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Abstract: There is growing demand for the high-fidelity characterization of satellites in Geosyn-
chronous Earth Orbit (GEO) to support Space Domain Awareness (SDA). This is particularly true
for newly launched satellites, where it is necessary for satellite providers to ascertain whether com-
ponents have deployed properly. Conventional wideband radar systems are capable of imaging
satellites provided that (i) they have sufficient power aperture and bandwidth, and (ii) they observe
enough target aspect change to generate a resolved image. While wideband radars are used routinely
for characterizing satellites in Low-Earth Orbit (LEO), powerful radars with sensitivity sufficient
for large GEO ranges (36,000 km or greater) are lacking. Thus, researchers often rely on more
widely available high-power narrowband tracking radars for GEO characterization. In this paper,
we present a novel range-Doppler-time (RDT) tensor processing technique for GEO characterization
with narrowband radar. This technique encapsulates the strengths of previously proposed methods
for narrowband-radar characterization at GEO, providing a generalized approach that can be applied
in a variety of settings. The technique generates fully resolved 2D images of rotating GEO satellites
in low-bandwidth scenarios. In cases where aspect change is limited, the technique provides detailed
Doppler information for enhanced satellite status monitoring. This work presents a comprehensive
quantitative analysis of the technique that considers the impact of key parameters on characterization
performance. Simulated radar data, and radar data collected in a compact range on a scaled satellite
model, are used to evaluate the technique.

Keywords: range-Doppler-time tensor (RDT); range superpulses; Doppler superpulses; Doppler
tomography; bandwidth enhanced non-coherent imaging (BENI); power-sum image reconstruction;
GEO characterization

1. Introduction

There is a need for detailed characterization of satellites in Geosynchronous Earth
Orbit (GEO) to support Space Domain Awareness (SDA). SDA objectives such as satellite
stability assessment and target-size estimation are of great interest to the space surveillance
community. In addition, satellite providers need to ascertain whether components such as
solar panels have deployed properly after launch. Although a number of concepts have
been proposed for space–object characterization, ground-based optics and radars are the
dominant sensor approaches utilized for this awareness at GEO. Earth-based radars are
particularly well matched to satellite characterization, as they can provide high-resolution
imagery of space objects at all times of the day and in a variety of weather conditions [1].
Additionally, in contrast to optical sensors, radar image resolution depends only on the
transmitted bandwidth and the total aspect change observed, and thus, is independent
of the range to the target [2,3]. Ground-based radars can image all satellites visible to the
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sensor in Low Earth Orbit (LEO) and Medium Earth Orbit (MEO) provided they have
sufficient power aperture to generate a detectable return, and thus, they are routinely used
for this purpose. However, in GEO, radar imaging is more challenging because, depending
on the location of the target, the bandwidth and aspect change needed for high-resolution
imaging may not be available. This is due to two factors. First, there are a small number of
wideband radars with power sufficient to reach GEO ranges (36,000 km or greater), thus
limiting the region of the GEO belt where high range resolution can be achieved. Second,
most satellites in GEO are Earth stabilized and reside in low-inclination orbits. Thus, the
satellites present very little aspect change to radars on the Earth, resulting in the target
being unresolved in cross range.

Related work has explored deep-space satellite characterization through many differ-
ent approaches, such as light-curve polarimetry for shape and material estimation [4,5],
pattern recognition applied to unresolved images for object identification [6], as well as
traditional techniques such as frame differencing [7]. Recent efforts have achieved success
in applying Artificial Intelligence (AI) algorithms to the problem of SDA, as AI algorithms
have proven highly capable of object detection [8]. A recently published paper explored
the performance of AI-based algorithms for SDA when compared to legacy methods [9],
while other papers have seen success in utilizing AI on light-curve data [10–13], orbital-
observation data [14], or optical imagery [15] for characterization. However, these works do
not focus on complex-valued radar data or the capabilities that narrowband imaging offers.

Despite the aforementioned limitations, there are a number of cases where either
partial bandwidth or partial aspect change is available, and thus, can be exploited for
characterization. There are a large number of deep-space narrowband tracking radars
that provide coverage of most of the GEO belt. Thus, researchers often rely on these more
widely available high-power radars for GEO characterization. The bandwidth provided
by the narrowband radars, while insufficient for traditional high-resolution radar imag-
ing, can be coupled with the Doppler information naturally provided by these sensors
to generate images. In addition, satellites present opportunities for imaging when op-
erating in modes where the body rotates, or when the satellite reaches end of life and
enters into a tumble motion post-deactivation (after insertion into super-GEO graveyard
orbit). Given rotation, Doppler techniques can be used to form resolved images, even in
cases where the bandwidth is reduced to the point where the target is unresolved in range.
Examples of Doppler techniques applicable to GEO include Doppler–Time Intensity (DTI)
analysis [16–20], Doppler tomography imaging [16–19,21–23], coherent narrowband imag-
ing [22,24–27], and the recently proposed Bandwidth Enhanced Non-coherent Imaging
(BENI) algorithm [28].

Doppler–Time Intensity plots, which show the Doppler trajectories of individual
scatterers on an object, have long been used to characterize spaceborne targets [1]. More
recently, the use of tomography has been explored as a way to generate images of tumbling
satellites in the absence of bandwidth [16,28]. Here, each column of the DTI, corresponding
to a fixed time instant, provides a one-dimensional projection of the target’s reflectivity.
Thus, an inverse Radon transform can be applied to one tumble period of data to form an
image of the satellite. As studied in [28], the resulting Doppler tomography images provide
a reduced-quality representation of the target in comparison to conventional wideband
imaging due to the lack of resolving capability in range from insufficient bandwidth.
Noting that many narrowband tracking radars have some bandwidth available, the BENI
algorithm was proposed to improve upon Doppler tomography by incorporating range
information [28]. For cases where the target has complex rotational dynamics (e.g., spin-
precession motion), imaging becomes more challenging. In such cases, the DTI plots
by themselves provide valuable information that can be used to make assessments about
satellite structure, status, and behavior. Motivated by this, an enhanced DTI product known
as Doppler superpulses was developed [16]. Doppler superpulses use information from
multiple DTIs (one from each range bin) to form a sensitivity-enhanced composite, which
can be used as an input for tomography to produce a superior reconstruction. The utility of



Remote Sens. 2024, 16, 1374 3 of 32

the Doppler techniques above was demonstrated for GEO characterization in a recent paper,
using multistatic radar data collected on several tumbling space objects. Here, the Millstone
Hill radar in Westford, MA and the TIRA radar in Wachtberg, Germany were used as
narrowband illuminators with radio telescopes in the United Kingdom and the Netherlands
as bistatic receivers [29,30]. These works highlight both the feasibility and successful
demonstration of narrowband radar techniques for rotational motion determination and
size estimation using real, on-orbit tumbling rocket bodies.

While a number of disparate narrowband-radar techniques have been proposed for
GEO characterization, each with strengths in specific scenarios, a generalized processing
framework applicable across a variety of settings is lacking. Doppler tomography can be
used to image a rotating satellite when the object is unresolved in range (i.e., no or low
radar bandwidth). BENI can produce improved images of the same object, but only when
additional bandwidth is available. If aspect change is limited, e.g., when only partial rota-
tion of the satellite is observed, one can obtain information through Doppler–time analysis.
DTI plots are useful in inferring target type, in determining whether satellite components
have deployed properly after launch, and in assessing satellite stability and rotational
dynamics. Moreover, DTI plots and tomographic images, in concert, provide complimen-
tary information that can be used to enhance satellite assessment; DTIs capture localized
behavior well (e.g., specular reflections, rotational maneuvers), while tomographic images
highlight the structural features of targets. Thus, the complete characterization of GEO
satellites requires the application of multiple techniques, followed by the interpretation
and integration of the data-processing outputs. For robust and efficient characterization at
GEO, an integrated processing approach is needed.

In this paper, we present a novel range-Doppler-time (RDT) tensor processing tech-
nique for GEO characterization with narrowband radar. This technique encapsulates the
strengths of previously proposed methods for narrowband-radar characterization at GEO,
providing a generalized approach that can be applied in a variety of settings. Our method
expresses the radar signal as a 3D tensor varying in range, Doppler, and time. By applying
simple operations to the tensor, we demonstrate that a variety of characterization products
can be generated. These include fully resolved 2D power-sum images of rotating GEO
satellites, as well as range and Doppler superpulse plots providing detailed, time-localized
characterization of space objects. In addition, the 3D framework lends itself well to new
extensions of the technique for sensitivity enhancement that exploit the Higher-Order
Singular Value Decomposition (HOSVD) of the multi-dimensional tensor. The RDT ten-
sor representation makes it easy to show the relationship between previous processing
techniques (e.g., Doppler tomography and BENI) and to understand the impact of key
processing parameters.

