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Abstract: Old landslides in the Loess Plateau, Northwest China usually occurred over a relatively
long period, and their sizes are usually smaller compared to old landslides in the alpine valley areas of
Sichuan, Yunnan, and Southeast Tibet. These landslide areas may have been changed either partially
or greatly, and they are usually covered with vegetation and similar to their surrounding environment.
Therefore, it is a great challenge to detect them using high-resolution remote sensing images with
only orthophoto view. This paper proposes the optimal-view and multi-view strategic hybrid deep
learning (OMV-HDL) method for old loess landslide detection. First, the optimal-view dataset in the
Yan’an area (YA-OP) was established to solve the problem of insufficient optical features in orthophoto
images. Second, in order to make the process of interpretation more labor-saving, the optimal-view
and multi-view (OMV) strategy was proposed. Third, hybrid deep learning with weighted boxes
fusion (HDL-WBF) was proposed to detect old loess landslides effectively. The experimental results
with the constructed optimal-view dataset and multi-view data show that the proposed method has
excellent performance among the compared methods—the F1 score and AP (mean) of the proposed
method were improved by about 30% compared with the single detection model using traditional
orthophoto-view data—and that it has good detection performance on multi-view data with the
recall of 81.4%.

Keywords: Loess Plateau; old landslide detection; deep learning; optical remote sensing images

1. Introduction

Landslides play an important role in the landscape evolution of the Loess Plateau in
northwestern China. Every year, one third of the geohazards in China occur in the Loess
Plateau [1], and most of them are landslides, which cause substantial damage to buildings,
farmland, gas and oil pipelines, highways and railways, and even human life [2–4]. It
has been determined that more than 14,544 landslides have occurred in the Chinese Loess
Plateau [5]. Field investigation of geological hazards in the Loess Plateau suggests that
earthquakes, rainfall, and human activities are common triggers for loess landslides [6].
In addition to new landslides, there is a risk that old landslides could slide again. An old
landslide is the result of prolonged and intricate geological processes occurring on slopes [7],
while most old landslides are stable, triggers such as human activities, earthquakes, and
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rainfall can lead to the reactivation of these old landslides. In the 1950s, the Wolongsi old
landslide in the Xi’an-Baoji section of the Longhai Railway slid again, with a sliding area
about 33 × 104 m2 and a volume of about 2.0 × 107 m3, pushing the Longhai Railway
southward by more than 100 m and interrupting the railway for several days. From the
1950s to the 1970s, more than 170 large and medium-sized landslides occurred along the
98 km from Baoji Gorge to Changxing, nearly half of which were old landslides [8]. Recently,
Hu et al. [9] investigated the Beiguo landslide in Heyang County, Shaanxi Province, China,
and found that since 2011, there have been several signs of local reactivity. In 2017, the
landslide was completely triggered by rainfall. Zhang et al. [10] presented a typical case
(the Zhongzhai landslide) triggered by a succession of torrential rainfall occurrences in
October 2021 in Niangniangba town, Tianshui, Gansu, China, which buried two houses
and damaged another two houses. In order to reduce the losses caused by the reactivation
of old landslides, it is necessary to detect old landslides in Loess Plateau, accurately and
efficiently, used for early warning of reactivation landslides.

At present, researchers pay more attention to the detection of new landslides. Com-
pared with old loess landslides, new loess landslides generally have obvious signs, such as
bare ground and discontinuity of vegetation. As for old landslides, due to the relatively
long time since its occurrence, the shape of landslides have typically changed greatly and
may be covered by dense vegetation. Therefore, determining how to detect old loess
landslides effectively is a challenging topic.

Remote sensing data have been applied to agriculture [11–13], forestry [14,15], me-
teorology [16,17], and other fields successfully, including images from satellites [18,19]
and unmanned aerial vehicles (UAVs) [20,21]. Remote sensing has the advantages of wide
observation range, fast speed, and short cycle of obtaining data with high spatial resolution,
so detecting landslides with remote sensing technology has become a trend [22].

Traditional landslide detection methods are mainly based on visual interpretation [23].
The landslide is identified through certain interpretation signs such as discontinuities in
vegetation texture, landslide back wall, and shear cracks, etc. Most of the visual interpre-
tations are conducted directly using aerial or satellite images [24]. This relies heavily on
the knowledge of experts. Therefore, manual interpretation is labor intensive and time
consuming when there is a large amount of data to be interpreted, and this method is
inefficient for the detection of old loess landslides across a large area [25].

Next, machine learning (ML) methods began to be proposed for automatic detection.
Colors, textures, and edges in the image were used as landslide-detection features for
machine learning methods.Bui et al. [26] used support vector machine (SVM) to detect
landslides in tropical environments with a combination of airborne synthetic aperture radar
(AIRSAR) data and susceptibility mapping based on a geographic information system.
Furthermore, Dou et al. [27] proposed an ensemble method consisting of four models
(SVM-Stacking, SVM, SVM-Bagging and SVM-Boosting) to obtain landslide susceptibility
data. Similarly, Tavakkoli et al. [28] proposed a method that incorporates object-based
image analysis (OBIA) with three machine learning methods for landslide detection. These
machine learning methods have greatly improved the efficiency of landslide detection.
However, it has a disadvantage that manual features were designed but not learned, which
leads to a lack of generalization[29].

