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Abstract: Cultivated land plays a fundamental role in the sustainable development of the world.
Monitoring the non-agricultural changes is important for the development of land-use policies.
A bitemporal image transformer (BIT) can achieve high accuracy for change detection (CD) tasks
and also become a key scientific tool to support decision-making. Because of the diversity of high-
resolution RSIs in series, the complexity of agricultural types, and the irregularity of hierarchical
semantics in different types of changes, the accuracy of non-agricultural CD is far below the need
for the management of the land and for resource planning. In this paper, we proposed a novel
non-agricultural CD method to improve the accuracy of machine processing. First, multi-resource sur-
veying data are collected to produce a well-tagged dataset with cultivated land and non-agricultural
changes. Secondly, a hierarchical semantic aggregation mechanism and attention module (HSAA)
bitemporal image transformer method named HSAA-CD is performed for non-agricultural CD in
cultivated land. The proposed HSAA-CD added a hierarchical semantic aggregation mechanism for
clustering the input data for U-Net as the backbone network and an attention module to improve the
feature edge. Experiments were performed on the open-source LEVIR-CD and WHU Building-CD
datasets as well as on the self-built RSI dataset. The F1-score, intersection over union (IoU), and
overall accuracy (OA) of these three datasets were 88.56%, 84.29%, and 68.50%; 79.84%, 73.41%,
and 59.29%; and 98.83%, 98.39%, and 93.56%, respectively. The results indicated that the proposed
HSAA-CD method outperformed the BIT and some other state-of-the-art methods and proved to be
suitable accuracy for non-agricultural CD in cultivated land.

Keywords: change detection; non-agricultural change detection; bitemporal image transformer;
high-resolution remote-sensing images

1. Introduction

The development of urbanization and the acceleration of human socioeconomic ac-
tivities have led to a continuous decrease in cultivated land worldwide, which brings
challenges to the rational utilization and protection of land resources [1]. Especially in
China, the rapid urbanization process in the past decade has resulted in a continuous
decline in arable land. The occupation of non-agriculturalization is the main factor for this
change, including built-up areas, green corridors that exceed standards, decorative lakes,
nature reserves, and non-agricultural constructions [2]. These non-agricultural changes
threaten food security and pose a serious obstacle to sustainable development. The gov-
ernment and relevant ministries in China have issued relevant documents to rectify the
non-agricultural occupation of farmland [3].
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In general, non-agricultural change detection (CD) methods mainly include two
approaches, namely traditional and remote-sensing-based methods. The traditional method
of land survey requires a lot of human, material, and financial resources and takes a
relatively long time to reveal the changes. The national land survey for land-cover/land-
use investigation in China is conducted every ten years or even longer, and the annual
regional surveys cannot keep pace with the real-time changes [4]. In recent years, CD from
remote-sensing imagery has become a research hotspot and has been applied in many
fields. With the widespread application of high-resolution remote-sensing images (RSIs),
land-use-change research can bring higher precision and more efficient ways to detect
non-agricultural changes in cultivated land. Domestic HRRSIs can be used to identify and
detect water bodies, vegetable greenhouses, buildings, and road infrastructures [4].

Recently, the deep-learning methods for multiple CD methods have gained much
attention because they take the high-level features of high-resolution RSIs into account,
and weaken the influence of intrinsic spectral variability on CD to a certain extent. As a
representative of deep-learning methods, a neural network is a cost-effective, time-efficient,
short-cycle, and accurate approach. First, the results of land-cover/land-use change (LUCC)
by using time series high-resolution RSIs can provide timely basic data for CD [5]. Secondly,
the commonly used CNN methods can effectively reduce misjudgments due to the land-
use classification standards varying in different periods. Finally, the sample libraries
and the publicly available datasets under different classification standards can provide a
fundamental basis for non-agricultural CD in cultivated land.

However, there are differences between non-agricultural CD and typical remote-
sensing monitoring. On the one hand, there are various types of non-agricultural changes
in cultivated land, but there is currently no corresponding dataset that can cover the
non-agricultural CD task. The open-source datasets may get low accuracy when they are
directly used for non-agricultural CD. On the other hand, the deep-learning methods used
for LUCC can classify and identify specific types, but cannot aggregate multiple types into
a spatial pattern. Thus, the existing CD methods are not suitable to be directly used for
non-agricultural CD [6].

The main contributions of this paper can be summarized as follows:

• A hierarchical semantic structure of land-use types for non-agricultural changes in
cultivated land is established, and the relationships between different types of changes
are analyzed. Taking Hubei Province in China as an example, we select data from
five regions to construct a dataset for detecting such changes. The dataset is suitable
for cultivated land-change detection. We hope that the dataset will contribute to the
innovation of farmland-change monitoring methods and their application

• Aiming at the problems of scattered results and disordered hierarchies in current
networks for non-agricultural CD, a hierarchical semantic aggregation mechanism
and attention module (HSAA) is proposed. The scattered classification results are
aggregated by adding a semantic aggregation layer, and the aggregated types are
enhanced by an attention mechanism, thus the accuracy of CD is further improved.

The rest of this article is organized as follows. Section 2 introduces the related work.
Section 3 describes the overall structure of the proposed method. Section 4 presents the
experimental datasets and results. Section 5 discusses the major findings and limitations of
the study. Finally, a brief conclusion is presented in Section 6.

2. Related Work

In this section, we briefly reviewed the corresponding datasets and deep-learning
methods for change detection. The limitations of current methods are then discussed.