The goals of this paper are (i) to develop a unified processing technique based on the
3D RDT tensor representation of the radar signal providing enhanced GEO characterization,
and (ii) to characterize the performance of the technique as a function of radar and target
parameters. Throughout our treatment, we will emphasize challenges encountered when
deviating from ideal image models and collection geometries. The key contributions of this
work are summarized as follows:

• Development of a novel RDT tensor processing technique for deep-space satellite
characterization

• Quantitative performance assessment of the RDT tensor processing technique consid-
ering the impact of key parameters on characterization performance

• Demonstration of extensions to the RDT tensor framework, including tensor denoising
using the Higher-Order Singular Value Decomposition (HOSVD) to produce enhanced
sensitivity images

The organization of this paper is as follows. Section 2 presents the target radar-
return signal model and provides a review of standard radar-characterization techniques.
Section 3 develops the novel 3D RDT tensor processing technique, presenting results using
both simulated and compact-range radar data. Previous imaging algorithms, Doppler
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tomography and BENI, are presented as related cases of the power-sum imaging method
proposed herein. A quantitative performance analysis of the approach is introduced in
Section 4. Section 5 discusses extensions of the 3D tensor technique. Conclusions are
presented in Section 6.

2. Background on Radar Characterization of Space Objects
2.1. Radar Imaging Geometry

The derivations for the monostatic radar-return signal models and imaging geometry
in our work are based on the following assumptions. We first assume the target is under
pure tumbling motion (angular velocity ω⃗ is constant during the entire satellite pass).
Previous work on estimating tumble periods of inactive GEO satellites has shown this
to be a valid assumption over multiple full rotations of the object [31]. For real on-orbit
targets, translational motion compensation is needed to ensure the center of rotation of
the object is aligned at zero Doppler [30]. This form of Doppler alignment results in well
focused radar-image reconstructions, and thus best serves to maximize image contrast.
The uniform rotation of different point scatterers on the target can be represented using
a turntable geometry. The target shown in Figure 1a has an angular velocity ω⃗, which is
aligned with the Z-axis of the depicted coordinate system fixed to the target’s frame, as
shown in Figure 1b.

(a) Monostatic radar-imaging geometry (b) Target reference frame

Figure 1. Turntable imaging with the target’s center of mass at the origin.

Using the origin of the target’s frame, we define the radar’s Line-Of-Sight (LOS) as the
following time-varying unit vector û(t):

û(t) =

 sin(θ̇t) sin γ
cos(θ̇t) sin γ

cos γ

 (1)

where û(t) points from the target center of mass to the radar, and

θ̇ =
2π

Tp

denotes the rotation rate of the object tumbling with period Tp, and γ is the tumble angle
between the radar LOS and the target’s rotation axis ω⃗, as shown in Figure 1b. The position
of the radar relative to the target’s center of mass is defined as rTX(t) = rTX(t)û(t). The
target can be represented using a complex-valued radar scattering reflectivity density,
σ(x), defined over a spatial volume Ω ⊂ R3, where x = [x, y, z]T ∈ Ω is the position of a
scattering element (or scatterer) on the target. Note that both û(t) and x are expressed in
a body-frame coordinate system that is fixed to the target. The target and the coordinate
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system rotate in a counter-clockwise fashion, which is equivalent to the radar LOS rotating
clockwise in the body frame and tracing out a cone.

The absolute monostatic range R̃(t; x) associated with a scatterer at x ∈ Ω can be
computed and approximated as follows:

R̃(t; x) = ∥x − rTX(t)û(t)∥ (2)

= rTX(t)

√
1 +

∥x∥2

r2
TX(t)

− 2xTû(t)
rTX(t)

≈ rTX(t)
[

1 − xT r̂TX(t)
rTX(t)

]
= rTX(t)− xTû(t)︸ ︷︷ ︸

R(t;x)

,

R(t; x) = xTû(t), (3)

where R(t; x) denotes the relative range, or range to the scattering element at x relative to
the center of mass of the object.

The expression for the scatterer relative-range trajectory in (3) makes several simplify-
ing assumptions that are often applicable to GEO and near-GEO objects. First, the radar
and satellite center of mass are fixed relative to each other. This assumption is appropriate
for an Earth-based radar observing a satellite in Geosynchronous orbit (i.e., orbit with
zero-inclination at GEO altitude). Second, the satellite is in a pure tumble, rotating with
a fixed angular velocity. The two assumptions hold reasonably well for slowly drifting
objects subject to natural forces over the timescales of interest for imaging. Later in the
paper, we will discuss the impact of deviations from the assumptions.

Using (1) and (3), we have

R(t; x) = x sin γ sin(θ̇t) + y sin γ cos(θ̇t) + z cos γ. (4)

To gather more intuition about the form of (4), we express x and y in polar coordinates:
x = ρ cos φ and y = ρ sin φ. This results in

R(t; x) = ρ sin γ sin(θ̇t + φ) + z cos γ.

Thus, the trajectory takes the form of a sinusoid with amplitude ρ sin γ, phase angle
φ, and offset z cos γ. Note that the sinusoid attains maximum amplitude when γ = π/2
(radar LOS orthogonal to the rotation axis), and has amplitude zero for γ = 0 (LOS parallel
to the rotation axis).

2.2. Radar-Return Signal Model

The radar-return signal model for an object in a pure tumble at GEO is [2]

G( f , t) =
∫

Ω
σ(x) exp

(
−j

4π

c
f R(t; x)

)
dx, (5)

where
fc −

B
2
≤ f ≤ fc +

B
2

is frequency, t ∈ [0, Tmax] is slow-time, B is the bandwidth transmitted by the radar at center
frequency fc, and σ(x) is the radar reflectivity density at position x = [x, y, z]T ∈ Ω. We refer
to the radar signal in (5), which varies with frequency and time, as the phase-history data.
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2.3. Compact-Range Satellite Model Case Study

To validate our methods in this paper, we tested using real compact-range radar data
obtained from a scale model of a satellite. The data were collected at the Submillimeter-
Wave Technology Laboratory at University of Lowell in their 160 GHz center frequency
compact range [32], utilizing the turntable geometry shown in Figure 2a [33]. The model
scale factor and center frequency were selected such that the ratio of the center frequency to
the scale model is comparable to the full-size object. After collection, the data were scaled
to X-band (10 GHz center frequency), resulting in a bandwidth of B = 2 GHz. The satellite
scale model, displayed in Figure 2b, is structurally characterized by its hexagonal bus and
segmented solar panels, with etched cells and machined hinges along the frame.

Z

Y

X

ω⃗

x(t)

û

θ(t)

(a) Turntable collection geometry (b) Satellite model

Figure 2. Uniformly rotating compact-range satellite model [33].

2.4. Standard Radar-Characterization Processing

In this section, we review standard radar-characterization processing techniques.
This overview provides necessary background before motivating the generalized 3D
RDT technique.

2.4.1. Range–Time Intensity (RTI)

The Range–Time Intensity (RTI) data captures that evolution of the wideband target
signature along the radar LOS as a function of time. The RTI data ĝ(r, t) are generated by
applying an inverse Fourier transform in frequency to the phase-history data in (5):

ĝ(r, t) =
∫ B/2

−B/2
G( f , t) exp

(
j
4π

c
fBr
)

d fB, (6)

where fB represents baseband frequency such that f = fc + fB. Applying (5) to (6) yields

ĝ(r, t) = B
∫

Ω
σ(x) exp

(
−j

4π

c
fcR(t; x)

)
sinc

(
r − R(t; x)

c/2B

)
dx. (7)

Expression (7) shows that each scattering element contributes a sinc point response in
range weighted by the reflectivity and a phase term that is proportional the relative range.
The scatterers follow sinusoidal trajectories as a function of time.

Note that the RTI data in (7) are complex-valued. Because of this, the log power
of (7), 20 log10(|ĝ(r, t)|), is typically displayed for visual interpretation. Figure 3 shows
the RTI data for the compact-range satellite model introduced in Section 2.3 over a single
full rotation. The bandwidth is large enough such that individual point scatterers are
well-resolved in range and trace out sinusoidal trajectories over slow-time. Bright specular
flashes occur at aspect angle views θ = 90◦ and 270◦.
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Figure 3. RTI for compact-range satellite model observed over a full rotation.

2.4.2. Range–Doppler Map (RDM)

Range–Doppler Maps (RDMs) provide two-dimensional snapshots of rotating objects
in range and range rate. Here, Doppler refers to range rate derived from the signal phase.
The RDM g(r, ṙ) is generated by collecting the phase-history data over a window of duration
T and applying an inverse 2D Fourier transform:

g(r, ṙ) =
∫ T/2

−T/2

∫ B/2

−B/2
G( f , t) exp

(
j
4π

c
fBr
)

exp
(

j
4π

c
fc t̄ṙ
)

d fBdt̄, (8)

where t̄ = t − ti is time relative to the window midpoint ti. Let

Φ( f , t) = −4π

c
f R(t; x)

denote the argument of the phase in (5). Taking a first-order Taylor expansion about f = fc
and t = ti generates an approximation where the phase is linear in t and f , and is a
separable function of the two variables:

Φ( f , t) ≈ −4π

c
f R(ti; x)− 4π

c
fcṘ(ti; x)(t − ti), (9)

where
Ṙ(t; x) = xθ̇ sin γ cos(θ̇t)− yθ̇ sin γ sin(θ̇t) (10)

is the range rate of a scatterer at x. Substitution of (5) and (9) into (8) produces

g(r, ṙ) = BT
∫

Ω
σ(x) exp

(
−j

4π

c
fcR(t; x)

)
sinc

(
r − R(ti; x)

c/2B

)
sinc

(
ṙ − Ṙ(ti; x)

λ/2T

)
dx. (11)

As indicated by (11), RDM processing generates an “image" where each scatterer on
the object is rendered as 2D sinc function offset by its range and range rate at time ti. Note
that to invoke the approximation in (9), T must be sufficiently small so that higher-order
terms in the expansion of t are negligible.

