaged inner-core
radar radial velocity and reflectivity from 1 km to 10 km of height levels. Each level has
60 averaged values from radius of 1 km to 60 km with an interval of 1 km in radial and
vertical directions centered on the track of Hurricane Charley (Figure 1).
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Figure 1. An example of 2D azimuthally averaged (a) RF and (b) RV data at 11:00 UTC on 13
August 2004.

According to Lee and Bell [21], prior to the creation of a 2D inner-core structure, the
radar data went through quality control, including ground clutter, sea clutter, and other
noise [23,24]. The observation errors of radar radial velocity (RV) and radar reflectivity (RF)
are 2 ms−1 and 2 dBZ, respectively.

2.3. Experiment Design

The hurricane forecast simulations are conducted using version 3.8.1 of the WRF
model [25] and the WRF Data Assimilation (WRFDA) system using the 4D-VAR method [26]
and are employed for assimilation experiments. Compared to the 3D-VAR data assimilation
method that is commonly applied for the assimilation of conventional large-scale observa-
tions [27,28], the 4D-VAR radar data assimilation can lead to a better forecast result [28].
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The WRF model is compiled with a moving nest based on an automatic vortex-following
algorithm which is designed to follow the movement of TCs [25].

The simulations are conducted using two-way interactive nested domains with the
grid sizes of 100 × 100, 142 × 142, and 100 × 100 and horizontal grid spacings of 36, 12,
and 4 km, respectively. The number of vertical Eta levels is 34 and the altitude range is
automatically generated using the WRF model. Following a series of previous studies, the
boundary conditions are derived from the National Centers for Environmental Prediction
(NECP) Global Forecast System final (FNL) gridded reanalysis dataset [1–3,9–11] with the
resolution of 1◦ × 1◦. The model physics scheme choices for hurricane application (Table 2)
are based on the WRF official user guide and cumulus process for outer domains of 36 and
12 km only.

Table 2. The list of WRF physics schemes for assimilation experiments.

Physical Processes Parameterization Schemes

Microphysics WRF Single-Moment 6-class
Surface layer Unified Noah Land Surface Model
Land surface Revised MM5 Monin-Obukhov

Planetary boundary layer Yonsei University
Longwave radiation Rapid Radiative Transfer Model
Shortwave radiation Dudhia

Cumulus Tiedtke

To examine whether the assimilation of 2D radar structure data could improve the
hurricane forecast, the control (CTRL) experiment without radar data assimilations was set
as follows: The WRF model was integrated 5h from 06:00 UTC to 11:00 UTC on 13 August to
provide a first guess for data assimilation and all conventional data available are assimilated
into the model to decrease the spin-up time [29]. Then, the forecast continues till 06:00 UTC
on 14 August. For the radar data assimilation experiments, three cases were conducted
with various configurations with assimilation of radar observations (Table 3) and the radar
data were assimilated into the innermost domain. To ensure the radar data quality and the
stability of the first guess, the assimilation time was chosen at 11:00 UTC on 13 August,
when the hurricane was far away from the Cuba inland. The first guess (background)
was the same as CTRL and the background error covariance was generated using the
National Meteorological Center method (now known as NCEP) for both CTRL and radar
data assimilation experiments. Considering the radar observations could only reflect the
averaged state of the hurricane’s inner-core structure, the assimilation window was set
up for 30 min in all experiments from 11:00 UTC to 11:30 UTC on 13 August. Inside the
DA system, the radar data quality was further examined by the default quality-control
process. After the DAs, new initial analysis fields and boundary conditions were produced
and the model simulations were integrated from 11:00 UTC on 13 August to 06:00 UTC
on 14 August. The comparison between these experiments mainly focused on the time of
18:00 UTC on 13 August, which is near and before the hurricane’s landfall.

Table 3. The list of WRF experiments.