2.1. RSI Datasets for Change Detection (CD)

Very high-resolution (VHR) images contain detailed spatial information and are often
used in multiple change detection (CD) tasks. Thus, a series of RSI datasets have been
constructed for multiple purposes and different application scenarios, including land-use
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classification, semantic segmentation, object recognition, and CD. The information on
existing RSI datasets is shown in Table 1. According to data sources, RSI can be mainly
classified into aerial and satellite images, based on the aerial RSI dataset, multiple image
pairs for CD are constructed by two or more images of the same region at different times.

Table 1. Information of the existing datasets for change detection.

Dataset Image Size Resolution Number of
Images Pairs Tasks and Change Types Data Source Time Span

SZTAKI [7] 952 × 640 1.5 m 13
Built-up regions,
buildings, planting of
trees, etc.

Aerial image, FOMI,
Google Earth

2000–2005,
2000–2007,
1984–2007

AICD [8] 800 × 600 0.5 m 1000 trees and buildings, etc. Aerial images /
WHU-Building [9] 32,207 × 15,354 0.2 m 16,077 Buildings Aerial images 2012–2016

SYSU-CD [10] 256 × 256 0.5 m 20,000 Urban buildings, change
of vegetation Aerial Images 2007–2014

LEVIR_CD [11] 1024 × 1021 0.5 m 637 BCD tasks Google Earth 2002–2018
DSIFN [12] 512 × 512 2 m 442 City Area change Google Earth 2001–2018
GZCD [13] 1006 × 1168–4936 ×

5224 0.55 m 19 BCD tasks Google Earth 2013–2017

OSCD [10,14] 600 × 600 10 m 24 Urban growth changes
Sentinel-2 satellites
Multispectral
images

2015–2018

HRCUS-CD [15] 256 × 256 0.5 m 11,388
Built-up areas and new
urban areas.
BCD tasks

Satellite image 2010–2018
2019–2022

S2Looking-CD [16] 1024 × 1024 0.5–0.8 m 5000 BCD tasks Satellite image 10 years
WXCD [17] 7840 × 6160 0.2/0.5 m / BCD tasks UAV/SuperView-1 2012–2018

SVCD [18] 256 × 256 0.03–1 m 16,000 Object detection Synthetic and real
images /

For some of the datasets, the time of the data source is not mentioned in the original article, and in the Time Span
column of the table we denote it with “/”.

The first type of dataset is constructed by aerial images. The SZTAKI Air Change
Benchmark Set [7] is the earliest wildly used CD dataset. It has 13 pairs of 952 × 640 pixels
optical aerial images with a spatial resolution of 1.5 m. The aerial image change detection
(AICD) dataset [8] is built by 100 simulated scenes by realistic aerial images rendered artifi-
cially, which includes 1000 pairs of images 800 × 600 pixels in size, with a resolution of 0.5 m,
and containing major change objects such as forest trees and buildings. The WHU-building
CD dataset [9] consists of a pair of aerial images containing an aerial image of 12,796 build-
ings in 2012 and an aerial image of 16,077 buildings in 2016, 32,207 × 15,354 pixels in size
with a resolution of 0.2 m. The Sun Yat-Sen University (SYSU-CD) dataset [10] consists
of 800 pairs of images 1024 × 1024 pixels in size with a resolution of 0.5 m, which were
captured in Hong Kong in 2007 and 2014, respectively. The SYSU-CD dataset contains a
number of different sorts of modifications, including newly constructed urban buildings,
suburban dilatation, groundwork before construction, change in vegetation, road extension,
and sea development.

The second type of dataset is built from Google Earth images. The LEVIR-CD
dataset [11] includes 637 pairs of RSIs 1024 × 1024 pixels in size with a resolution of
0.5 m and is used in building-change detection (BCD) tasks very frequently. The DSIFN
dataset [12] is manually collected from Google Earth and contains 442 pairs of images
512 × 512 pixels in size with a resolution of 2 m from six Chinese cities, including Bei-
jing, Shenzhen, Chongqing, Wuhan, Chengdu, and Xi’an. The Google dataset for CD
(GDSCD) [13] contains 19 pairs of satellite images with a resolution of 0.55 m. The image
pairs range in size and year, spanning from 1006 × 1168 pixels to 4936 × 5224 pixels and
spanning the period 2006–2019.

The third type of dataset is constructed by satellite images. The Onera satellite change
detection (OSCD) [14] dataset collects 24 pairs of Sentinel-2 multispectral satellite images
taken between 2015 and 2018, approximately 600 × 600 pixels in size with a resolution
of 10-m. The S2Looking-Cd dataset [16] comprises expansive side-looking satellite im-
ages taken at different off-nadir angles, and it includes approximately 65,920 annotated
examples of angles. The HRCUS-CD dataset [15] contains 11,388 pairs of cropped HRRSIs
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256 × 256 pixels in size with a resolution of 0.5 m as well as more than 12,000 labeled change
instances. All the labels are manually annotated by experienced annotators in RSI interpre-
tation. This dataset was collected in Zhuhai, China, which covers an area of 1736.45 km2

and with a resident population of approximately 2.44 million (as of November 2020).
The other type of CD dataset is constructed by multiple sources of images, such as

unmanned aerial vehicle (UAV) images and syntheses images. The WXCD dataset [17] is
handcrafted from UAV and SuperView-1 (SV-1) images as the original image in the RGB
band, and the building areas with significant changes in two temporal images are manually
annotated as vectors using ArcGIS software 10.2 and converted to the Tiff format. The
unique natural and human environment of the site, its complex and diverse building forms
and scenes, and the sensor characteristics of the bitemporal images with different shooting
angles and lighting variations pose a greater challenge to the building CD task than other
publicly available datasets. Season-varying change detection (SVCD) [18] consists of two
types of variations: real RSIs and synthetic images. The most commonly used is the real
RSIs with seasonal variations, which contain 16,000 pairs of images with a resolution of
0.03–1 m and a size of 256 × 256 pixels.