Figure 4a shows a RDM generated from the compact-range dataset using 5◦ aspect
change and 2 GHz bandwidth (scaled to X-band). The RDM reveals the hexagonal bus on
the satellite model, with solar panels evident to the left and right of the bus.
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(a) Range–Doppler Map (b) ISAR image

Figure 4. (a) Range–Doppler Map and (b) ISAR image reconstructions of the compact-range
satellite model.

2.4.3. Inverse Synthetic Aperture Radar (ISAR) Imaging

The RDM in (11) provides an image of a satellite in the sense that individual scatterers
on the object are resolved. For proper image interpretation, we desire a product where
scatterers are mapped to their physical positions, and defocusing artifacts due to nonlinear-
ity in the phase are remedied (note that in the approximation in (9), such nonlinearity is
assumed to be negligible). Inverse Synthetic Aperture Radar (ISAR) is an approach used
to generate a correctly rendered image of the satellite. Like the RDM, an ISAR image is
generated by processing a fixed collection window (or integration interval) T centered at
a particular time ti. To derive the ISAR imaging equation, we first express (4) in terms of
t̄ = t − ti:

R(t̄; x) = x sin γ sin(θ̇ t̄ + θi) + y sin γ cos(θ̇ t̄ + θi) + z cos γ,

where θi = θ̇ti is the angle at the center of the interval. By making use of trigonometric
identities and rearranging terms, this expression can be represented as

R(t̄; x) = (x cos θi − y sin θi) sin γ sin(θ̇ t̄) + (x sin θi + y cos θi) sin γ cos(θ̇ t̄) + z cos γ. (12)

To proceed further, we next consider the special case where γ = π/2, which is the
case where the radar LOS is orthogonal to the rotation axis. This removes the dependency
upon the height z in (12). Defining the rotated coordinates

x′ = x cos θi − y sin θi,

y′ = x sin θi + y cos θi,

z′ = z,

we have
R(t̄; x) = x′ sin(θ̇ t̄) + y′ cos(θ̇ t̄).

Insertion into (5) leads to the ISAR imaging equation

G( f , t̄) =
∫

Ωx

∫
Ωy

[ ∫
Ωz

σ(x′, y′, z′)dz′
]

exp
(
− j2π

[
2 f
c

x′ sin θ(t̄) +
2 f
c

y′ cos θ(t̄)
])

dx′dy′

=
∫

Ωx

∫
Ωy

σ̄(x′, y′) exp
(
− j2π

[
2 f
c

x′ sin θ(t̄) +
2 f
c

y′ cos θ(t̄)
])

dx′dy′, (13)

where

σ̄(x, y) =
∫

Ωz
σ(x, y, z)dz (14)
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is the projection of the reflectivity function along the z axis.
The phase history data G( f , t̄) in (13) has a nice spatial Fourier sampling interpreta-

tion. Taking the three-dimensional Fourier transform of the scattering reflectivity function
σ(x, y, z), we obtain

Sσ(kx, ky, kz) =
∫∫∫

R3
σ(x, y, z) exp

(
− j2π

[
kxx + kyy + kzz

])
dxdydz. (15)

Note that by the Projection Slice Theorem, Sσ̄(kx, ky) = Sσ(kx, ky, 0), where Sσ̄ is the
2D Fourier transform of σ̄. Using this fact, and (13), we can relate ( f , t̄) samples of the
phase-history signal to Sσ:

G
(

f ,
θ

θ̇

)
= Sσ(kx( f , θ), ky( f , θ), 0), (16)

where

kx( f , θ) =
2 f
c

sin θ(t̄),

ky( f , θ) =
2 f
c

cos θ(t̄),

are spatial frequencies in the x, y, z dimensions, and θ(t̄) = θ̇ t̄. Thus, (16) reveals phase-
history samples lie on an annular region on the kz = 0 plane in the Fourier domain. An
image can be reconstructed using a polar integral over the following annular region A:

g(x, y) =
∫∫

A
Sσ(kx, ky, 0) exp

(
j2π
[
kxx + kyy

])
dkxdky

=
∫ ∆θ

2

−∆θ
2

∫ 2( fc+B/2)/c

2( fc−B/2)/c
Sσ(kr sin θ, kr cos θ, 0) exp

(
j2π
[
kr sin θx + kr cos θy

])
krdkrdθ, (17)

where ∆θ = θ̇T is the integration angle. In Appendix A (Appendix A.1), we show that the
image has the form

g(x, y) ≈
[
λ/2∆θ

]−1[c/2B
]−1

∫
Ωx

∫
Ωy

σ̄(x′, y′) exp
(
−j4π fcy′

c

)
× sinc

(
x − x′

λ/2∆θ

)
sinc

(
y − y′

c/2B

)
dx′dy′.

(18)

Note g(x, y) computed in (18) has the same units as σ̄(x, y). Thus, the ISAR image
computed in (18) is a two-dimensional projection of the three-dimensional reflectivity
function onto the z′ = 0 plane, where the object is rotated about the rotation axis by θi.

For the general case where γ < π/2, the imaging relationship cannot be described
exactly by a 2D Fourier transform because of the z cos γ term in (12). When forming an
image using (17), the non-zero z term causes a depth-of-focus effect where scatterers with
z ̸= 0 appear defocused. We will analyze this effect in more detail later in the paper when
discussing the limitations of the RDT technique. A slant-plane image can be formed when
γ < π/2, where the image is a projection of the 3D reflectivity onto the tangent plane of
the cone traced out by the radar line of sight. We derive expressions for the slant-plane
image in Appendix A.2.

Figure 4 compares and contrasts RDM and ISAR image reconstructions for the same
compact-range dataset. Both results shown in Figure 4a,b are generated using 5◦ worth of
aspect change and 2 GHz of bandwidth.

2.4.4. Doppler–Time Intensity (DTI)

Doppler–Time Intensity (DTI) plots provide snapshots of the Doppler spectrum of the
object over time. The technique is ideal for cases where the object is unresolved in range but
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exhibits rotation relative to the radar. In these cases, the trajectories of individual scatterers
are traced out over time, in a manner similar to that observed in RTI plots.

Before defining the expression for the DTI data, we first state the condition for an
unresolved object in range:

|û(t) · x| < c
2B

for all x ∈ Ω. (19)

This states that all of the scatterers are contained within a single range resolution
cell. Such is often the case for narrowband radar (e.g., given 1 MHz bandwidth, the range
resolution is 150 m, which is much larger than most satellites). Without loss of generality,
we assume that the object return is contained within the zeroth range bin, corresponding to
the point tracked by the radar. Given (19), we can express the zeroth bin of the RTI in (7) as
a time series:

ĝ(0, t) ≈ B
∫

Ω
σ(x) exp

(
−j

4π

c
fcR(t; x)

)
dx. (20)

Here, we have made use of the approximation

sinc
(

r − R(t; x)
c/2B

)
≈ 1

which is valid when |û(t) · x| ≪ c/2B.
The DTI data are computed from the time series (20) using

XD(ṙ, τk) =
∫ τk+T/2

τk−T/2
ĝ(0, t) rect

(
t − τk

T

)
exp

(
j
4π

c
fc(t − τk)ṙ

)
dt

=
∫ T/2

−T/2
ĝ(0, t̄k + τk) rect

(
t̄k
T

)
exp

(
j
4π

c
fc t̄k ṙ

)
dt̄k,

(21)

where t̄k = t− τk. This expression is equivalent to the Short-Time Fourier Transform (STFT),
or spectrogram, of ĝ(0, t). Insertion of (20) into (21) produces

XD(ṙ, τk) = BT
∫

Ω
σ(x) exp

(
−j

4π

c
fcR(τk; x)

)
sinc

(
ṙ − Ṙ(τk; x)

λ/2T

)
dx, (22)

where from (10)

Ṙ(τk; x) = xθ̇ sin γ cos(θ̇τk)− yθ̇ sin γ sin(θ̇τk)

= ρθ̇ sin γ cos(θ̇τk + φ),
(23)

and x = ρ cos φ and y = ρ sin φ. As with the range trajectory (4), the Doppler trajectory
takes the form of a sinusoid, but without the height-dependent offset term. Inspection
of (22) and the first equality in (23) reveals that the Doppler spectra provide projections of
the target reflectivity along the cross-range axis

q̂(t) =

 cos(θ̇t) sin γ
− sin(θ̇t) sin γ

0

 (24)

i.e., Ṙ(τk; x) = θ̇q̂(t) · x. Using this fact, we will later show that the Doppler spectra can be
processed using filtered backprojection techniques to form a resolved tomographic image,
an approach termed Doppler tomography.

Figure 5 shows a DTI formed for a narrowband setting (B ≈ 0 Hz) using data from
the compact-range satellite model collect over a single full rotation. The bandwidth is
effectively zero such that individual point scatterers are all contained within a single range
bin. The DTI shows sinusoidal trajectories of different point scatterers. As observed in
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Figure 3, we observe bright specular flashes occur for Doppler profiles computed at aspect
angle views θ = 90◦ and 270◦.

Figure 5. DTI for the compact-range satellite model observed over a full rotation.

3. 3D Range-Doppler-time (RDT) Tensor Technique

In this section, we present the novel 3D RDT tensor processing technique, which
provides a generalized approach to Doppler characterization, and detail the enhanced
range and Doppler products that can be generated from the RDT tensor.