Recently, an increasing number of deep learning methods have been used in the field
of remote sensing [30–32] and to detect landslides [33–37]. Ye et al. [38] used deep belief
networks (DBN) to predict landslide susceptibility. Ji et al. [39] used convolution neural
network (CNN)-based methods to detect landslides with high accuracy. Li et al. [40]
used Faster-RCNN (Region-CNN) to detect landslides within large-scale satellite images.
Wang et al. [41] proposed a novel deep learning method for landslide identification,
combining YOLO and U-Net models. However, CNN-based models have some limitations
in modeling global information due to their use of convolutional kernels. In 2017, the
transformer method was proposed with a self-attention mechanism, which can learn
global features well, and was first used for natural language processing (NLP) [42]. Then,
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Dosovitskiy et al. [43] proposed vision transformer (ViT), which was the first successful
application of transformer in image classification tasks. After that, an increasing number
of object detection models based on transformer were proposed, and these were used for
landslide detection with remote sensing images. Tang et al. [44] proposed the transformer-
based semantic segmentation model (SegFormer) to identify coseismic landslides, and
this has better performance compared with CNNs in landslides detection. Lv et al. [45]
proposed a pyramid vision transformer (PVT) model for landslides detection, which
directly models the global information of different scales in remote sensing images. These
transformer-based models can detect landslides well with the advantage that they can
learn global features better. However, there are still great challenges for old loess landslide
detection using high-resolution remote sensing images, mainly including:

1. Old loess landslides occurred over a relatively long period, and due to the loose and
porous character of loess, the shapes of landslides have been changed for a long time,
and may be covered with vegetation, which make it difficult to recognize them in
high-resolution remote sensing images.

2. The high-resolution remote sensing image only contains the orthophoto-view of old
loess landslides, which is difficult for training models to recognize. Actually, experts
usually interpret old landslides by rotating the view angle in order to find more
features and recognize them (Figure 1). There is still no effective automatic method to
simulate this process to detect old loess landslides intelligently.

3. Detection models based on CNNs or transformers only extract local or global features
of remote sensing images, respectively. They cannot utilize various features in the
image effectively, which makes detection more difficult.

Figure 1. (a) Orthophoto-view image and (b–f) multi-view images of old landslides. Red—old loess
landslide in orthophoto-view. Cyan—old loess landslides in different view.

In this paper, considering the above challenges and the properties of CNNs and
transformers and inspired by the interpretation process of human experts from different
views, a novel optimal-view and multi-view strategic hybrid deep learning (OMV-HDL)
method was proposed to detect old loess landslides effectively. The OMV-HDL consists of
two steps: a training step and a detection step. During the training step, the optimal-view
dataset is established to train the HDL model. During the detection step, the multi-view
images are obtained by multi-view automatic cropping (MAC), and they are then fed to
the trained hybrid deep learning (HDL) model in parallel to detect old loess landslides
independently. After that, detection results from various views are fused by the weighted
boxes fusion (WBF) algorithm to yield the final result. The proposed method has a high
detection performance for old loess landslides. The main contributions of this paper are
as follows:
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1. A HDL model which combines the advantages of CNNs and transformers was pro-
posed, and it can extract global and local features of images at the same time. As such,
it can detect old loess landslides effectively. The proposed method consists of the
YOLOv5 object detection model based on CNNs and the detection transformer (DETR)
model, and weighted boxes fusion (WBF) was introduced to fuse the results of the
proposed hybrid deep learning model and to obtain comprehensive detection results.

2. The optimal and multi-view (OMV) strategy was proposed to detect old landslides
effectively and efficiently. During the training process, more obvious features of
old landslides can be learned from optimal-view images, while traditional learning
methods only use orthophoto images, in which old landslides cannot be observed
clearly. During detection in a new area, because the optimal view is unknown, we
propose the multi-view strategy instead to detect old landslides with a trained model,
which can be implemented in parallel without increasing detection time.

3. An optical remote sensing dataset with optimal images from the Yan’an area (YA-OP)
was constructed as a benchmark for old landslide detection, and it can be used for
related research about old landslides in the Loess Plateau.

The rest of this paper is organized as follows: Section 2 illustrates the details of the
study area, Section 3 describes the proposed method for old loess landslide detection,
Section 4 presents the experimental results, and conclusions are given in Section 5.

2. Description of the Study Area

The study area is located in the north of Shaanxi province, China, which includes
four counties: Wuqi, Ansai, Zhidan, and Jingbian. Among them, Wuqi, Zhidan, and
Ansai counties belong to the jurisdiction of Yan’an City, while Jingbian county belongs
to the jurisdiction of Yulin City. The location of this area is between the latitudes of
36◦21′15′′N–38◦02′33′′N and the longitudes of 107◦39′27′′E–109◦25′14′′E, which indicate
the central part of the Loess Plateau (Figure 2).