The application focuses on different datasets. For example, datasets for BCD tasks
provide more accurate image pairs of buildings before and after the change to support
high-precision detection of building changes, such as LEVIR-CD, WHU-CD, HRCUS-CD,
etc. In addition, detecting changes in land features and land types is also the main support
function of the dataset. Detection of changing objects and geographical meanings is also an
important direction for recent applications, such as WXCD.

2.2. Deep-Learning Methods for Change Detection (CD)

The classical convolutional neural networks (CNNs) were applied in CD for land-
cover/land-use tasks, such as the Siamese CNNs [19] and axial cross-attention branch fusion
networks [20]. USCD-MiBi [21], a simple and practical unsupervised change-detection
method based on multi-indices and bitemporal remote-sensing image pairs, allows users to
choose the most suitable change indices to deal with large-scale LUCC accurate change
detection. The COCRF framework [22], consisting of a binary CD task and a multiclass CD
task, is proposed to reduce the influence of spectral variability. U-Net applied in CD for
VHR images [23], such as Siamese NestedUNet (SNUNet) [24], have been comprehensively
investigated for land-cover CD with bitemporal images. Buildings change detection (BCD)
was one of the hot research issues, not only for the plentiful datasets but also the networks,
such as Siam-EmNet [25], AERNet [15], CMGFNet [26], etc.

For the different paths to get the change from images. ChangeNet [27] processes
the change detection by fusion of the transposed convolution and multiscale difference.
STANet [11] applied a spatial attention mechanism to enhance the feature extraction ability.
SNUNet-CD [18] combined the Siamese network and Nested UNet for multiscale feature
fusion to resolve the problem of small object detection.

Lots of methods put the attention into consideration. Scholars have tried different
loss functions to obtain better accuracy, including contrast loss, triplet loss, etc. Some
existing approaches determine whether a change has occurred by comparing the parametric
distances of dual-temporal image pixel pairs, and L1 and L2 distances are frequently used
to determine whether changes have taken place. For instance, STANet [11] uses a pyramid
attention mechanism to enhance dual-temporal images and reduce false detections due
to alignment errors. DASNet [28] uses a unique dual attention mechanism to enhance
the ability of the network with a newly designed unique loss function. DSAMNet [27]
focuses on the pseudo change and noise problems in the CD process. The scale and relation-
aware Siamese network (SARASNet) [29] proposed relation-aware, scale-aware, and cross-
transformer modules to deal with spatial information and scaling changes between objects.
The change guiding network (CGNet) [30] tackles the insufficient expression problem of
change features in the conventional U-Net structure to remove the edge integrity and
internal holes phenomenon of change features. The ECFNet [31] can better utilize the fine-
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grained information in the multiscale feature map for result prediction, which can improve
the detection performance of small objects and reduce the false detection around the edge
pixels of change objects. SDMNet [32] deals with the problems of effectively distinguishing
interesting changes and pseudo changes in high-resolution remote-sensing images and
forming accurate and robust CD results. Denoising diffusion probabilistic models for
change detection (DDPM- CD) [33] trains lightweight change detection classifiers on a
large number of existing RSIs using diffusion model decoders to detect accurate changes.
TINYCD directly shares the weight of the existing network to achieve the purpose of the
Siamese network [34]. The method based on feature interaction and multitask learning
(FMCD) [35] can improve the ability to detect changes in complex scenes, by modeling the
context information of features through a multilevel feature interaction module, so as to
obtain representative features, and to improve the sensitivity of the model to changes. The
change gradient image (CGI) [36] first embeds a multiscale information attentional module
in U-Net to achieve multiscale information and adds the position channel attention module
to pay more attention to the spectral and spatial information in the multiscale fused feature
map. A composite higher-order attention network with multiple encoding paths named
MCHA-Net [37] can improve the generalizability and detection accuracy of the network
and outperforms state-of-the-art methods in both visual interpretation and quantitative
evaluation. An unsupervised single-temporal change detection framework based on intra-
and inter-image patch exchange (I3PE) [38] allows for training deep-change detectors on
unpaired and unlabeled single-temporal remote-sensing images that are readily available
in real-world applications.

The bitemporal image transformer (BIT) [39] uses a transformer to model long-range
context in bitemporal images, enhancing the discrimination of paired features. Change-
Former [40] unified the layered transformer encoders and multilayer perceptual decoders
into a Siamese network structure to effectively extract features required for change detec-
tion without CNN. H-SALENet [41], a hierarchical self-attention augmented Laplacian
pyramid expanding network, combines a deep convolutional module with a hierarchical
and long-range context augmentation module (HLAM) to extract the deep features of
bitemporal images and a Laplacian pyramid expansion module (LPEM) to catch change
information at different scales and reduce high-frequency information loss simultaneously.
The dual-perspective change contextual network (DPCC-Net) [42] emphasizes the pro-
cess of extraction and optimization of change features by bitemporal feature fusion and
contextual modeling. An attention-based multiscale transformer network (AMTNet) [43]
utilizes a CNN-transformer structure to address complex textures, seasonal variations,
climate changes, and new requirements issues. This model employed attention and trans-
former modules to model contextual information in bitemporal images effectively [32]. The
coarse-to-fine boundary refinement network (CBR-Net) [44] can accurately extract building
footprints from remote-sensing imagery. A bitemporal remote-sensing image change detec-
tion network based on a Siamese-attention feedback architecture, referred to as SAFNet [45],
a global semantic module (GSM) on the encoder network, generates a low-resolution se-
mantic change map to capture the changed objects, a temporal interaction module (TIM)
and two auxiliary modules—the change feature extraction module (CFEM) and the feature
refinement module (FRM)—to learn the fine boundaries of the changed target. The SAFNet
algorithm exhibits state-of-the-art performance. A network based on feature differences and
attention mechanisms (DAFNet) [46] includes a Siamese architecture-encoding network
that encodes bitemporal images, a difference feature-extraction module (DFEM) for extract-
ing difference features from two periods, an attention-regulation module (ARM) with an
enhanced attention mechanism to optimize the ability to extract difference features, and a
cross-scale feature-fusion module (CSFM) for merging features from different encoding
stages. This method effectively alleviates issues of target misdetection, false alarms, and
blurry edges.
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3. The Proposed Method

Our proposed method proposed two modules to enhance the BIT [39] method. In
this section, the proposed architecture of HSAA-CD for non-agricultural change detection
was presented.