3.1. Mathematical Description

At the end of Section 2, we explored the case where the radar-signal return from a
rotating object was unresolved in range, i.e., the signal was contained within a single range
resolution cell. For tracking radars with wider bandwidth (greater than 10 MHz), the target
may be partially resolved in range, causing it to occupy multiple range bins. Here, the DTI
will not capture the complete trajectory of a scatterer when it migrates out of a range bin.
To better characterize the signal in such cases, we can extend the DTI data in (21) to include
a third dimension that captures the range evolution of the return:

X(r, ṙ, τk) =
∫ T/2

−T/2
ĝ(r, t̄k + τk) rect

(
t̄k
T

)
exp

(
j
4π

c
fc t̄k ṙ

)
dt̄k, (25)

where t̄k = t − τk. We denote (25) as the range-Doppler-time (RDT) representation of the
radar signal. It is convenient to express (25) as a discrete time signal to account for the fact
that the radar data are sampled and processed digitally, and also to account for the inherent
discrete nature of the data in slow-time arising from using a pulsed radar. This gives rise to
the 3D RDT tensor

X[n, m, k] =
1
M

M/2−1

∑
l=−M/2

ĝ[n, l + l̄k] exp
(

j
2π

M
lm
)

, (26)

where l̄k = round( fpτk) and fp is the pulse-repetition frequency of the radar (alternatively,
one could interpolate to a grid centered about τk in place of the ‘round’ operation to
achieve a more accurate result). Here, n, m, and k are range, Doppler, and time indices,
respectively. Figure 6 illustrates the 3D RDT. In the next section we provide motivation for
a number of useful characterization products that can be derived by collapsing (reducing)
the dimensionality of the RDT, and by applying scaling/rotation transforms to the RDT.
These include Doppler superpulses and range superpulses, which are enhanced versions
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of the DTI and RTI, respectively, and the power-sum image reconstruction, which is a
non-coherent combination of RDMs across one full rotation period.

Figure 6. 3D RDT tensor.

Evaluation of (26) for the object model in (5) results in

X[n, m, k] =∫
Ω

σ(x) exp
(
−j

4π

c
fcR(τk; x)

)
sincN

(
nδR − R(τk; x)

δR

)
sincM

(
mδṘ − Ṙ(τk; x)

δṘ

)
dx,

(27)

where δR = c/2B and δṘ = λ/2T are the range and Doppler resolution cell sizes, respec-
tively, and sincN denotes a periodic sinc function of length N.

We will now examine how each scatterer in (27) evolves as a function of time. We
define h(τk; x) as a 2D vector describing the position of the scatterer in range–Doppler
space at each instant of time:

h(τk; x) =
[

Ṙ(τk; x)
R(τk; x)

]
= ρ sin γ

[
θ̇ cos(θ̇τk + φ)
sin(θ̇τk + φ)

]
+

[
0

z cos γ

] (28)

The expression shows that each scatterer traces out a helix in a 3D range-Doppler-time
space. The helix is compressed in Doppler by θ̇ and offset in range by the constant z cos γ.

Figure 7 shows an example RTI and RDT generated using simulated radar data for a tar-
get scene consisting of two isotropic point scatterers located at x0 = [4.33 m, 2.5 m, 3.0 m]T

and x1 = [−2.12 m,−2.12 m,−2.0 m]T , where γ = 90◦. Here, the data were simulated
at X-band ( fc = 10 GHz) with bandwidth B = 1 GHz. Both scatterers trace out separate
helical trajectories, each described by (28). For this simulation, the rotation period of the
target scene is 50 s. In Section 4.6, we highlight an example where γ ̸= 90◦, which causes
the defocusing of radar-image reconstructions.
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(a) RTI (b) RDT

Figure 7. Simulated (a) RTI and (b) RDT for a target scene.

Later in this section, we will define a compressed representation of the 3D scatterer
trajectory in (28) based on the pure-tumble motion assumption, and use this representation
to derive a signal transform that reduces the rank of the 3D tensor in (27). The reduced-
rank tensor provides a path for scatterer estimation, data denoising, and rotation-rate
estimation. It also provides a framework describing the relationship between different
imaging techniques.

3.2. Range and Doppler Superpulses

In radar-signal analysis, preprocessing is often applied to the RTI data in (6) to ac-
centuate dim scatterers. One such approach is coherent presumming, which applies a
boxcar filter in slow-time to coherently sum adjacent pulses. This coherent integration
results in a theoretical factor of N improvement to the SNR over a single pulse for an
ideal-point scatterer (constant magnitude and phase). Similarly, the generation of the RDM
in (8) provides the theoretical scatterer signal-to-noise improvement. This improvement is
achieved by use of the (discrete) Fourier transform, which carries out coherent integration
under a variety of range-rate hypotheses (i.e., different ṙ matched filters in (8)). A limita-
tion of coherent presumming is that it only fully enhances scatterers with zero range rate;
scatterers with non-zero range rate experience signal attenuation due to phase variation
induced by the scatterer’s motion (destructive interference). This can be understood by
noting that presumming returns the zero-Doppler bin of the RDM. To maximize SNR, the
correct range-rate hypothesis (matched filter) must be applied when combining the pulses.

To provide a more optimal enhanced signal display, we have developed the range-
superpulse concept. Here, instead of summing across a sequence of time-shifted boxcar
windows, we instead generate a RDM at each window lag and return the Doppler bin with
peak intensity for each range bin, thus generating a 1D signal (peak Doppler versus range).
This is equivalent to collapsing the 3D RDT in Doppler using the ’max’ operation

XRS[n, k] = max
m

|X[n, m, k]|, (29)

where XRS[n, k] denotes the range superpulses.
In a similar fashion, we can apply a max operation to the 3D tensor in range to generate

Doppler superpulses:
XDS[m, k] = max

n
|X[n, m, k]|. (30)

Doppler superpulses capture the energy of scatterers that migrate through multiple
range resolution cells, allowing DTI techniques such as Doppler tomography to be applied
to medium-band and wideband data. In [16], Doppler superpulses are found to provide
superior visualizations of the imaged object in cases where the bandwidth is sufficiently
large to resolve the object in range.

Figure 8 shows range superpulses generated using (29) for the compact-range dataset.
Doppler superpulses for the same dataset are computed using (30) and visualized in



Remote Sens. 2024, 16, 1374 14 of 32

Figure 9. Comparing and contrasting Figures 3 and 8, we immediately see observed im-
provements in range characterization. Similarly, we observe finer Doppler characterization
using superpulse processing after comparing and contrasting Figures 5 and 9. Superpulse
processing best serves to enhance the SNR of individual point scatterers that migrate non-
linearly across range and Doppler. These RDT-derived products enhance the sinusoidal
trajectories of tumbling targets, which enables higher fidelity rotation-period estimation.

Figure 8. Range superpulses, XRS[n, k], for the compact-range satellite model observed over a
full rotation.

Figure 9. Doppler superpulses, XDS[m, k], for the compact-range satellite model observed over a
full rotation.

3.3. Compressed Trajectory Representation and Rank-Reducing Transform

As established by (28), each scatterer traces out a helix in a 3D tensor space. When the
rotation rate θ̇ is known, it is possible to “unwind” the helices and map each scatterer to a
spatial position. We define the transformation matrix

Tθ̇,γ(τk) ≜ R(τk; θ̇)diag([(θ̇ sin γ)−1, (sin γ)−1]) (31)



Remote Sens. 2024, 16, 1374 15 of 32

where diag(v) is a diagonal matrix with v along the diagonal, and

R(τk; θ̇) =

[
cos(θ̇τk) sin(θ̇τk)
− sin(θ̇τk) cos(θ̇τk)

]
. (32)

Starting with (28), we define the transformed position

p(τk; x, θ̇, γ) = Tθ̇,γ(τk)h(τk; x). (33)

This results in

p(τk; x, θ̇, γ) = ρ

[
cos φ
sin φ

]
+

z
tan γ

[
sin(θ̇τk)
cos(θ̇τk)

]
(34)

The first term in (34) gives the x and y positions of the object in the body frame, while
the second term is a depth-of-focus artifact that causes the scatterer to trace out a “donut”
centered at x, y with radius z/ tan γ over the rotation period. Note that when γ = π/2
(rotation axis orthogonal to the radar line of sight), the second term disappears, and the
trajectory collapses to a single point.

We now define a signal transform that will realize the scaling and rotation operation
producing the positional mapping in (34). This will be achieved by applying a geometric
transformation to the continuous-time tensor data in (25). Note from (33) that

h(τk; x) = T−1
θ̇,γ

(τk)p(τk; x, θ̇, γ),

where, by (31) and (32),

T−1
θ̇,γ

(τk) = diag([θ̇ sin γ, sin γ])RT(τk; θ̇). (35)

The continuous-time representation of the transformed RDT-tensor signal data is

X̃(py, px, τk) = X
(

eT
2 T−1

θ̇,γ
(τk)p, eT

1 T−1
θ̇,γ

(τk)p, τk

)
. (36)

where p = [px, py]T and e1 and e2 are the standard basis vectors of length 2. The discrete-
time counterpart of (36) is

X̃[n′, m′, k] = X̃
(
n′δy, m′δx, τk

)
, (37)

where δx and δy are the desired x and y pixel sizes. We refer to the matrix in (31) as the
rank-reducing transform, and to the transformed tensor in (37) as the aligned RDT. In (37),
the data are scaled along the range and Doppler axes to yield true position, and then rotated
to a common reference frame. As a result, the helical scatterer trajectories are converted to
linear ones, thus reducing the rank of the 3D tensor. If γ < π/2, the trajectories will exhibit
some helical motion when z ̸= 0.