Experiments Description

CTRL Control simulation without radar data assimilation
RV Assimilation of radar radial velocity
RF Assimilation of radar reflectivity

RV + RF Assimilation of radar radial velocity and reflectivity
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3. Results
3.1. Hurricane Track and Intensity Forecasts

Track forecasts from CTRL and experiments with radar DA were compared with the
National Hurricane Center’s (NHCs) best track data (Figure 2). It is obvious that the CTRL
forecasts have the most eastern tracks and fastest moves, compared to the best track data
and DA experiments. As shown in Figure 3a, the averaged distance errors of CTRL, RV,
RF, and RV + RF are 60, 44, 36, and 23 km, respectively. All simulations with DA have
better track forecasts than CTRL does, especially the RV + RF experiment. Among the
simulations with DA, the storm from RV moves slower than that from RF. During the entire
period, the forecasts near and after landfall have the smallest track errors, implying that the
assimilation of 2D radar-derived inner-core structures from coastal radar on the sea-island
could help improve the hurricane landfall forecasts in advance.
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Figure 3b shows the intensity forecasts of maximum wind speed (MWS). The assimi-
lation of radial velocity leads to overall negative biases, compared to the positive biases
from experiments with assimilation of radar reflectivity. Nevertheless, in terms of public
warning, an overestimated forecast of MWS is much better than an underestimate one.
When we concentrate on the period near and after the landfall (13:18 UTC and 14:00 UTC),
among these DA experiments, the assimilation of both radar radial velocity and reflectivity
has the best forecasts with a mean wind speed error of 6 ms−1, compared to the errors in
CTRL, RV, and RF of 15, 13, and 11 ms−1.

Overall, among these simulations with radar DA, the RV + RF experiment leads to the
best forecasts. Moreover, the assimilation of radar reflectivity has relatively better results
than that of the assimilation of radial velocity. It is likely to be related to the condition
that the reflectivity usually varies with radius, while the radial velocity often varies with
angle [20]. When these two variables are averaged along with radius circles, the radial
velocity would lose more characteristics than radar reflectivity. Therefore, in terms of
azimuthally averaged hurricane inner-core structure, radial velocity would have worse
representation than the reflectivity.

3.2. Hurricane Structures

Most of the previous studies in radar DA suggested that DA would influence the hur-
ricane structure effectively during the forecast periods. In this section, we mainly compare
the hurricane structure with and without the DA at the time of 18:00 UTC on 13 August
before and near landfall, which represents an important phase for public warning.

Figure 4 displays the surface wind field and sea-level pressure (SLP) field from CTRL,
RV, RF, and RV + RF. Compared to the CTRL simulation, the RV simulation weakens the
wind speed greatly, while the southwest wind is strengthened at the same time. In contrast,



Remote Sens. 2024, 16, 1351 7 of 17

the RF simulation increases the wind speed significantly, both the south and north wind.
The RV + RF simulation increases the wind speed near the center and decreases the wind
speed around the margin. This is consistent with the result in Figure 2 that the hurricane
tracks of CTRL and RF move more quickly than those of RV and RV + RF. It also implies
that the wind speed from RV + RF is more reasonable than that from RV and RF.
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Hereafter, the pink x symbol indicates the hurricane center location from best track.

Figure 5 compares the radius of maximum wind speed in the inner-core region. The
H*WIND analysis from the Hurricane Research Division (HRD) website [30] of the radius of
maximum wind at 18:00 UTC is about 60 km (Figure 5a), while the simulations from CTRL,
RV, RF, and RV + RF are about 90, 60, 35, and 40 km (Figure 5b), respectively. These radii
from DA simulations are much closer to the observed value than that from CTRL, although
there are magnitude differences between them. It also indicates the DA simulations have
improved the wind speed radial structure, compared to CTRL.
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Figure 5. The surface radial profiles of maximum wind speed from (a) Hurricane Research Division
Analyses at 16:30 UTC and 19:30 UTC on 13 August 2004 and (b) WRF simulations at 18:00 UTC on
13 August 2004.