3.1. Overview of the Proposed Architecture

In this paper, two different modules, FAM and CBAM, are applied to construct the
architecture of HSAA-Net. As shown in Figure 1, the proposed framework consisted of
two parts: a CNN backbone network and a bitemporal image transformer. The input of the
network is a bitemporal remote-sensing image. Two ResNet50 [47] with shared weights are
used as a feature extractor for the input bitemporal remote-sensing image pairs, aggregating
different levels of features of each input image through the feature aggregation module
for multiscale representation. Image feature maps extracted by ResNet are converted into
semantic tokens by using the VT [48]. Then the tokens are fed into the transformer-encoder
to obtain the global semantic information and capture long-range relations to comprehend
the global semantic information for each temporal. Afterward, the transformer-decoder
is used to project the corresponding semantic tokens into the pixel space to obtain deep
features for each temporal refinement. We use CBAM in ResNet’s bottle block to obtain
more efficient features. Meanwhile, we use FAM to merge the feature information of the
underlying semantics to generate the extracted primary feature maps. Then, the high-level
feature maps obtained from the transformer-decoder are concatenated with the extracted
primary feature maps from FAM. Finally, we fed the obtained variation feature map into
PM to obtain the change map.
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Figure 1. Overall structure of the proposed network model.

3.2. Feature Aggregation Module (FAM)

The feature aggregation module is used to extract a low-level feature map of the input
remote-sensing image pair with the same network structure. The structure of the feature
aggregation module is shown in Figure 2. In our method, each ResLayer contains three
convolutional layers, three batch normalization layers, two rectified linear unit (ReLU)
functions, and one CBAM layer. The specific approach of FAM is as follows: we input
reslayer1, reslayer2, reslayer3, and the up-sampled feature maps into FAM, and the feature
maps of each layer in FAM are processed by two 1 × 1 convolutional layers followed with
BatchNorm (BN) action and a 3 × 3 convolutional layer. This is followed by BN action,
one ReLU action, which concatenates the same size feature maps of four different layers,
and finally passes through a LastConv layer. The LastConv layer contains two identical
1 × 1 convolutional layers with BN and ReLU action. Finally, the low-level feature maps
are generated.
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3.3. Convolutional Block Attention Module (CBAM)

In this paper, we improved ResNet50 by removing the fully-connected layers of the
classical ResNet50 and adding CBAM modules to each of the remaining two convolutional
layers and four residual layers (ResLayers) to extract bitemporal image feature maps. The
convolutional block attention module (CBAM) [49] sequentially extrapolates intermediate
feature maps along independent dimensions (channel and spatial) to infer attention maps
and these attention maps are then multiplied with the input feature maps for adaptive
feature optimization. The structure of the CBAM is shown in Figure 3. We integrate the
CBAM module after the BatchNorm layer in ResNet’s bottleneck layer, and the outputs from
the BatchNorm layer are subjected to the global max pooling and global average pooling
based on width and height, respectively, and then passed through the MLP, respectively,
and the MLP outputs are subjected to the element-wise feature optimization. The output
features of MLP are subjected to element-wise summation and sigmoid activation to
generate the final channel attention feature map. Subsequently, the channel attention feature
map and input feature map are subjected to element-wise multiplication to generate. The
channel attention feature map and input feature map are subsequently multiplied element-
wise in order to generate the input features required by the spatial attention module.

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= σ

(
W1

(
W0

(
Fc
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max))
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Figure 3. The overview of CBAM. The module includes two sequential sub-modules: Channel
and Spatial.

The spatial attention module takes the output feature map of the CAM as the input
feature map. Firstly, we perform a channel-based global max pooling and global average
pooling, and then we perform a concatenate operation on these two results based on the
channel. Then we convolve them to 1 channel, generate the spatial attention feature by
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sigmoid, and finally multiply the feature with the input feature of this module to get the
final generated feature.

Ms(F) = σ
(

f 7×7([AvgPool(F); MaxPool(F)])
)

= σ
(

f 7×7
([

Fs
avg; Fs

max

])) (2)

4. Experiments and Results
4.1. Datasets
4.1.1. Self-Built Image Dataset

The change-detection dataset applied to agriculture is relatively lacking. There are
lots of reasons. The first one is the high costs of collecting, processing, and standardizing
large-scale data. The second reason is that the types of changes detection in agricultural
land vary greatly for climate, season, and the similarity of vegetation.