Figure 10a shows an example using simulated data where the rank-reducing transform
(31) has been applied to the RDT shown in Figure 7b. Note the helical trajectories of both
isotropic scatterers have been rotationally aligned along the slow-time axis. Given that the
imaging geometry corresponds to γ = 90◦, the aligned trajectories described by (34) are
lines. To implement (36) starting with the (discrete-time) RDT in (26), the sampled data can
be interpolated to generate the desired values of the continuous-time function (25). Bilinear
interpolation was used for the results in this paper.
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(a) Aligned RDT (b) Power-sum image

Figure 10. (a) Rotationally aligned RDT for target scene in Figure 7, and (b) corresponding power-sum
image.

The representation in (37) will be useful in establishing the relationship between
Doppler tomography and its higher resolution counterpart BENI. As will be discussed
later in the paper, the low-rank representation of the signal lends itself well to signal
extraction and denoising techniques that make use of the multi-dimensional Singular Value
Decomposition (SVD). In addition, (37) provides a parameterized representation of the
signal that can be combined with an image-quality metric to yield an optimization-based
approach for estimating the rotation rate (in cases where it is not known a priori).

3.4. Power-Sum Image Reconstruction

In addition to superpulse processing, the RDT technique also enables radar-image
reconstruction after rotational alignment using the rank-reducing transform. Consider
taking the sum of the squared magnitude of the rank-reduced tensor in (37) across the time
dimension. This yields

X̃PS[n′, m′] =
K−1

∑
k=0

∣∣X̃[n′, m′, k]
∣∣2, (38)

where X̃PS denotes the power-sum image. Using (35), (36), and (37), we have

X̃PS[n′, m′] =

K−1

∑
k=0

∣∣X(sin γ(xm′ sin(θ̇τk) + yn′ cos(θ̇τk)), θ̇ sin γ(xm′ cos(θ̇τk)− yn′ sin(θ̇τk)), τk
)∣∣2,

(39)

where xm′ = δxm′ and yn′ = δyn′.
Figure 10b shows the power-sum image derived from the aligned RDT in Figure 10a.

The image accurately reproduces the two scatterers in the x, y plane, which is orthogonal to
the rotation axis. An example of a power-sum image generated from the compact-range
data is presented in Figure 18a. As we will show in the sections that follow, the power-sum
image is important to understanding the relationship between Doppler tomography and
BENI, and to interpreting images from each of these techniques.

3.4.1. Relation to Doppler Tomography

Tomographic characterization of rotating objects using Doppler information, also
known as Doppler tomography, is built on the principle that point scatterers along a
line of constant cross-range u will reflect back radar-return signals that share the same
Doppler-shifted frequency fD in traveling towards the radar [22].

We previously established that each column (i.e., fixed τk) of the DTI data in (21),
representing a single Doppler spectrum (or Doppler profile), provides a 1D projection of the
object reflectivity along the cross-range axis in (24). Thus, the DTI data are analogous to the



Remote Sens. 2024, 16, 1374 17 of 32

sinogram-domain projection data used in tomographic imaging. The Doppler tomography
image is formed as

gDT(x, y) =
∫ Tp/2

−Tp/2

∣∣∣X f
D
(
θ̇ sin γ(x cos(θ̇τ)− y sin(θ̇τ)), τ

)∣∣∣2dτ, (40)

where

X f
D(ṙ, τ) =

∫ T/2

−T/2
X̂D(t, τ)|t| exp

(
−j

4π

λ
tṙ
)

dt

is the ramp-filtered data, as required for filtered backprojection, with X̂D(t, τ) denoting the
inverse Fourier transform of XD(ṙ, τ) in Doppler [34]. Note that we apply the reconstruction
to the power (squared magnitude) of the DTI data. This is due to the phase term in (22),
which causes the signal to decohere when combining projections.

Doppler tomography can be viewed within the framework of the RDT technique as
a special case of the power-sum reconstruction introduced in Section 3.4. Expression (39)
shows how each range-Doppler slice (or RDM) of the RDT contributes to the power-sum
image. In the regime where the object is unresolved in range, note that

X
(
sin γ(xm′ sin(θ̇τk) + yn′ cos(θ̇τk)), θ̇ sin γ(xm′ cos(θ̇τk)− yn′ sin(θ̇τk)), τk

)
≈ X

(
0, θ̇ sin γ(xm′ cos(θ̇τk)− yn′ sin(θ̇τk)), τk

)
i.e., the signal does not vary significantly in the range dimension because the object is
unresolved for all values of xm′ , yn′ over the object’s support. As a result, each column of
the rank-reduced tensor is essentially an unfiltered projection, and the power-sum image is
equivalent to the Doppler tomography image in (40) without the ramp-filtering step.

Figure 11 presents an example illustrating Doppler tomography as a limiting case
of the power-sum reconstruction when the bandwidth is sufficiently low that the target
is unresolved in range. Figure 11a shows the unaligned RDT (i.e., with no rank-reducing
transform applied) for the two-scatterer example in Figure 7b, but with the bandwidth
reduced from 1 GHz to 10 MHz. Here, each scatterer contributes a 1D projection to the
range-Doppler slices of the RDT (note that the discretization in range is due to the range-
sample spacing). Figure 11a shows the aligned RDT. The individual RDMs are rotated
such that their intersection across time corresponds to the 2D scatterer position. The
power-sum reconstruction is displayed in Figure 11c, revealing that both scatterers are
correctly rendered.

Note over a full rotation period, the Doppler profiles of a uniformly tumbling object
show signs of anisotropic scattering and are not symmetric about a half rotation. Therefore,
reconstructions are computed using over θ ∈ [0, 2π].

(a) Unaligned RDT (b) Aligned RDT (c) Power-sum reconstruction

Figure 11. Imaging example for the two-scatterer geometry in Figure 7b, but using a narrowband
waveform with 10 MHz bandwidth.
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3.4.2. Relation to Bandwidth Enhanced Non-Coherent Imaging (BENI)

BENI was designed to improve upon Doppler tomography for cases where some
bandwidth is available, but the bandwidth is too small for high-resolution radar imaging.
BENI has also been shown to provide exquisite detail with wideband data [28]. The first
step in the algorithm is to partition radar data collected over one rotation period into a
sequence of time windows of duration T centered at times τk, k = 0, 1, . . . K − 1, similar to
DTI processing. BandWidth Extrapolation (BWE) is applied to each window to improve
the range resolution [35]. The data are then resampled in range to generate equal range
and cross-range pixel sizes; this step is important because the range resolution is generally
much coarser than the cross-range resolution. “Local” Extended Coherent Processing
(LECP) is then performed to correct linear range migration and quadratic phase error [36];
these effects arise due to deviations from the first-order approximation assumed in (9).
Bandlimited interpolation is applied to the resulting images to generate a finer pixel grid.
Lastly, the images are rotated to a common coordinate frame (using knowledge of θ̇),
converted to power scale (or log-power scale), and non-coherently combined to form a
single output image. The final BENI image can be represented as

gBENI(x, y) =
1
K

K−1

∑
k=0

∣∣gLECP,k
(
x cos(θ̇τk)− y sin(θ̇τk), x sin(θ̇τk) + y cos(θ̇τk)

)∣∣2, (41)

where gLECP,k is the k-th LECP image.
Comparison of (39) and (41) reveals that the two expressions have a similar form; note

that in (41), gLECP,k is indexed in x, y position rather than in r, ṙ, and thus, the arguments
are switched. Thus, the power sum image formed from X̃ is essentially the BENI image,
but without the BWE and motion-compensation steps. Unlike the Doppler tomography
case, (41) assumes the object is partially resolved so that the signal varies along the range
dimension. In other words, where the projections in Doppler tomography provide no
resolving capability in range, the LECP images that BENI combines coarsely resolve the
object in range, resulting in a superior reconstruction.

Using the 3D RDT tensor technique, we have established Doppler tomography as a
limiting case of BENI when the bandwidth becomes sufficiently low that (19) no longer
holds (the object is unresolved in range). Without BWE, BENI in this limiting case gen-
erates intermediate LECP images that have rank-1 (prior to rotational alignment). These
images are essentially the same as the unfiltered backprojection images that are used for
Doppler tomography.

4. Performance Assessment of RDT Tensor Processing

In this section, we analyze the RDT tensor technique in more detail, studying devia-
tions from ideal assumptions, exploring factors that influence image quality, and highlight-
ing challenges and edge cases associated with the imaging process.