Figure 2. Overview of the study area. (a) The location of the study area in Shaanxi Province. (b) Detail
of the study area.

This area has an inland arid and semi-arid climate four distinct seasons, sufficient
sunlight, and a large temperature difference between day and night, with an annual
average daily temperature range of 10.9∼14.9 ◦C across the entire area. The average annual
temperature is 7.7∼10.6 ◦C, with an average annual sunshine of 2300–2700 h and an average
annual precipitation of about 500 mm.

This area has a large thickness of loess accumulation, which leads to severe soil ero-
sion, crisscrossing gullies, fragmented terrain, and the frequent occurrence of geological
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disasters such as landslides and collapses. Being covered by loess, the landslides that
occur most often in this area are loess landslides, with the rare occurrence of rocky land-
slides. Loess landslides are mainly developed in the middle and shallow surface, with few
deep landslides.

The main development characteristics of the loess landslide in this area include the
cracks on the slope, multi-level terraces, small-scale collapse and landslide at the front
edge. For old loess landslides, global features including double groove with same source
(Figure 3a) and armchair-shape (Figure 3b) are usually to be observed.

Double groove with same source refers to a phenomenon that two grooves are formed
on both sides of the landslide body, and merge into the same ditch in the upstream. This
is due to the erosive effect of water flows. When it rains, the water in landslide body will
dash to both sides of the slope, resulting in this phenomenon. Armchair-shape refers to a
phenomenon that the backwall of the landslide usually presents Armchair-shape.

In addition to these global features, old loess landslides also have some local features.
Such as landslide backwall, radial cracks on the slope, differences between the vegetation
and the surrounding areas (Figure 3b). These local features can help to the detection of old
loess landslides.

Figure 3. Global and local features of old loess landslides: (a) double groove with same source (global
feature); (b) armchair-shape of landslides (global feature); and radial cracks on the slope, main scrap
on top, and discontinuities of vegetation (local features).

3. Materials and Methods
3.1. Data for Training and Detection

In this paper, we established the optimal-view dataset and proposed multi-view
automatic cropping (MAC) to obtain multi-view data.The optimal dataset was obtained
through manual interpretation. Experts interpreted images not in the orthophoto-view
image but in the Google 3D Scene, in which we rotated images to the most optimal-view
and then labeled them as samples. The optimal-view dataset has 176 samples, and the
spatial resolution of each sample is about 1 m. Multi-view images were obtained by MAC,
specifically by modifying the parameters of the Google location file. Images from different
views were generated in Google 3D Scenes automatically.

3.1.1. Optimal-View Dataset for Training

The study area of the optimal-view dataset is located in the Wuqi, Ansai, and Zhidan
counties, Yan’an city. The location of this area is between the latitudes of 36◦21′15′′N–37◦23′42′′N
and the longitudes of 107◦39′27′′E–109◦25′14′′E (Figure 4).

In this area, we interpreted over 300 old loess landslide samples through manual inter-
pretation in Google 3D Scene. These samples had different colors and different resolutions,
which can enhance the generalization of models.
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Figure 4. The study area of the optimal-view dataset. (a) The location of the study area in Yan’an City.
(b) Detail of the optimal-view dataset in the study area.

However, there are two difficulties in interpreting old loess landslides: (1) Old loess
landslides had occurred over a relatively long period, meaning that many are covered by
dense vegetation and have experienced long-term erosion by water flow and wind, making
manual interpretation more difficult. (2) Manual interpretation is highly labor intensive, and
the experience level of interpreters varies. Interpreters who lack interpretation experience
are prone to misinterpreting artificial earthworks or surface erosion as old landslides
(Figure 5), causing the dataset to become untrustworthy. To solve these problems, we
verified all samples on site. After on-site investigation, we removed samples that were
labeled incorrectly. In the end, an optimal-view dataset containing 176 correctly labeled
samples was obtained (Figure 6).

Figure 5. Misinterpreted samples: (a1,a2) artificial earthwork misinterpreted as old landslide;
(b1,b2) erosion misinterpreted as old landslide.

Figure 6. Samples of old landslides in the optimal-view dataset. Red box—groundtruth
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3.1.2. Multi-View Images for Detection

In 3D Scenes on Google Earth, the lens position can be determined by longitude and
latitude as well as three parameters: heading (the angle between the heading direction and
due north), tilt (the tilt angle relative to the horizontal line), and range (the relative distance
of the satellite from the target) (Figure 7). By changing these five parameters, images from
different views can be automatically captured in 3D Scenes on Google Earth.

Figure 7. Illustration of five parameters: (a) heading (b) longitude, latitude, range, and tilt.

According to the sizes and characteristics of old loess landslides in the Loess Plateau [46],
we set the range to 1200, the longitude interval of each image to 0.009467◦, and the latitude
interval of each image to 0.0072◦. The heading was set to every 120◦ within 360◦, and the
tilt was set to 30◦ and 45◦ (Table 1). Therefore, one original orthophoto-view image can be
expanded into six multi-view images (Figure 8).