This article constructs a dataset for detecting non-agricultural changes in cultivated
land using multi-source data, including a series of high-resolution satellite remote-sensing
images from different satellites, the vector data of geographical and national monitoring
results from the administering department, and the land-use classification results of the
National Land Use Surveying. High-resolution satellite remote-sensing data was selected
from domestic optical high-resolution satellite images in the third and fourth quarters of
2020, including the Resource Satellite series, High Resolution series, and Beijing 2 (Figure 4).
The changes in the land cover of rice and corn agricultural land are particularly significant
in these two seasons and are difficult to distinguish from changes in the surrounding
environment. When we choose to detect in the datasets of these two seasons and achieve
high accuracy, it indicates that the detection of non-agricultural changes in this region
or similar environments has a relatively high adaptability. Source-specific information
from the high-resolution satellite remote-sensing image data is presented in Table 2. The
data covered two full-province coverage surveys of geographical conditions in 2015 and
2018 in Hubei Province. To ensure consistency in the resolution of images before and
after the interpretation of sample changes, all images were uniformly corrected to 2 m
resolution. Remote-sensing monitoring data of land use which contains 8 class 1 and
47 class 2 categories was downloaded from the Resources Environment Science and Data
Center, and vector boundaries were extracted from multi-temporal land-use classification
grid data to select the vector range of arable land, which was used as a reference to select
the range of changes in arable land. Geographic country surface coverage classification
system information is presented in Table 3.

Table 2. High-resolution satellite remote-sensing image data sources.

Satellite Name Launch Time Spectral Bands Resolution (m) Coverage Area Orbit Information

ZY-3 January 2012 Visible, Near-Infrared 2.1–5.8 Global Sun-synchronous orbit
GF-1 April 2013 Visible, Near-Infrared 2–16 Global Sun-synchronous orbit
GF-2 August 2014 Visible, Near-Infrared 1–4 Global Sun-synchronous orbit

GF-6 June 2018 Visible, Near-Infrared,
Mid-Infrared 2–8 Global Sun-synchronous orbit

GF-7 November 2019 Visible, Near-Infrared,
Mid-Infrared 0.8–3.2 Global Sun-synchronous orbit

BJ-1 September 2008 Visible, Near-Infrared 4 Global Sun-synchronous orbit

Based on the consistency of data available, we select Qianjiang City, Shayang County,
Zhijiang City, Qichun County, and Hong’an County of Hubei Province for the image
dataset. The HRRSI were acquired in 2015 and 2018 and the change reports from satellite
monitoring of land use nationwide in 2020 and 2021. The non-agricultural use of arable
land includes occupying cultivated land to plant trees, building houses, lakes or water,
building roads, building greenhouses, building photovoltaics, building landscape parks,



Remote Sens. 2024, 16, 1372 9 of 19

filling land, and building other agricultural facilities. Table 4 shows the 9 main types
of arable land conversion to other land uses and the spectral characteristics of types of
non-agricultural arable land changes.

Remote Sens. 2024, 16, x FOR PEER REVIEW 9 of 21 
 

 

 
(a) 

 
(b) 

Figure 4. Image coverage in the third quarter and fourth quarter. (a) Image coverage in the third 
quarter and (b) Image coverage in the fourth quarter. 

Table 2. High-resolution satellite remote-sensing image data sources. 

Satellite Name Launch Time Spectral Bands Resolution (m) Coverage Area Orbit Information 
ZY-3 January 2012 Visible, Near-Infrared 2.1–5.8 Global Sun-synchronous orbit 
GF-1 April 2013 Visible, Near-Infrared 2–16 Global Sun-synchronous orbit 
GF-2 August 2014 Visible, Near-Infrared 1–4 Global Sun-synchronous orbit 

GF-6 June 2018 Visible, Near-Infrared, 
Mid-Infrared 2–8 Global Sun-synchronous orbit 

GF-7 November 2019 
Visible, Near-Infrared, 

Mid-Infrared 0.8–3.2 Global Sun-synchronous orbit 

BJ-1 September 2008 Visible, Near-Infrared 4 Global Sun-synchronous orbit 

Table 3. Geographic country surface coverage classification system. 

No. Class I Class II  

1 Buildings 
Multi-story house building area, low house building area, 

abandoned house building area, multi-story and above 
independent house building, low building 

Urban construction land 

2 
Railroads and 

Roads Railroads, highways, city roads, country roads, ramps Urban construction land 

3 Structures Hardened surfaces, hydraulic facilities, transportation 
facilities, city walls, 

Urban construction land 

4 Manually 
excavated land 

Open-pit extraction sites, stockpiles Construction sites, other 
man-made stockpiles Paddy fields Urban construction land 

Figure 4. Image coverage in the third quarter and fourth quarter. (a) Image coverage in the third
quarter and (b) Image coverage in the fourth quarter.

Table 3. Geographic country surface coverage classification system.

No. Class I Class II

1 Buildings
Multi-story house building area, low house building area,

abandoned house building area, multi-story and above
independent house building, low building

Urban construction land

2 Railroads and Roads Railroads, highways, city roads, country roads, ramps Urban construction land

3 Structures Hardened surfaces, hydraulic facilities, transportation facilities,
city walls, Urban construction land

4 Manually excavated land Open-pit extraction sites, stockpiles Construction sites, other
man-made stockpiles Paddy fields Urban construction land

5 Cultivated Land
early land, orchards, tea plantations, mulberry plantations,
rubber plantations, seedling paintings, flower weeks, other

economic seedlings
Ecological living land

6 Forest and Grass Cover
Tree forests, shrub forests, mixed tree and shrub forests,

bamboo forests, open forests, young planted forests, sparse
shrubs and grasslands, natural grasslands, artificial grasslands

Ecological land

7 Water Rivers, canals, lakes, reservoirs, lakes, glaciers and permanent
snow cover Ecological land

8 Deserts and Bare Ground Deserts and bare ground Saline surface, clay surface, sandy
surface, rocky surface Rocky surface Ecological land
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Table 4. Samples of Cultivated land transfer to other types.