4.1. Influence of Rotation-Rate Estimate

Successful narrowband radar imaging, where RDT-based power-sum image recon-
struction is a particular approach, requires a high-fidelity rotational motion description
of the space object. This section explores the influence of rotation-rate estimation errors
on relative cross-range position of a single point scatterer on a uniformly rotating object.
Using the target’s frame of reference, the relative cross-range position of a point scatterer is
the projection of the scatterer’s position xp = [x0, y0, z0]

T onto the unit vector direction:
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q̂(t; θ̇) =

 cos(θ̇t) sin γ
− sin(θ̇t) sin γ

0

 (42)

u(xp, t; θ̇) = q̂(t)Txp

= x0 cos(θ̇t) sin γ − y0 sin(θ̇t) sin γ. (43)

We begin our perturbation analysis by modeling an additive error in our rotation rate
estimate, ϵ. Our updated relative cross-range measurement becomes:

u(xp, t; θ̇ + ϵ) = q̂T(t; θ̇ + ϵ)xp

= x0 cos([θ̇ + ϵ]t) sin γ − y0 sin([θ̇ + ϵ]t) sin γ. (44)

Let ∆u denote the change in relative cross-range position resulting from inaccuracies
in rotation rate estimation:

∆u ≜ u(xp, t; θ̇ + ϵ)− u(xp, t; θ̇) (45)

= x0 sin γ
[

cos([θ̇ + ϵ]t)− cos(θ̇t)
]
− y0 sin γ

[
sin([θ̇ + ϵ]t)− sin(θ̇t)

]
(46)

= x0 sin γ
[

cos(θ̇t) cos(ϵt)− sin(θ̇t) sin(ϵt)− cos(θ̇t)
]

− y0 sin γ
[

sin(θ̇t) cos(ϵt) + cos(θ̇t) sin(ϵt)− sin(θ̇t)
]
. (47)

Using a first-order Taylor expansion around ϵ = 0, we simplify (47) to become the
following expression:

∆u ≈ x0 sin γ
[

cos(θ̇t)× 1 − sin(θ̇t)× 0 − cos(θ̇t)
]

− y0 sin γ
[

sin(θ̇t)× 1 + cos(θ̇t)× ϵt − sin(θ̇t)
]

= −y0 sin γ cos(θ̇t)ϵt. (48)

The result shown in (48) highlights cross-range position error is approximately linear
both in range position as well as rotation-rate estimation error. Using (33), the 1D error (48)
can be mapped to error in the 2D image plane:

∆p(t; x, θ̇) =

[
cos(θ̇t)
− sin(θ̇t)

]
y0 cos(θ̇t)ϵt. (49)

An upper bound for the norm of the 2D error is

∥∆p(t; x, θ̇)∥2 = |y0 cos(θ̇t)ϵt|
≤ y0ϵTp.

(50)

If we require the 2D error to be less than one resolution cell in the power-sum image,
we can derive the maximum allowable rotation-rate error. Using dx = dy = λ/2∆θ (i.e., the
limiting narrowband case) with the requirement ∥∆p(t; x, θ̇)∥2 ≤ dx, we have the result

ϵ ≤ λ

2∆θTpy0
. (51)

Thus, the requirement on the max rotation-rate error becomes more stringent with in-
creasing object size (larger y0), increasing rotation period Tp, and decreasing wavelength λ.

4.2. Influence of Integration Time

Selecting a suitable integration time Tint is key to producing well-focused narrowband
images. Due to the uniform rotation of the satellite, a range-dependent quadratic phase
error is induced, which causes Doppler smearing of a point scatter located at (xp, yp) on
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the radar-image plane. To illustrate this, we can form a second-order Taylor expansion of
the phase of an individual point scatterer’s return signal around the point ( f , t) = ( fc, 0)

Gp( f , t) ≈ exp
[−j4π f yp

c

]
exp

[
−

j4π fc θ̇xpt
c

]
︸ ︷︷ ︸

linear imaging approximation

×exp
[
−

j4π( f − fc)θ̇xpt
c

]
︸ ︷︷ ︸
linear range walk due to rotation

× exp
[

j2π fc θ̇2ypt2

c

]
︸ ︷︷ ︸

quadratic phase error

(52)

Here, the third term generates range-walk migration. In BENI, this is corrected by
applying the Keystone Transform to the data as part of LECP processing. The final term in
(52) is a chirp signal. This quadratic phase expression induces smearing along cross-range.
This effect worsens with increasing range yp, and defocuses scatterers far away from the
axis of rotation. To characterize the Doppler spread from this quadratic-motion error, we
define the spectral width of the chirp term as the extent (in Doppler frequency bins) of the
nearly constant magnitude response, where most of the energy of the chirp is contained.
The total change in Doppler across the integration time interval can be computed as follows:

R̈ = yp θ̇2 (53)

∆Ṙ = R̈
(

Tint
2

)
− R̈

(
−Tint

2

)
= yp θ̇2Tint. (54)

We define spectral width a, as the total change in Doppler divided by Doppler resolu-
tion δṘ = λ/2Tint:

a ≜
∆Ṙ
δṘ

(55)

=
2yp θ̇2

λ
T2

int. (56)

To ensure that the signal energies of all point scatterers are constrained within one
Doppler bin (spectral width, a ≤ 1), Tint should be selected such that:

Tint ≤
√

λ

2θ̇2LMAX
, (57)

where LMAX is defined as the object’s maximum length extent. When individual point
scatterers can be resolved, acceleration error in (52) can be corrected since yp is known.
This is done in BENI as part of LECP. In Doppler tomography, (57) restricts integration time
per Doppler profile, which in turn influences the final image resolution.

4.3. Transient Features

Narrowband images degrade with aspect-angle-dependent scattering, as the fidelity of
the rotation-rate estimation is impacted and narrowband imaging techniques such as RDT-
based power-sum image reconstruction assume scatterers are present for a full rotation.
For example, small targets such as cubesats are often only visible when one of their faces
is perpendicular to the radar LOS. Another example of anisotropic scattering behavior
is bright specular returns. This anisotropic scatterer behavior generates artifacts in the
narrowband images and reduces their quality.

To overcome this problem, in Doppler tomography, filtered backprojected images are
added using a logarithmic power sum (instead of a linear power sum) due to the presence
of bright specular returns. Tomographic reconstructions of the compact range satellite
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model are shown in Figure 12. Linear-power reconstructions formed using (40) often
have degraded image quality due to speculars and large sidelobes as shown in Figure 12a.
Notable improvements are achieved when using logarithmic power of Doppler profiles for
tomographic reconstruction. In Figure 12b, we observe structural features such as the sets
of rivets on the solar panels of the satellite model.

(a) Linear-power reconstruction (b) Logarithmic-power reconstruction

Figure 12. Doppler tomography reconstructions formed using (a) linear power and (b) logarithmic
power of Doppler profiles of the rotating compact-range satellite model.

Similarly, the final BENI image is calculated using a global logarithmic power sum of
the K rotationally aligned ECP images such that

gBENI [xm, yn] =
20
K

K

∑
k=1

log10[|gk[xm, yn]|]. (58)

We can derive a geometric-mean interpretation of the BENI reconstruction where the
final image can be interpreted as a geometric average of radar cross section (RCS) over
aspect-change intervals:

gBENI [xm, yn] = 10 log10
[
∏K

k=1|gk[xm, yn]|2
] 1

K

= 10 log10
[
∏K

k=1 σk,linear[xm, yn]
] 1

K , (59)

where
σk,linear[xm, yn] = |gk[xm, yn]|2

i.e., the intensity of each pixel corresponds to RCS (for calibrated radar data). From this it
can be seen that, for an isotropic point scatterer (where σk is constant for all k), BENI image
magnitude is equivalent to RCS measured in dBsm.

The expression (59) reveals why the logarithmic sum is effective in suppressing tran-
sient features. A transient feature at pixel (xm, ym) has a magnitude near zero for at least
one value of k. This results in the product of intensities also being near zero, leading to a
RCS value approaching −∞ dBsm in the BENI image. In contrast, a persistent scatterer
contributes non-zero values for all k, thus generating a detectable feature.

4.4. Resolvability of Features

In standard radar imaging, formal definitions of resolution, which is the minimum sep-
aration at which two point scatterers can be distinguished, are well established. Typically,
the peak-to-null distance of the point-spread function is used as a measure of resolution.
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From (18), the range and cross-range resolution of an ISAR image are δR = c/2B and
δU = λ/2∆θ, respectively. We seek to establish a similar notion of resolution for power-
sum imaging. To motivate this, we first examine experimental results applying BENI (a
variant of power-sum imaging) to compact-range data with varying aspect change and
bandwidth. We then derive analytical expressions that characterize RDT-based power-sum
image resolution as a function of bandwidth, center frequency, and aspect change.

In narrowband settings, range resolution is coarse such that the target occupies a
small number of range bins. Finer range resolution in BENI image reconstructions can be
attributed to two processing steps. The first is Doppler-compressed BWE, which works
best when the satellite consists of discrete collections of impulse-shaped features such as
edges, rivets, and corner reflectors. In practice, we extrapolate by a factor of 3, Be f f = 3B.
For medium-band settings (B ∝ 100 MHz), BWE can highlight structural features better.
However, when dealing with reduced bandwidth scenarios (B ∝ 10 MHz) and limited
aspect-change diversity, target-scene range characterization using Doppler-compressed
BWE may only offer limited improvements. The second step in BENI is globally non-
coherent image reconstruction across different rotationally aligned ECP images as shown
in (41). Note this image-formation step is implemented using a logarithmic power sum
which has a geometric-mean interpretation as described in Section 4.3.

Figure 13 shows a matrix of examples of BENI reconstructions under varying band-
width and aspect change. It is through exploiting wide aspect diversity that we are able
to achieve better effective range resolution for drastically reduced bandwidth scenarios
(B ∝ 10 MHz).