Figure 8. Multi-view images of an old landslide: (a) heading—0, tilt—45; (b) heading—120, tilt—45;
(c) heading—240, tilt—45; (d) heading—0, tilt—30; (e) heading—120, tilt—30; (f) heading—240,
tilt—30.
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Table 1. Heading and tilt settings of multi-view images.

Heading 0° 0° 120° 120° 240° 240°

Tilt 30° 45° 30° 45° 30° 45°

3.2. Optimal-View and Multi-View Strategic Hybrid Deep Learning Method

We proposed the optimal-view and multi-view strategic hybrid deep learning (OMV-
HDL) method for old landslide detection (Figure 9). The OMV-HDL has two steps: the
training step and the detection step. During the training step, the optimal-view dataset
is established first with manual interpretation. During manual interpretation, we rotate
images in Google Earth 3D Scene until their optical features are obvious; then, we mark old
loess landslides and save them as labels. Compared with the method of interpreting old
loess landslides in orthophoto-view, images obtained using the optimal-view interpretation
method have more obvious optical features. After that, the optimal-view dataset is used
to train the hybrid deep learning (HDL) model, which consists of YOLOv5 and DETR
models. Compared to the single deep learning model, the HDL model can extract both
global and local features of old loess landslides at the same time, so it displays a significant
improvement in old loess landslide detection accuracy. During the detection step, MAC is
performed in order to obtain multi-view images automatically in the detection area. Then,
the HDL model trained on the optimal-view dataset is used to detect old loess landslides in
multi-view images. The HDL model can run in parallel, meaning that the detection results
of the images from various views can be obtained at the same time.

Figure 9. Flowchart of the OMV-HDL method. During the training step, the hybrid deep learning
model (HDL) was trained on the optimal-view dataset. During the detection step, the trained hybrid
deep learning model was used with weighted boxes fusion (HDL-WBF) to detect old loess landslides
in multi-view images.

Next, in order to remove and fuse the redundant prediction boxes, the weighted boxes
fusion (WBF) algorithm is applied, which combines the results of multiple redundant
bounding boxes into one, more accurate box, rather than a simple deletion. Then, the
coordinates of all of the images in the computer coordinate system are converted into
geographic coordinates through Google 3D Scene. Meanwhile, WBF is used again to
remove and fuse the redundant prediction boxes with six different views. At last, the final
detection results of old loess landslides are obtained.

3.2.1. Optimal-View and Multi-View Strategy

In order to utilize features from various views of landslides for detection, we obtained
the multi-view images using MAC. However, the process of labeling all multi-angle images
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requires is highly labor intensive. Specifically, the workload will increase by N times
compared to orthophoto-view images, where N is the number of multi-view images in
one scene. With the aim of making this process less labor intensive, we proposed the
optimal-view and multi-view (OMV) strategy (Figure 10).

In the OMV strategy, the optimal-view dataset is used to train the HDL model, and
multi-view data are used to detect old loess landslides. With this method, we can take
full advantage of optical features from various views with only a slight increase in the
interpretation requirements. This method contains two steps: a training step and a detection
step. During the training step, by capturing the optical remote sensing images of old loess
landslides with the most obvious optical features, the optimal-view dataset is constructed
to train the HDL model. However, without knowing old landslides in the new study area,
it is impossible to find images with the optimal view angle. To solve this problem, in
the detection step, we captured optical remote sensing images with six different views
automatically, which helps one to find landslides more easily as in the optimal-view angle.
Then, the HDL model trained on the optimal-view dataset can be used in parallel to detect
old loess landslides in multi-view images. With the OMV strategy, features of old loess
landslides were learned better and with less effort in interpretation work.

Figure 10. Optimal-view and multi-view strategy. In this strategy, optimal-view images are used for
training, and multi-view images are used for detection.

3.2.2. Hybrid Deep Learning Model with Weighted Boxes Fusion

Due to the different concerns of the CNN and DETR models, a single model based
on CNN or transformer can only extract local or global features of images, respectively,
which leads to the insufficient usage of features. To solve this problem, we propose hybrid
deep learning model with weighted boxes fusion (HDL-WBF) method to detect old loess
landslides in parallel with mutil-view images (Figure 11). The HDL model consists of
two models: DETR and YOLOv5. Among them, the DETR model pays more attention to
global features of old loess landslides, while the YOLOv5 model pays more attention to
local features old loess landslides. In addition, to fuse results from the two models, the
WBF algorithm was applied, which is more accurate at fusing results from two different
models than the non-max suppression (NMS) algorithm.