Sample Type Pre-Image Post-Image Ground Truth

To Forest and
Grassland
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Zhijiang City, Qichun County, and Hong’an County of Hubei Province for the image da-
taset. The HRRSI were acquired in 2015 and 2018 and the change reports from satellite 
monitoring of land use nationwide in 2020 and 2021. The non-agricultural use of arable 
land includes occupying cultivated land to plant trees, building houses, lakes or water, 
building roads, building greenhouses, building photovoltaics, building landscape parks, 
filling land, and building other agricultural facilities. Table 4 shows the 9 main types of 
arable land conversion to other land uses and the spectral characteristics of types of non-
agricultural arable land changes.  
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data augmentation. The original remote-sensing images were cut into 256 × 256 pixels
blocks, sample label images were created, and then data augmentation processes such as
rotation, displacement, random clipping, and random scaling were applied to the images.
Finally, we obtained 2036 sample image pairs 256 × 256 pixels in size. The training,
validation, and test sets of the dataset are 70%, 20%, and 10%, respectively.

Figure 5 displays part of the image maps in the dataset, Figure 5a,b show the original
bitemporal image maps and Figure 5c shows the label images obtained for different land-
use types.
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4.1.2. LEVIR-CD Dataset and WHU-CD Dataset

We also tested the proposed approach on two commonly used and high-quality RSI
benchmark datasets: the LEVIR-CD Dataset and the WHU-CD Dataset.

The LEVIR-CD dataset was proposed by Beihang in 2020 for change detection in public
buildings [11]. The dataset consists of 637 pairs of images, and the number of training,
validation, and test dataset images in the dataset are 445, 64, and 128, respectively. The
spatial resolution is 0.5 m/pixel, and the image size is 1024 × 1024 pixels. We crop the image
from the original 1024 × 1024 pixels in the dataset into 16 sub-blocks 256 × 256 pixels in
size without overlapping regions. Then we divide the dataset according to the same ratio
as the self-built dataset. The training, validation, and test sets of the dataset are 70%, 20%,
and 10%, respectively. Finally, the number of image pairs in the three datasets is 7120, 2048,
and 1024, respectively.

The Wuhan University dataset [9] is a widely used public building-change-detection
dataset proposed by Wuhan University. The dataset is collected from two aerial remote-
sensing RGB images of New Zealand in 2012 and 2016, containing 12,796 buildings and
16,077 buildings, respectively. The size is 32,507 × 15,354 pixels at a resolution of 0.2 m.
We crop the two images into pairs which are 256 × 256 pixels in size without overlapping
areas. Then, we randomly divide the cropped images into three parts: 6096, 762, and 762
in the ratio of 8:1:1. These are used as the training dataset, test dataset, and validation
dataset, respectively.

On the two publicly available datasets, we performed data preprocessing including
data cutting and dividing the dataset, the images in the data set were evenly cut into image
blocks of 256 × 256 pixels.

4.2. Experiment Setting and Evaluation Metrics

The stochastic gradient descent (SGD) optimizer was used to optimize the experimen-
tal process. Learning rate (LR) and batch size (BS) were obtained experimentally. Cross
entropy loss function is adopted for the loss function. The learning rate strategy was the
polynomial decay strategy, using the formula:

lr = lr0 ×
(

1 − i
max _i

)p
(3)
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where lr is the learning rate, lr0 is the initial learning rate and was set to 0.001, i refers to
the current iteration number, max _i refers to the maximum number of iterations, and p is
the learning rate strategy index, which is set to 0.9 in the experiment.

In order to make an effective evaluation of the experimental results, this paper used
the overall accuracy (OA), F1-score (F1), precision (Pre), recall (Rec), and intersection over
union (IoU) as evaluation indices. The formulas are as follows:

OA =
TP + TN

P + N
(4)

F1 = 2 × Pre × Rec
Pre + Rec

(5)

Pre =
TP

TP + FP
(6)

Rec =
TP

TP + FN
(7)

IoU =
TP

TP + FP + FN
(8)

where P, N, TP, TN, FP, and FN represent the positive, negative, true positive, true negative,
false positive, and false negative pixels in the prediction result, respectively.

4.3. Comparison of Most Recent Networks

To verify the effectiveness and superiority of HSAA-CD, we selected several previous
change-detection methods as comparative methods on three datasets (LEVIR, WHU-CD,
and self-built RSI datasets). The methods used for comparison include the SNUNet [24],
DTCDSCN [47], and BIT methods [39].

SNUNet [24] uses the Siamese UNet++ network as a feature extraction tool and uses
the integrated channel attention module that has been comprehensively investigated for
land cover CD. DTCDSCN [47] uses two different encoders and a dual attention module to
extract more context features in the decoder part to obtain more detailed difference features.
The BIT [39] method is a transformer-based approach that uses a transformer to model
long-range context in bitemporal images, enhancing the discrimination of paired features
are state-of-the-art methods.

We compare these three change-detection methods mentioned above with our pro-
posed HSAA-CD method on three datasets and analyze the results qualitatively and
quantitatively. To validate the effectiveness of our enhanced BIT model, we set the original
BIT model as a baseline for comparison.

4.4. Experiments on Self-Built Dataset

Table 5 shows the quantitative results of different methods on the self-built dataset.
As shown in Table 5, our method is superior in most evaluation indicators on the self-built
dataset compared to other methods. Specifically, our proposed method has achieved the
best performances in precision, F1, IoU, and OA, reaching 77.96%, 68.50%, 59.29%, and
93.56%, respectively. Compared with the BIT model, our method achieves performance
improvements of 1.99% and 1.62% in the F1 and IoU metrics, respectively.