Figure 6 shows the differences in temperature (TEM) between the simulations with DA
and CTRL (DA minus CTRL) at 18:00 UTC on 13 August 2004. As revealed in Figure 6, there
are notable reductions of temperature in all DA simulations, especially RV and RV + RF,
while the innermost warm cores are enhanced in the core region at the same time, especially
for RF. Overall, the assimilation of radial velocity decreases the temperature predominantly
in the core region for RV and RV + RF. Powell [31] commented that the cooling effect in
storms is ultimately responsible for the increase in pressure. Therefore, compared to CTRL
simulation, the maximum SLP forecasts from RV and RV + RF are larger, while that from
RF simulation is smaller. It is reaffirmed that the dominant cooling effect would weaken
the hurricane development, which is similar to the result from Powell [31].

Similar to the temperature field, the water vapor differences are shown in Figure 7. The
distributions of water vapor differences are similar to temperature differences. In general,
the decrease in water vapor is dominant in simulations with DA. Pu and Zhang [32] found
that the moist condition is more beneficial in developing the vortex, while dry conditions
could decay the vortex. According to their conclusion, it seems that the assimilations of
radar data in this case would weaken the hurricane and potentially make the hurricane
close to the best track when compared to CTRL forecasts. As a consequence, the hurricane
track forecasts from DA simulations have been improved, despite small improvement in
intensity forecasts. It also would reduce the potential source of precipitation.
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CTRL, and (c) RV + RF minus CTRL at 18:00 UTC on 13 August 2004 (near landfall time).

In order to analyze the impact of DA at various pressure levels, we calculate the mean
values of temperature, specific humidity, u-component and v-component of wind in the
innermost domain (Figure 8). The largest changes in these variables often occur at lower
levels, which shows that the DA influence often occurs at lower levels. The changes of
temperature and specific humidity are smaller than those of wind speed. For the v-wind,
the decreasing tendency is dominant, compared to the primary increasing tendency in the u-
wind. Especially, the negative u-wind values of RV at low levels indicate the enhancement
of east wind, which may be favorable for a westward hurricane forecast of RV. Similarly,
the larger v-wind of RF or CTRL strengthens the south wind and maybe improves the
probability of northward forecast. Overall, the impacts of radial velocity and reflectivity on
wind speed are significant. Combining the results given in Figure 2, the change in wind
speed is consistent with the tack forecasts at 18:00 UTC. The root-mean-square-error (RMSE)
between simulations and North American Regional Reanalysis (NARR) over the innermost
domain are shown in Figure 9. Generally, it is obvious that the RV has the smallest RMSE,
while the RF has the largest RMSE. It indicates that the forecasts from the assimilation of
radial velocity are closer to analysis, compared to the assimilation of reflectivity.
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Figure 7. The differences of azimuthally averaged water vapor of (a) RV minus CTRL, (b) RF minus
CTRL, and (c) RV + RF minus CTRL at 18:00 UTC on 13 August 2004 (near landfall time).

In addition, the vertical wind speed in Figure 10 indicates that the CTRL simulation
results in the largest convection. After the assimilation of radial velocity, it reduces greatly
over the whole inner-core. Meanwhile, the assimilation of reflectivity leads to a small
reduction in vertical wind speed. The assimilation of both radial velocity and reflectivity
also decreases the vertical wind speed greatly around the hurricane center. To further
examine the vertical motion, Figure 11 illustrates the domain averaged divergence at all
levels (negative divergence means convergence), it is apparent that the convergence at
lower levels and divergence at higher levels all decrease significantly, especially in the
RV and RV + RF experiments. The weakening of convergence and vertical wind speed
at low levels are not favorable for deep convection. It also reveals a potential decrease
in precipitation.
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3.3. Precipitation Forecasts

Heavy rainfall is one of the serious natural disasters and usually causes incredible
floods near the hurricane landfall area [1]. Therefore, the accurate forecast of precipitation
is also of great importance to public warning and prevention.