In this method, the input image was fed into the YOLOv5 and DETR models, respec-
tively. In the YOLOv5 model, data augmentation, such as mosaic, changing the brightness,
adding noise, random scaling and cropping, flipping, and rotating, was applied first. Then,
the thus augmented image was fed into the backbone to extract features. After that, these
features were fed into the neck structure, which consisted of spatial pyramid pooling (SPP)
and path aggregation network (PAN), to fuse the multi-scale features of the image. SPP is a
pyramid pooling structure that can pool feature maps of different sizes, thereby enhancing
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the model’s perception ability for targets with different scales, and PAN is a multi-scale
feature fusion structure that can effectively fuse features from different levels and avoid
information loss. Then, the YOLOv5 model used three different heads for detection, and
a strategy named anchor was used to improve the detection accuracy. Anchors are prior
boxes of different sizes and aspect ratios, and they can be obtained by using the K-means
clustering algorithm to cluster the target boxes in the training set. By setting different scale
prior boxes, there exists a higher probability of prior boxes that have good matching with
the target object, which makes the model easier to train. At last, the fusion results of three
different scales and the final detection results of the YOLOv5 model were obtained. In
the DETR model, the input image was first fed into CNN to extract image features, after
which a three-dimensional feature map was generated. Then, the feature map was encoded
by position information and split into visual tokens. Next, these visual tokens were fed
into the transformer encoder, and output tokens were generated with the same size. Then,
these output tokens were fed into the transformer encoder with N (N = 100, the number of
object queries) object queries, and N output queries were obtained. At last, two multi-layer
perceptrons with unshared weights were used to map the output queries of the transformer
decoder into two outputs, one for classification and one for position regression. According
to these two outputs, the final detection results were obtained.

Figure 11. (a) Hybrid deep learning model with weighted boxes fusion (HDL-WBF) used to detect
multi-view images in parallel. (b) Structure of the HDL-WBF. (c) Structure of YOLOv5.

Redundant detection boxes can be generated by adding the results from the two models
simply. To avoid this problem, we used the WBF algorithm to remove and fuse redundant
prediction boxes. Object detection models often use NMS [47] and Soft-NMS [48] to filter
the final results from the prediction boxes of the models. These two algorithms are effective
at filtering the results a single model. If the results are from different models, then the
performance is unsatisfactory [49]. This is because NMS and Soft-NMS simply delete
redundant boxes without considering the confidence differences between different models,
which cannot make full use of all the information of prediction boxes (Figure 12).

The WBF algorithm uses the confidences and coordinates of all prediction boxes to
construct the final prediction box, leading to more accurate prediction results. Specifically,
the WBF algorithm has the following steps:
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1. Create a new List B. The prediction boxes for each model are added to the List B, and
elements (each box) of the list are sorted in descending order according to confidence.

2. Create two empty lists: List L is used to store all the prediction boxes belonging to the
same target, and List F is used to store the fusion prediction boxes of each target.

3. Iterate over all of the prediction boxes of List B. Find the matching box in List F (the
IoU of two boxes is greater than the threshold).

IoU =
Area o f Overlap
Area o f Union

(1)

4. If no matching box is found, then the prediction box in List B is added as a new box to
the end of Lists L and F, and then the next box in List B is iterated.

5. If a match is found, add the box to the same position in List L that corresponds to the
matching box in List F.

6. Using the following fusion formula, the new coordinates and confidence scores for all
T boxes at each location in the List L are recalculated. In these formulas, C represents
the confidence scores of the resulting fusion box, and X1,2 and Y1,2 represent the
upper-left and lower-right corner coordinates of the resulting fusion box, and i is the
number of prediction boxes for the same target.

C =
∑T

i=1 Ci

T
(2)

X1,2 =
∑T

i=1 Ci×X1,2i

∑T
i=1 Ci

(3)

Y1,2 =
∑T

i=1 Ci×Y1,2i

∑T
i=1 Ci

(4)

7. After processing all the boxes in List B, the confidence score in List F is recalculated
using Formula (5), where N is the total number of models.

C =
T
N

(5)

Figure 12. Results of the NMS/soft-NMS and WBF algorithms. Blue—different models’ predictions.
Red—ground truth.
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4. Experimental Results and Analysis
4.1. Evaluation Indices and Experimental Settings
4.1.1. Evaluation Indices

Statistical index-based methods were used to evaluate and compare the performance
of different models. In this paper, four precision indicators were utilized, including recall,
precision F1 score, and average precision (AP). These can be defined by four types of
possible outcomes, including true positive (TP), false positive (FP), true negative (TN), and
false negative (FN). Hence, recall is the ratio of true positive samples to all true samples,
precision is the ratio of true positive samples to all positive samples, and F1 score is a
composite indicator which takes precision and recall into consideration. The formulas for
these indicators are as follows:

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

F1 − score =
2×(Recall×Precision)
(Recall + Precision)

(8)

APIoU=x refers to the average accuracy when the IoU threshold is set to x. As shown in
the formula, Pn and Rn are the precision and recall of prediction boxes at an IoU threshold of
x. Each prediction box has a confidence score. If the prediction box exceeds the confidence
threshold, it will be retained; if not, it will be discarded. Different confidence score thresh-
olds correspond to different levels of precision and recall. Establish a two-dimensional
coordinate system with the recall as the horizontal axis and the precision as the vertical
axis. By connecting points whose coordinates represent their recall and precision, the P-R
curve will be obtained, and the area of the P-R curve between two the axes is APIoU=x.