Figure 6 shows the change-detection results of different methods in the self-built
dataset. As shown in the first two rows of Figure 6, although the BIT model and our model
detect the wrong change area, the prediction of building on agricultural land is accurate,
while the other two methods have errors in detecting the change area or fail to detect the
change area. It can be seen that in the third row of the large agricultural land area change,
our method monitors the complete area change, while the other methods fail or partially
detect the change area. By use of the channel and spatial attention mechanism added in
ResNet and the feature aggregation module, our method is able to better perceive the rich
low-level and high-level features, and the algorithm is able to better determine the extent
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of the agricultural land and has better performance in detecting the changes of both small
and large agricultural land.

Table 5. Experimental results of different methods on the AGRI-CD dataset.

Method Pre (%) Rec (%) F1 (%) IoU (%) OA (%)

SNUNet 64.88 66.30 60.09 57.96 92.76
DTCDSCN 72.82 64.33 65.32 58.16 93.05
BIT 73.64 63.11 66.51 57.67 93.23
BaseLine 74.24 63.51 67.41 58.27 93.31
+CBAM 77.33 63.73 68.31 59.14 93.42
+CBAM + AM 77.96 63.76 68.50 59.29 93.56
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Figure 6. Change maps by different methods on the self-built datasets and qualitative comparison
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(e) DTCDSCN. (f) BIT. (g) Ours. In the change map, white pixels indicate actual changes, and black
pixels indicate no changes.

In this test, most of the errors of change detection are concentrated in seasonal changes
in rice fields to lakes and ponds, which have strong confusion between rice fields and
ponds in the spectrum. The missed identification focuses on the conversion of arable land
to landfills, mainly due to the similar spectral characteristics of arable land and landfills,
resulting in missed identification of arable land that has actually become landfills. The
number of samples has a significant impact on the accuracy of the model. For example, the
number of samples in the study area for farmland to garden forest and grass and farmland
to landscape park is relatively small, resulting in lower recognition accuracy for farmland
to garden forest and grass and farmland to landscape park. Through the application results
in five regions, it can be seen that the sample classification proposed in this article is more
targeted towards the issue of non-agricultural conversion of cultivated land compared to
other studies.
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4.5. Experiments on LEVIR-CD Dataset and WHU-CD Dataset

Table 6 shows the quantitative results of different methods on the LEVIR-CD dataset.
As shown in Table 6, our method is superior in most evaluation indicators on the LEVIR-CD
dataset compared to other methods. Specifically, our proposed method has achieved the
best performances in precision, F1, IoU, and OA, reaching 89.14%, 88.56%, 79.84%, and
98.83%, respectively. Compared with the BIT model, our method achieves performance
improvements of 0.93% and 0.33% in the F1 and IoU metrics, respectively.

Table 6. Experimental results of different methods on the LEVIR-CD dataset.

Method Pre (%) Rec (%) F1 (%) IoU (%) OA (%)

SNUNet 89.14 87.40 87.72 78.37 98.75
DTCDSCN 88.16 86.50 87.32 77.35 98.02
BIT 88.67 88.66 87.63 79.51 98.61
BaseLine 88.72 88.76 87.86 79.62 98.69
+CBAM 88.89 88.85 88.55 79.83 98.79
+CBAM + AM 89.14 88.83 88.56 79.84 98.83

Figure 7 shows the change-detection results of different methods on the LEVIR-CD
dataset. As shown in the first two rows of Figure 7, our model is more accurate in predicting
edges compared to the BIT method change-detection results. As shown in the sixth row
of the figure, our method predicts complex building changes more completely and accu-
rately than other methods. Our method can learn the building characteristics better than
other methods, and the detection results contain correct edge information and complete
change areas.
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of the results. (a,b) The input bitemporal remote-sensing images. (c) Ground truth. (d) SNUNet.
(e) DTCDSCN. (f) BIT. (g) Ours. In the change map, white pixels indicate actual changes, and black
pixels indicate no changes.
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Table 7 shows the quantitative results of different methods on the WHU-CD dataset.
The WHU-CD dataset is also a building-change-detection dataset that contains only the
change areas of buildings. We selected large building change areas for change detection.
Our method achieves optimal results in all metrics of precision, recall, F1, OA, and IoU,
reaching 85.55%, 83.54%, 84.29%, 98.39%, and 73.41%, respectively. Compared with other
methods, our method improves F1 and IoU by at least 0.52% and 0.51%, respectively.

Table 7. Experimental results of different methods on the WHU-CD dataset.

Method Pre (%) Rec (%) F1 (%) IoU (%) OA (%)

SNUNet 78.37 82.20 73.34 71.09 97.62
DTCDSCN 80.74 81.20 78.32 70.77 97.25
BIT 84.98 82.64 83.77 72.90 97.21
BaseLine 85.08 83.64 84.07 73.09 98.11
+CBAM 85.45 83.50 84.16 73.25 98.32
+CBAM + AM 85.55 83.54 84.29 73.41 98.39

Figure 7 shows the change-detection results of different methods in the WHU-CD
dataset. As shown in Figure 8, our method obtained the best correct and complete prediction
results among all the methods. In detail, as you can see in the second and fourth rows
of the figure, the change-detection results generated by the BIT and DTCDSCN methods
are noisy and contain some unnecessary information. Our method generated less noisy
and correct areas. In the sixth row, our method generates a hole, incorrectly treating the
lower left corner of the after-time image as a house. Our method generates better results in
most cases.
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(e) DTCDSCN. (f) BIT. (g) Ours. In the change map, white pixels indicate actual changes, and black
pixels indicate no changes.
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Figures 7 and 8 show the change-detection results of the different methods on the
LEVIR-CD and WHU datasets. It is observed that our method achieves the best perfor-
mance on two publicly available building-change-detection datasets of different resolutions
and sizes.