In linear scale, each of the rotationally aligned images are multipled to each other in
an element-wise manner prior to evaluation of the logarithm. The remainder of this section
will explore the improvement in pixel resolution for a power-sum image formed using
two rotationally aligned images corresponding to angle views θ1 = 0◦ and θ2 = 90◦. This
allows us to analyze two orthogonal slices through the point-spread frunction to obtain a
better understanding of pixel resolution.

Figure 14 illustrates the overlapping rotationally aligned images formed over these
two different angle views. Without loss of generality, we assume a point scatterer on
the target is centered at the origin such that the continuous, rotationally aligned images
corresponding to angle views θ1 = 0◦ and θ2 = 90◦ have the following zero-Doppler cuts:

g1(0, y) = sinc
(

y
δR

)
, (60)

g2(0, y) = sinc
(

y
δṘ/θ̇

)
, (61)

where δR = c/2B and δṘ = c/2 fcTint. We will now take a closer look at the linear scale
representation of the zero-Doppler cut of the corresponding power-sum image, which is
the element-wise product of 0◦ and 90◦ projections as shown in Figure 14. Noting that:

sinc(x) ≜ sin(πx)/πx, (62)
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Figure 13. Limited aspect change and reduced bandwidth BENI reconstructions of the compact-range
satellite model.

gPS(0, y) = sinc
(

y
δR

)
sinc

(
y

δṘ/θ̇

)
(63)

=

(
1 − 1

3!

[
πy
δR

]2

+
1
5!

[
πy
δR

]4

− · · ·
)(

1 − 1
3!

[
πy

δṘ/θ̇

]2

+
1
5!

[
πy

δṘ/θ̇

]4

− · · ·
)

≈ 1 − π2y2

6

([
1

δR

]2

+

[
1

δṘ/θ̇

]2)
, (64)

where (64) was obtained using a Taylor expansion of sin(πx). Note the resulting simplified
expression is a parabola and the corresponding roots of (64) provide a quantitative measure
of range resolution improvement along the y-axis. The following positive root of (64) can
be defined as the effective range resolution δy:

δy =

√
6

π

([
1

δR

]2

+

[
1

δṘ/θ̇

]2
)−1/2

=

√
6

π

(
c
2

√
1

( fc∆θ)2 + B2

)
.

(65)
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The expression for δy shows how both aspect change ∆θ and bandwidth B contribute
to finer characterization along the y−axis. Note that (65) can be upper bounded as

δy =

√
6

π

√√√√ (
δR
)2(

δṘ/θ̇
)2(

δR
)2

+
(
δṘ/θ̇

)2

< min
{

δR, δṘ/θ̇
}

. (66)

This result demonstrates that the power-sum pixel resolution is finer than both δR and
δṘ/θ̇.

Figure 14. Power-sum reconstruction pixel resolution illustration.

4.5. Dynamic Motion: Precession and Non-Uniform Rotation

Thus far, we have assumed that the imaged object is in a pure tumble motion (uniform
rotation along a fixed axis), and that the radar is stationary relative to the center of mass
of the object. In practice, these assumptions do not hold perfectly, resulting in deviations
from the assumed signal model. When the rotation axis varies over the collection interval,
the response of a point scatterer is no longer described by the helical trajectory in (28). One
important case of interest is spin-precession motion. Here, the rotation axis precesses about
a fixed axis at a rate θ̇P. The transformation from the object body frame to an inertial frame
(such as ECI) can be expressed as

ûECI(t) = UPRz(θ̇Pt)Ry(β)Rz(θ̇St)û(t), (67)

where UP is the precession coordinate frame (where the z-axis is the precession axis), β is the
angle between the precession axis and the spin axis, θ̇S is the spin rate, θ̇P is the precession
rate, and û(t) and ûECI(t) denote vectors in the body and inertial frames, respectively. The
notation Ry(β) indicates a rotation matrix that applies a rotation of angle β about the y axis.
The application of (67) to (3) results in scatterer range and Doppler trajectories that are not
purely sinusoidal, but rather, that have a time-varying amplitude modulation, phase angle,
and offset. As a result, the techniques in this paper cannot be applied directly.

Another case is where the rotation axis is fixed, but the rotation rate is time varying
(non-uniform rotation). If the non-uniformity can be estimated, it is possible to resample the
data to equally spaced aspect angles. This enables the generation of Doppler profiles with
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fixed cross-range sample spacing and extent. It also allows Doppler profiles (or images) to
be produced at equal angles, as desired for Doppler tomography and BENI.

Lastly, if there is relative motion between the radar and the target center of mass, as is
the case for non-geostationary objects, the radar LOS is variable in the inertial frame. Thus,
the model for the body-frame LOS in (1) does not hold.

The problems of estimating rotational motion parameters from the data for the cases
above, and of applying these parameters to generate images, are subjects of ongoing research.

4.6. Unfavorable Imaging Geometries

As alluded to in Section 3.3, the tumble angle γ can cause depth-of-focus effects, which
degrade the quality of power-sum image reconstructions. To illustrate this, in this section
we present simulated radar data modeling two wideband (B = 1 GHz, fc = 10 GHz)
collects where the same single 0 dBsm peak RCS-isotropic point scatterer undergoing
uniform rotation has been observed with two different geometries, where γ = 90◦, γ = 60◦

for Figure 15 and Figure 16, respectively.

(a) Unaligned RDT (b) Aligned RDT (c) Power-sum reconstruction

Figure 15. Simulated imaging geometry of uniformly rotating point scatterer where γ = 90◦.

(a) Unaligned RDT (b) Aligned RDT (c) Power-sum reconstruction

Figure 16. Simulated imaging geometry of uniformly rotating point scatterer where γ = 60◦.

The rotationally aligned RDT tensor for the γ = 60◦ scenario is displayed in Figure 16b,
revealing that the isotropic point scatterer follows a residual helical trajectory. The radius
of this helical path, as described by (34), is equal to z/tanγ ≈ 1.73 m, which closely
matches the radius of the circular region in Figure 16c. When γ = 90◦, the aligned
trajectory of the isotropic point scatterer is a line as shown in Figure 15b. Knowledge of
γ is needed to properly align the RDT in Figure 16a to obtain a high-fidelity power-sum
image reconstruction as shown in Figure 15c.

5. Extensions to the RDT Tensor Technique
5.1. Rotational-Rate Estimation

As discussed in Section 4.1, obtaining an accurate estimate of the object’s rotation
rate is critical for producing well-focused narrowband images. We aim to automate
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rotation-rate estimation for different target scenarios. Previous work provides a vari-
ety of techniques for estimating rotation rate, which can be split into three broad categories:
time-based, frequency-based, and image quality analysis. Time-based techniques, such
as auto-correlation, have been used for estimating rotational motion parameters in past
work [37–39]. Frequency-based techniques, such as cepstrum analysis are also commonly
used for identifying periodicity [40–42]. However, both rely on the assumption that at
least one full rotation of the target object has been observed. In comparison, image-quality
analysis techniques such as SIRTA, which compare image quality across a search space of
possible periods, do not assume observation of more than one rotation [43–45].

For automating rotation-rate estimation, we are interested in more than just the ideal
scenario where greater than one full rotation has been observed. In future work, we
will explore different estimation techniques across a variety of scenarios with a focus on
assessing the performance of the methods when only a partial rotation is observed.

5.2. RDT Tensor Denoising Using Higher-Order Singular Value Decomposition (HOSVD)

Noting the rich three-dimensional structure of our RDT data tensor, in this section we
investigate the utility of applying Higher-Order Singular Value Decomposition (HOSVD),
a generalization of the matrix SVD, for image enhancement via SVD truncation [46]. After
performing rotational alignment to our RDT tensor, we recognize isotropic point scatterers
on an object that persist over wide-aspect diversity (such as that of a full rotation) are
redundant across the slow-time dimension. This redundancy enables us to exploit low-
rankness to help denoise our RDT tensor prior to reconstructing power-sum images.

The starting point of HOSVD is forming three separate matrix representations of the
RDT tensor. This process is often referred to as matricization or matrix unfolding [46,47].
As visually depicted in Figure 17, we form three matricizations of the rotationally aligned
RDT tensor X ∈ RN×M×K by rearranging mode-1 (range), mode-2 (Doppler), mode-3
(time) fibers across each dimension to form X1 ∈ RN×KM, X2 ∈ RM×KN , X3 ∈ RK×NM,
respectively.

R
an

ge

Doppler

X ∈ RN×M×K

Tim
e

⇒

X1 ∈ RN×KM

· · ·

⇒

X2 ∈ RM×KN

· · ·

⇒

X3 ∈ RK×NM

· · ·

Figure 17. Matricization of the RDT Tensor.

For our application, we use the Tucker decomposition model for the rotationally
aligned RDT tensor [47]. That is,

X[n, m, k] = ∑
c

∑
b

∑
a

G[a, b, c]U1[n, a]U2[m, b]U3[k, c], (68)
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where G ∈ RN×M×K is the three-dimensional core tensor consisting of singular values,
and U1 ∈ RN×N , U2 ∈ RM×M, U3 ∈ RK×K are three orthonormal matrices whose columns
correspond to left-singular vectors of X1, X2, X3, respectively. U1, U2, U3 are computed
using the standard SVD whereas the core tensor G is computed using the Tucker’s Method
1 or HOSVD algorithm [47].