Figure 12 compares the total accumulated precipitation during the 6 h forecast pe-
riod ending at 18:00 UTC on 13 August, from CTRL, RV, RF, and RV + RF along with
the corresponding NCEP Stage IV precipitation analysis [33] and Climatology-Calibrated
Precipitation Analysis (CCPA) [34]. As shown in Figure 12, the precipitation forecasts from
CTRL and DA simulations all overestimate the accumulated precipitation. However, com-
pared with the CTRL simulation, the DA simulations generally decrease the accumulated
precipitation, especially the maximum precipitation. And, these reductions often occur
near the hurricane center which manifests the data assimilation around the inner-core
and has impact on precipitation when most of the radar data are assimilated. During
these DA simulations, the reductions of precipitation from RV and RV + RF are larger
than that from RF. The magnitudes of precipitation from DA simulations are closer to the
analysis productions, although the DA simulations extend the lighter precipitation area.
In addition, the probability distribution functions (PDFs) of precipitation are calculated
and displayed in Table 4. For the lighter precipitation, the PDFs of all simulations are
overestimated against CCPA data, while the PDFs from DA simulations are smaller than
those from CTRL, especially the RV simulation. For the flood warning, the extreme heavy
precipitation forecast is more important. The PDF of precipitation (>100 mm) from RV + RF
is closer to the PDF from CCPA analysis. Overall, the assimilations of radar data improve
the precipitation forecast, especially the assimilation of both radial velocity and reflectivity
for extremely heavy precipitation in this study.
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Table 4. The absolute PDF biases between simulations and CCPA.

Precipitation (mm) CTRL RV RF RV + RF

0~0.01 7.77 6.83 7.21 7.31
0.01~0.1 12.41 9.09 10.78 9.46

0.1~1 7.56 4.13 7.90 5.04
1~10 14.58 3.83 12.52 7.19

10~100 13.82 16.43 13.63 14.80
100~1000 0.66 0.20 0.25 0.18
Averaged 9.47 6.75 8.72 7.33

4. Discussion

In this study, based on the coastal WSR-88D radar on the sea-island, which is usually
close to the hurricane’s inner-core before its landfall, the 2D averaged structure of Hurricane
Charley (2004) was assimilated into the WRF model with its 4D-VAR system. A series of
numerical simulations were conducted to examine whether the assimilation of 2D radar
velocity or reflectivity data could improve the hurricane forecasts in advance. The impacts
of radar data assimilation on the change of atmospheric structure and precipitation near
landfall were also evaluated.

The assimilation of radar data improved the hurricane track forecasts significantly,
while the improvement of intensity forecasts is not as obvious. The result is consistent with
the conclusion in Davis [35] that the intensity forecast is more difficult than track and has
improved slowly in recent decades. In addition, the assimilation of RV + RF leads to a
better forecast than the assimilation of RF and RV, followed by RF, and RV is the last. This
result is different from most previous studies in that the assimilation of radial velocity (RV)
is better than that of reflectivity regarding the forecast impacts [2,3,12]. The reason for these
differences is likely related to the assimilation of the 2D structure of radar data since this
averaged structure of reflectivity is likely more representative than the averaged structure
of radial velocity.

After the assimilation of radar data, the dynamic, thermal, and moisture structures of
hurricane were adjusted. Fovell [36] pointed out that the structure differences in simulations
could influence the hurricane motion. Diagnoses of forecast results show that changes in
hurricane structures are more reasonable corresponding to the evolution of the hurricane.
Among these structures, the decaying tendencies of hurricane structures are dominant as the
hurricane is weakening after the landfall. Compared to the larger impacts of assimilation of
RV on thermal and moisture structures, assimilation of both RV and RF have great impacts
on dynamic structure, and the impact of assimilation mainly occurs at low levels.

Due to the reductions of temperature, moisture, vertical wind speed, convergence,
and their interactions within forecasts with the assimilation of radar data, the adjustments
to the precipitation field and the maximum wind speed are obvious, compared to the CTRL
simulation. The precipitation forecasts from experiments with data assimilations, especially
the RV and RV + RF, are closer to the observation, although more light precipitation values
are produced by assimilations.

Overall results from this study have shown that the assimilation of 2D averaged
hurricane inner-core structure from radar observations adjusted the simulated 3D hurricane
structure obviously, which could lead to great improvements in forecasting hurricane track,
intensity, and precipitation. Although this study is based one case only, limited by the radar
data availability, it proved the concept that it is feasible to assimilate the radar-derived 2D
inner-core structure data into the numerical model to improve hurricane forecasts [20,21].
More case studies are needed in future work.
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