APIoU=x = ∑
n
(Rn − Rn−1)Pn (9)

4.1.2. Experimental Settings

The hardware configuration used for the experiment in this paper is as follows: Intel
Xeon(R) Silver 4216 Cpu, Geforce RTX 3090 Gpu*2, and running memory 128 G. The
software we used includes Pycharm 2021.2, Google Earth Pro 7.3.6.9796, Anaconda 4.11.0,
and Python 3.9.18, and the framework used for deep learning was PyTorch 2.3. The optimal-
view dataset was divided into training, validation, and testing data with a ratio of 8:1:1.
During preprocessing in the YOLOv5 model, all of the images were resized to 640 × 640,
and data augmentation methods including mosaic, random affine, and mixup were applied.
In the experiment, the number of training epochs was 200, and the batch size was 16. The
initial learning rate was 0.001, and the weight decay was 0.0005. The momentum was 0.937.
During the image preprocessing process of the DETR model, resnet50 was used as the
backbone. The number of training epochs was 200, and the batch size was 8. The initial
learning rate was 0.0001, and the weight decay was 0.0001. The momentum was 0.937, and
there were 8 encoder and decoder layers. The number of attention heads was 8. In WBF,
the IoU and confidence thresholds were 0.5 and 0.7, respectively.

4.2. Performance of HDL-WBF on Yan’an Optimal-View Dataset

In this section, we compare the results of the orthophoto-view dataset and the optimal-
view dataset and compared the results with different models.

Based on the optimal-view dataset, we reset the tilt and heading parameters of each
image to zero. After interpretation, the orthophoto-view dataset was established. We
trained the hybrid deep learning model on the orthophoto-view dataset. The test results of
the proposed model are shown in Figure 13 (including instances of four old landslides),
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and they were compared with those of the YOLO and DETR models. The ground truths of
four landslides are shown in images a1–d1. The test results of YOLO, DETR, and HDL-WBF
are shown in images a2–d2, a3–d3, and a4–d4, respectively.

Figure 13. Test results of different models in orthophoto-view images. For each column, (a1–d1) are
the ground truths of four old loess landslides, and (a2–d2), (a3–d3), and (a4–d4) are the test results of
YOLO, DETR, and HDL-WBF, respectively.

From the results of image a, it is observed that the test results from the YOLOv5 and
DETR models predicted the ground truth correctly, as did those from the HDL-WBF. As for
the results of image b, the YOLOv5 model missed the ground truth. However, the DETR
model and the HDL predicted the ground truth correctly. In image c, the situation of the
two models was reversed, but HDL-WBF still predicted the ground truth correctly. This
shows that the DETR model and the YOLOv5 model have different concerns about old
loess landslides, while HDL combined the advantages of these two models and obtained
a better result. Furthermore, it is also shown that the WBF algorithm can fuse the results
of these two models well and reduce the occurrence of missed detection. In the results of
image d, it can be seen that the YOLOv5 model has two prediction boxes. One prediction
box is correct, but the other is wrong. Two prediction boxes from the DETR model are
incorrect. As for the HDL model, using the WBF algorithm, all of the prediction boxes
of the two models were fused according to confidence scores in order to generate a new
prediction box, and it is closer to the ground truth. This shows that, as a detection result
fusion algorithm, WBF can reduce the impact of false position on the results.
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We also trained the hybrid deep learning model on the optimal-view dataset. The
test results of the proposed model are shown in Figure 14 (including instances of four
old landslides), and they were compared with the YOLO and DETR models. The ground
truths of four landslides are shown in images a1–d1. The test results of YOLO, DETR, and
HDL-WBF are shown in images a2–d2, a3–d3, and a4–d4, respectively. From the results
of images a and b, it can be seen that WBF can effectively remove the incorrect detection
box. From the results of images c and d, we can see that there are some ground truths that
are not detected by the YOLOv5 or DETR models but that are detected by HDL-WBF. This
proves that the results from YOLOv5 or DETR have a certain complementarity and that the
WBF can effectively combine the results of the two models.

Figure 14. Test results of different models in optimal-view images. For each column, (a1–d1) are the
ground truths of four old loess landslides, and (a2–d2), (a3–d3), and (a4–d4) are the test results of
YOLO, DETR, and HDL-WBF, respectively.