For our experiments, we computed the core tensor using the HOSVD routine in the
MATLAB Tensor Toolbox [48]. We truncated singular values G[a, b, c] such that we kept
only nonzero values for G[a, b, 1], as shown in (69). This corresponds to a rank-(N, M, 1)
approximation of X (rank-1 approximation along the time dimension of our tensor). We
formed our denoised rotationally aligned RDT tensor using (70):

Gtruncated[a, b, c] =

{
G[a, b, c] if c = 1
0 if c ̸= 1

(69)

Xdenoised[n, m, k] = ∑
c

∑
b

∑
a

Gtruncated[a, b, c]U1[n, a]U2[m, b]U3[k, c]

= U3[k, 1]∑
b

∑
a

G[a, b, 1]U1[n, a]U2[m, b]. (70)

Figure 18 compares and contrasts the full rank-(N, M, K) logarithmic power-sum
image reconstructions to that of the reduced rank-(N, M, 1) logarithmic power-sum image
reconstruction. Note the sharper appearance of rivets and edges on the solar panels of
the compact-range satellite. Future work involves a continued investigation into tensor
decompositions for radar-image enhancement.

(a) Power Sum of X (b) Power Sum of Xdenoised

Figure 18. Logarithmic power-sum image reconstructions formed using (a) full-rank approximation
X and (b) HOSVD truncation to form rank-(N, M, 1) approximation of X.

6. Conclusions

In this work, we proposed a powerful unified technique for narrowband radar deep-
space satellite characterization. Using our three-dimensional RDT tensor representation
of radar signals, we generated RDT-derived products such as range superpulses, Doppler
superpulses, and power-sum image reconstructions. Utilizing radar data obtained for a
compact-range satellite model, we demonstrated that each of these RDT-derived prod-
ucts successfully enhanced range and Doppler characterization. We also established the
equivalence of BENI and Doppler tomography narrowband imaging techniques as differ-
ent versions of power-sum reconstructions using the rank-reduced RDT. In addition, we
quantified limitations of these radar imaging techniques as a function of carrier frequency,
sensitivity, integration time, and rotation-rate estimate uncertainty. Another accomplished
objective of this work included providing interpretability of RDT-based power-sum images
with respect to pixel RCS measurements over varying imaging geometries (orientations
of the object). For future work, we will continue to address challenges encountered when
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deviating from ideal radar-signal models, and explore other ways to exploit the rich RDT
data structure for radar-image enhancement.
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Abbreviations
The following abbreviations are used in this manuscript:

BENI Bandwidth Enhanced Non-Coherent Imaging
BWE BandWidth Extrapolation
DTI Doppler-Time Intensity
GEO Geosynchronous Earth Orbit
HOSVD Higher-Order Singular Value Decomposition
ISAR Inverse Synthetic Aperture Radar
LECP Local Extended Coherent Processing
LEO Low Earth Orbit
LOS Line-Of-Sight
MEO Medium Earth Orbit
RDM Range–Doppler Map
RDT range-Doppler-time Tensor
RTI Range–Time Intensity
SDA Space Domain Awareness
SVD Singular Value Decomposition

Appendix A. Notation and Terminology

Appendix A.1. Derivation of ISAR Imaging Expression

An image can be reconstructed using a polar integral over the following annular region A:

g(x, y) =
∫∫

A
Sσ(kx, ky, 0) exp

(
j2π
[
kxx + kyy

])
dkxdky

=
∫ ∆θ

2

−∆θ
2

∫ 2( fc+B/2)/c

2( fc−B/2)/c
Sσ(kr sin θ, kr cos θ, 0) (A1)

× exp
(

j2π
[
kr sin θx + kr cos θy

])
krdkrdθ,

where ∆θ = θ̇T is the integration angle. In practice, ISAR images are formed using a
linear-imaging approximation over ( f , t̄) = ( fc, 0),
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G
(

f ,
θ

θ̇

)
≈
∫

Ωx

∫
Ωy

σ̄(x′, y′) exp
(
−j4π fcx′θ

c

)
exp

(
−j4π f y′

c

)
dx′dy′

kx( f , θ) ≈ 2 fc

c
θ

ky( f , θ) ≈ 2 f
c

.

After performing a change of variables
(
dkx = 2 fcdθ/c, dky = 2d f /c

)
, we can

approximate (17) as an integration over a rectangular region parametrized by f ∈
[

fc −
B
2 , fc +

B
2
]
, θ ∈

[
− ∆θ

2 , ∆θ
2
]

g(x, y) ≈ 4 fc

c2

∫ ∆θ
2

−∆θ
2

∫ fc+B/2

fc−B/2
G
(

f ,
θ

θ̇

)
exp

(
j4π fcxθ

c

)
exp

(
j4π f y

c

)
d f dθ (A2)

=
4 fc

c2

∫
Ωx

∫
Ωy

σ̄(x′, y′)
[ ∫ ∆θ

2

−∆θ
2

exp
(
−j4π fc(x − x′)θ

c

)
dθ

]
×
[ ∫ fc+B/2

fc−B/2
exp

(
−j4π f (y − y′)

c

)
d f
]

dx′dy′

=
4 fc

c2 B∆θ
∫

Ωx

∫
Ωy

σ̄(x′, y′) exp
(
−j4π fcy′

c

)
sinc

(
x − x′

λ/2∆θ

)
sinc

(
y − y′

c/2B

)
dx′dy′

=
[
λ/2∆θ

]−1[c/2B
]−1

∫
Ωx

∫
Ωy

σ̄(x′, y′) exp
(
−j4π fcy′

c

)
sinc

(
x − x′

λ/2∆θ

)
(A3)

× sinc
(

y − y′

c/2B

)
dx′dy′.

Table A1. Key notation in paper.

ω⃗ Angular velocity vector (rad/s)
rTX(t) Radar position relative to target center of mass (m)
x 3D scatterer (scattering element) position (m)
σ(x) Complex-valued radar scattering reflectivity density
Ω ⊂ R3 3D volumetric support of target
û(t) Radar line-of-sight unit vector
q̂(t) Cross-range axis unit vector
Tp Tumble period (s)
θ̇ = 2π/Tp Rotation rate (rad/s)
γ Tumble angle between line of sight and angular velocity ω⃗ (rad)
R(t; x) Relative range of scatterer at x (m)
Ṙ(t; x) Range rate of scatterer at x (m/s)
G( f , t) Phase history data of the received signal
f = fc + fB Transmission frequency (Hz)
fB Baseband frequency (Hz)
fc Carrier frequency (Hz)
λ = c/ fc Wavelength (m)
B Bandwidth (Hz)
T Integration interval (s)
∆θ = θ̇T Integration angle (rad)
τk Center of k-th Doppler-processing interval (s)
δR = c/2B Range resolution (m)
δṘ = λ/2T Doppler resolution (m/s)
ĝ(r, t) Range–Time Intensity (RTI)
g(r, ṙ) Range–Doppler Map (RDM)
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Table A1. Cont.

g(x, y) 2D ISAR image
XD(ṙ, τk) Doppler–Time Intensity (DTI)
X(r, ṙ, τk) 3D range-Doppler-time (RDT) tensor (continuous time)
X[n, m, k] 3D range-Doppler-time (RDT) tensor (discrete time)
XRS[n, k] Range superpulses
XDS[m, k] Doppler superpulses
X̃[n′, m′, k] Rank-reduced RDT tensor
X̃PS[n′, m′] Power-sum image
gDT(x, y) Doppler tomography image
gBENI(x, y) BENI image
h(τk; x) Position of scatterer x in RDT space (m, m/s)
p(τk; x, θ̇, γ) Transformed position after rank-reducing transform (m, m)
Tθ̇,γ(τk) Rank-reducing transform matrix

Appendix A.2. Derivation of Slant-Plane Image

A slant-plane image can be formed when γ < π/2 by invoking the first-order expan-
sion

sin(θ̇ t̄) ≈ θ̇ t̄

cos(θ̇ t̄) ≈ 1.

Substitution into (12) yields

R(t̄; x) ≈ (x cos θi − y sin θi)θ̇eff t̄ + (x sin θi + y cos θi) sin γ + z cos γ, (A4)

where
θ̇eff = ∥ω⃗ × û(t)∥ = (sin γ)θ̇

is the effective rotation rate observed by the radar, i.e., the component of rotation orthogonal
to the radar line of sight. The conversion between body-frame coordinates x and slant-plane
coordinates x′′ at angle θi is x′′

y′′

z′′

 =

 1 0 0
0 sin γ cos γ
0 − cos γ sin γ

 cos θi − sin θi 0
sin θi cos θi 0

0 0 1

 x
y
z

 (A5)

Applying (A5) to (A4) produces

R(t̄; x′′) ≈ x′′ θ̇eff t̄ + y′′.

Applying the linear-imaging approximation, which includes the approximations used
when producing the RDM in (8), we generate the slant-plane image as

gS(x, y) =
∫ T/2

−T/2

∫ B/2

−B/2
G( f , t̄) exp

(
j
4π

c
fBy
)

exp
(

j
4π

c
fc θ̇eff t̄x

)
d fBdt̄. (A6)

The resulting image is

gS(x, y) ≈ BT
∫

Ωy

∫
Ωx

σ̄S(x′′, y′′) exp
(
−j

4π

c
fcy′′

)
sinc

(
x − x′′

λ/(2 sin γ∆θ)

)
(A7)

× sinc
(

y − y′′

c/2B

)
dx′′dy′′,

where σ̄S(x′′, y′′) is the 2D projection of the 3D reflectivity onto the slant plane.
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