We used a graphics workstation with a configuration that includes a Nvidia RTX
A6000ada professional graphics card with 48 G memory. The processing time is shown in
Table 8.

Table 8. Process time of different methods on three datasets.

Method Self-Built LEVIR-CD WHU-CD

SNUNet 1 h 02 min 13 h 42 min 11 h 10 min
DTCDSCN 2 h 47 min 15 h 21 min 9 h 39 min
BIT 1 h 43 min 17 h 15 min 11 h 58 min
BaseLine
+CBAM 1 h 38 min 15 h 56 min 11 h 28 min
+CBAM + AM 1 h 41 min 16 h 32 min 11 h 42 min

5. Discussion

Since the samples of the self-constructed image data are based on geographical and
national monitoring results, this method can significantly improve the product efficiency in
the practical application and the quality. The monitoring results can be used as the ground
truth during the dataset generation, which can improve the accuracy of the cultivated land
non-agricultural monitoring model. The samples collected based on geographical and
national monitoring results have high spatiotemporal consistency in their change pattern
vectors, remote-sensing image data, and land-use type attribute values. However, the
manual collection of patterns or semi-automatic change recognition collection methods are
limited to the differences in spectral characteristics of ground objects, which can easily lead
to difficulty in distinguishing different objects that have the same spectrum and the same
objects that have different spectrums. The cultivated land attribute of the geographical and
national monitoring results includes fallow land, and this article classified it as cultivated
land in the previous image during sample collection. Due to the temporal characteristics
of geographical and national monitoring results, which are concentrated from March to
July each year, this article does not consider the situation of winter fallow fields being
transferred out. In subsequent research, the temporal range of data sources can be expanded
and this type of sample can be collected for monitoring model training.

In this paper, we collected the data resources in Hubei province. The cultivated land or
the farmland situation is in relevant provinces and regions in the middle and lower reaches
of the Yangtze River. It was also popular for the cultivated land situation in the areas of
the same latitude and altitude. In those areas, rice fields are the main cultivated crop. It
has very obvious differences from the corn fields in the north. There are also significant
differences compared to other rice fields in China. To improve the generality of the method
in this article, it is necessary to add more samples of cultivated land in different regions
and cases of changes.

On the other hand, the current definition of cultivated land types in this article uses the
geographical and national monitoring classification standards, which have some differences
from the land cover and utilization classification standards and the classification standards
of land resource surveys. The same patch has different names and semantic differences in
different classification standards. For the tasks of non-agriculture change detection, map-
ping lists for the different classes between the different classification standards can improve
the quantity of the dataset by integrating the existing land-cover/land-use image datasets.

The unbalance in the number of different classes may reduce the accuracy of specific
applications. The path for changes between some classes remains only a theoretical pos-
sibility. For those situations, we did not specifically enhance the sample counts and the
transformation data for each type of sample.
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Compared to other networks, the method proposed in this article focuses more on
improving the practical accuracy of specialized application projects. By adding a semantic
aggregation module, samples of the same type can be semantically merged without paying
attention to the conversion of internal semantic type samples. This is mainly to meet the
practical needs of engineering. Existing methods have the ability to detect changes in each
subcategory of non-agricultural changes in cultivated land, but their overall accuracy in
detecting changes is relatively low. The existing neural network models are susceptible to
external factors during change detection, leading to missed detection results. Methods such
as the BIT [39] method that use transformers to model long-range context in bitemporal
images enhance the ability to discriminate pairs of features. However, transformer-based
methods are prone to ignore the low-level semantics during change detection, resulting
in unclear edges and failure to correctly identify change regions in the detection results.
In practical applications, this often increases the workload and cannot be directly used. The
semantic aggregation module and attention module in this article actually sacrifice the detection
ability of internal type change transformation to improve the overall accuracy of change
detection. To obtain detailed information and accuracy of the transformation of each subclass
in the future, it may be necessary to divide it into two parts. By adding subclass mapping
relationship diagrams or boundaries, while determining the overall detection accuracy, further
refining the content of internal changes and the accuracy of each part.

6. Conclusions

In this paper, we propose a hierarchical semantic aggregation mechanism and an atten-
tion module bitemporal image transformer method named HSAA-CD for non-agricultural
change detection in cultivated land. We first used multi-resource surveying data to produce
a well-tagged and high-resolution cultivated land and non-agricultural image dataset.
Then, we proposed a hierarchical semantic aggregation mechanism and an attention mod-
ule bitemporal image transformer method named HSAA-CD for non-agricultural changes
detecting in cultivated land. The HSAA-CD added a hierarchical semantic aggregation
mechanism for clustering the input data for ResNet as the backbone network and an
attention module to improve the feature edge.

We evaluated the proposed HSAA-CD on three datasets, the self-built image dataset,
the LEVIR-CD dataset and the WHU dataset. Firstly, using the self-built image dataset,
our method achieved 93.56% OA. Our method improved the OA and average F1-score by
0.25% and 1.09%, respectively, compared to the BIT method and was also higher than the
SNUNet and DTCDSCN methods. Secondly, on the LEVIR-CD and WHU-CD datasets,
the OAs of HSAA-CD were 98.83% and 98.39, and the average F1-scores were 88.56%
and 84.29, which illustrated the effectiveness and feasibility of HSAA-CD in improving
change-detection performance.

Nevertheless, the performance of HSAA-CD is still restricted due to the complex
structure and non-uniform distribution of non-agricultural types. As a continuation of
this work, some widely used methods, such as semantic information edge detection and
the dual attention mechanism, will be considered in the future as methods to improve the
performance of HSAA-CD for non-agricultural change of cultivated land. The proposed
HSAA-CD method proved suitably accurate for high-resolution remote-sensing change
detection of non-agricultural in cultivated land.
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