The test results of the single YOLOv5 model, single DETR model, and HDL-WBF
are listed in Table 2, respectively. First, it can be seen from Table 2 that the performance
of DETR is much better than that of YOLOv5 on the optimal-view dataset (OP) and the
orthophoto-view dataset (OR). Specifically, its F1 score and AP (mean) from the optimal
dataset have show an improvement of 0.205 and 0.317, respectively. On the orthophoto-
view dataset, it displayed an improvement of 0.211 and 0.290, respectively. Compared
to the CNN-based model focusing on local features, the DETR model, which focuses on
global features, has a better old loess landslide detection performance. In addition, we
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can see that the performance of the HDL-WBF is better than that of the DETR model on
the optimal-view dataset (OP) and the orthophoto-view dataset (OR). Its F1 score and AP
(mean) on the optimal dataset displayed an improvement of 0.047 and 0.055, respectively.
On the orthophoto-view dataset, it showed an improvement of 0.046 and 0.011, respectively.
This proves that, compared to single models, the hybrid learning model (HDL) can extract
both local and global features of the image simultaneously, which helps it to detect old loess
landslides. Finally, from the overall results, it can be seen that the F1 score and AP (mean)
on the optimal-view (OP) dataset present an average improvement of 5–10% compared
to the orthophoto-view dataset (OR), which proves that the proposed method of labeling
optimal-view images to establish the optimal-view dataset for training is effective.

Table 2. Test results of different models on the optimal-view dataset and the orthophoto-view dataset.

Model Precision Recall F1 Score APIoU=0.50 APIoU=0.70 APIoU=0.90 AP (Mean)

YOLOv5 (OR) 0.754 0.533 0.625 0.564 0.537 0.415 0.505

DETR (OR) 0.814 0.846 0.830 0.879 0.877 0.710 0.822

HDL-WBF (OR) 0.826 0.934 0.877 0.936 0.937 0.758 0.877

YOLOv5 (OP) 0.769 0.588 0.666 0.639 0.595 0.675 0.636

DETR (OP) 0.865 0.889 0.877 0.948 0.928 0.901 0.926

HDL-WBF (OP) 0.857 1.0 0.923 0.946 0.932 0.932 0.937

4.3. Verification of HDL-WBF Using Multi-View Images in Jingbian County

In this section, in order to verify the HDL trained on the optimal-view dataset for old
loess landslide detection, we used MAC to obtain multi-view data in the Jingbian area for
detection. The location of this area is between the latitudes of 36◦57′42′′N and 38◦02′02′′N
and the longitudes of 108◦17′40′′E and 109◦20′18′′E (Figure 15). In this area, we interpreted
43 old loess landslides to verify the performance of the optimal and multi-view (OMV)
strategy we proposed, and several detection results from multi-view images are shown in
Figure 16.

Figure 15. The study area for multi-view images. (a) The location of the study area in Yan’an city.
(b) The distribution of old loess landslides in the study area.

First, the multi-view images were detected by HDL, which was trained on the optimal-
view dataset, and some of the detection results are shown in Figure 16. From the detection
results of image a, it can be seen that landslides from different views in a2, a3, a5, a6 have
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been detected successfully. However, in a1, HDL-WBF produced an incorrect prediction
box, and in a6, HDL-WBF missed the detection. In the detection results of image b, the same
situation happened in b2, b5 and b6. As for image c, in c1, c2, c4, and c5, two landslides
were not detected in one image at the same time, while in c3 and c6, HDL-WBF missed the
detection. These results proved that detecting landslides from only one angle of view can
lead to false detection and missed detection because optical features may be not obvious.
However, if multi-view images are used, optical features from multiple viewpoints are
observed, and the detection model is able to obtain better results from images due to the
more obvious optical features.

Figure 16. Detection results from multi-view images of three old landslides. (a1–a6), (b1–b6), and
(c1–c6) were the results for the first, the second, and the third old landslides, respectively.

Next, we used Google Earth 3D Scene to convert detection labels from different views
to the geographic coordinate system. The WBF algorithm was applied again to remove the
redundant prediction boxes, and we obtained the results from multi-view detection. In
order to enable the WBF algorithm to fuse detection boxes with geographic coordinates,
normalization was first applied to convert latitude and longitude coordinates in the lower-
left and upper-right corners of the prediction box to decimals between 0 and 1. After
normalization, the x and y coordinates of the upper-left and lower-right corners of the
prediction box were input into the WBF to obtain the x and y coordinates of the upper-left
and lower-right corners of fused prediction boxes. Afterward, the longitude and latitude
coordinates of the upper-left and lower-right corners of the final fused prediction boxes
were obtained after inverse normalization. Finally, according to the latitude and longitude
coordinates of the upper-left and lower-right corners of each fused prediction box after
WBF processing, a KML (keyhole markup language) file containing all of the coordinates
of the detection results was generated.

From Figure 17, we can see that although images a, b, and c have incorrect detection
results in several views in Figure 16, after conversion into the geographic coordinate system,
these detection results can cover ground truth. In d, e, f, we can see that redundant boxes
are removed effectively, and false positives have been significantly reduced after WBF.
Old loess landslides are detected accurately. All test results are shown in Table 3, and
coordinates are shown in Figure 18.

In Table 3, we can see that out of all 43 of the interpreted old loess landslides, 35 were
detected and 8 were missed, translating to a recall rate of 81.4%. Compared with the test
results from the optimal-view dataset, although the recall rate of HDL-WBF has slightly
reduced, it still shows a good detection performance on the multi-view data.
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Table 3. Detection results.

TOTAL Detected (TP) Missed (FN) Recall

43 35 8 81.4%

Figure 17. Detection results from multi-view images in Google Earth Scene: (a–c) before WBF,
(d–f) after WBF.

Figure 18. Distribution of detected and missed old loess landslides. Red triangle—detected old loess
landslides. Green triangle—missed old loess landslides.

4.4. Experiments of WBF

In this section, we studied the influence of the parameters of WBF on optimal-view
dataset. In the WBF algorithm, there are two parameters that affect the final fusion result.
One is the IoU threshold. If the IoU of the two boxes is higher than the IoU threshold,
then the coordinates of the two boxes will be fused. The other parameter is the confidence
threshold. If the confidence score of a box is lower than this threshold, it will be removed.

In the experiment, these two thresholds were divided with intervals of 0.1, and
100 different parameter combinations were be obtained. The F1 score was used to evaluate
each combination, and the results are shown in Figure 19.
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Figure 19. Heatmap of F1 score. The decimal in the horizontal axis represents the IoU threshold, and
the confidence threshold is shown in the vertical axis. The different colors in the scale bar represent
different F1 score values in the heatmap.

5. Discussion

Observations from the results of the experiment using the Yan’an optimal-view dataset
and orthophoto-view dataset are summarized as follows:

First, it is seen that the performance of DETR is much better than YOLOv5 in both
datasets. This is because the DETR model pays more attention to the global features of
the image, such as the overall shape of the landslide, the surface deformation around the
landslide, and the geomorphological features. However, the CNN-based YOLO model
pays more attention to the local features of the image, such as the local optical features of
the landslide body, the landslide tongue, and the backwall of the landslide in the image,
as well as the local vegetation discontinuity and surface deformation at the edge of the
landslide. For old loess landslides, after experiencing wind, sand, and water erosion, the
overall shape and geomorphological features of the landslide have not changed too much.
Compared with these global features, the local features tend to become less noticeable,
which makes old loess landslides more difficult to identify. Second, the performance of the
HDL-WBF is better than the DETR model in both datasets. This indicates that the WBF
fusion algorithm can fuse the results of DETR and YOLOv5 effectively. In addition, it shows
that the results of DETR and YOLOv5 are complementary, that is, these two models pay
attention to different features. Third, from the overall results, it is seen that the performance
of DETR, YOLOv5, and HDL-WBF on the optimal-view dataset are better than those on
the orthophoto-view dataset. This proves that optimal-view images have more abundant
optical features compared to the orthophoto images, which can help with the detection of
old loess landslides which do not have obvious optical features in orthophoto-view.

From the results of the experiment on multi-view images in Jingbian county, it is
observed that although the HDL-WBF model was not trained using multi-view images, it
still obtained good detection results. This indicates that the optimal-view and multi-view
strategy we proposed is effective at detecting old loess landslides.

Finally, in the WBF experiments, it can be observed that with the increasing of IoU and
confidence thresholds, the F1 score grows roughly. This is because, as the IoU threshold
and confidence threshold increase, the detected results become more accurate, causing the
F1 score to increase. However, we can see that when the confidence threshold is greater
than 0.5 and the IoU threshold is greater than 0.8, the F1 score decreases slightly. This
occurs because, as the accuracy increases, additional boxes that may be close to the ground
truth are discarded, resulting in a decrease in recall rate, which affects F1 score. Therefore,
from the perspective of the overall variation of F1 score, the optimal threshold for IoU is
0.8, and the optimal threshold for confidence is in the range of 0.5 to 0.9.
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Although the proposed model has achieved good results in testing and detection,
it has some drawbacks. First, compared with orthophoto-view images, the process of
interpreting optimal-view images still requires more labor. If self-supervised methods
are used in interpretation, labor costs will be reduced further. Second, the optimal IoU
threshold and confidence threshold of WBF in our method were obtained by analyzing
images used in the experiment, not by automatic selection. It may be necessary to conduct
experiments to update the optimal thresholds when the proposed method is used in areas
such as Sichuan and Yunnan provinces, where landslides have different types of vegetation
and sizes.

6. Conclusions

In this paper, an OMV-HDL method was proposed for the detection of old loess
landslides using high-resolution remote sensing images. In this method, we proposed
an OMV strategy to make learning the features of old landslides easier, and the hybrid
HDL-WBF model was proposed to extract various features of old landslides. During the
training step, compared with the YOLOv5 model trained on the orthophoto-view dataset,
the HDL model trained on the optimal-view dataset demonstrated improvements of about
30% in F1 score and about 40% in AP (mean), respectively. During the detection step, the
recall of the HDL-WBF when detecting multi-view images in Jingbian County was 81.4%,
which proves that the trained HDL-WBF has strong generalization performance even in a
new area. Finally, we discussed the influence of the parameters of the WBF algorithm on
the F1 score. In the future, we will add additional high-quality samples to the optimal-view
dataset and improve the efficiency of MAC.
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