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Abstract: Channel estimation in Underwater Acoustic Communication (UAC) faces significant
challenges due to the non-Gaussian, impulsive noise in ocean environments and the inherent high
dimensionality of the estimation task. This paper introduces a robust channel estimation algorithm
by solving an ℓ1 ´ ℓ1 optimization problem via the Alternating Direction Method of Multipliers
(ADMM), effectively exploiting channel sparsity and addressing impulsive noise outliers. A non-
monotone backtracking line search strategy is also developed to improve the convergence behavior.
The proposed algorithm is low in complexity and has robust performance. Simulation results show
that it exhibits a small performance deterioration of less than 1 dB for Channel Impulse Response (CIR)
estimation in impulsive noise environments, nearly matching its performance under Additive White
Gaussian Noise (AWGN) conditions. For Delay-Doppler (DD) doubly spread channel estimation, it
maintains Bit Error Rate (BER) performance comparable to using ground truth channel information
in both AWGN and impulsive noise environments. At-sea experimental validations for channel
estimation in Orthogonal Frequency Division Multiplexing (OFDM) systems further underscore the
fast convergence speed and high estimation accuracy of the proposed method.

Keywords: robust channel estimation; underwater acoustic communications; compressed sensing;
impulsive noise

1. Introduction

In recent years, the expanding scope of marine exploration and the burgeoning Internet
of Underwater Things (IoUT) in maritime domains have increased the demand for high-
data-rate and reliable wireless communication links [1,2]. Underwater Acoustic (UWA)
transmission, leveraging sound waves for their lower attenuation and longer propagation
range compared to alternative carriers like electromagnetic and optical waves, is still
the most practical solution in ocean environments [3]. However, the development of
high-performance Underwater Acoustic Communication (UAC) systems is fundamentally
constrained by the intrinsic properties of the UWA channel and the availability of accurate
Channel State Information (CSI) [4]. Channel estimation remains a critical challenge in UAC
systems. This is compounded by the dynamic and diverse nature of ocean environments
and the high dimensionality of the estimation problem due to the large delay and Doppler
spreads, along with the need to minimize the number of pilot or training symbols to
reduce overhead [5–7].

Extensive research has been conducted on acquiring channel information for various
modulation schemes through different methods. Compared to conventional methods such
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as Least Squares (LS) [8] and Minimum Mean Squared Error (MMSE) [9], it is widely recog-
nized that Compressed Sensing (CS)-based algorithms offer a more efficient solution for
accurate channel estimation with low overhead [10–14]. UWA channels often exhibit spar-
sity in both delay and Doppler domains when the transmission bandwidth is sufficiently
wide to ensure that multipath arrivals are resolvable [10–12]. Iterative greedy algorithms
represented by Orthogonal Matching Pursuit (OMP) are the most popular CS-based meth-
ods used in practice due to their low computation cost [15,16]. Enhanced variants like
Stagewise OMP (StOMP) [17] and the more recent Gram–Schmidt OMP (GSOMP) [13],
have improved the efficiency and accuracy of the original OMP by refining atom selection
strategies and optimizing termination conditions. However, greedy methods typically
yield sub-optimal solutions, and their performance often relies on having prior knowledge
of the sparsity level of the channel [18].

Convex relaxation methods, represented by ℓ1-norm relaxation or Basis Pursuit De-
noising (BPDN), provide more stable solutions in noisy UWA environments, supported
by their stronger theoretical guarantees and global optimality [19]. Classic BPDN solvers
like the Interior-Point Method (IPM), despite being computationally intensive, are known
for their high accuracy and convergence speed [20,21]. For large-scale problems or in
scenarios where real-time processing is paramount, advanced solvers such as the Proxi-
mal Gradient Method (PGM) [22,23] and the Alternating Direction Method of Multipli-
ers (ADMM) [24,25] offer a desirable compromise between computational efficiency and
the precision required for effective channel estimation. Despite the success of the afore-
mentioned methods in UAC applications, their effectiveness is largely predicated on the
assumption of Additive White Gaussian Noise (AWGN) [26]. This assumption, however,
does not always hold in real-world scenarios as UWA channels often contain interference,
especially impulsive noise from various natural sources and human activities [27]. Ad-
dressing this, our previous work in [28] introduced a low-complexity, easily implementable
ADMM-based algorithm.

Recent developments in Deep Learning (DL) have offered promising solutions to the
UWA channel estimation. In [29], a five-layer neural network trained on offline simulated
data is developed for channel estimation and symbol detection in wireless Orthogonal Fre-
quency Division Multiplexing (OFDM) systems. For UWA OFDM systems, [30] introduces
a DL-based channel estimator that demonstrates improved performance over traditional
methods such as LS and MMSE. Meanwhile, DL is also employed in UWA channel pre-
diction. In [31], Liu et al. developed CsiPriNet, combining a 1D Convolutional Neural
Network (CNN) and Long Short-Term Memory (LSTM) network, for frequency-domain
channel prediction in UWA downlink OFDMA systems. Despite the advancements in
DL approaches, these models often exhibit high latency and demand large storage and
computational resources for training.

Achieving robust channel estimation in impulsive noise environments for UAC sys-
tems remains an ongoing research endeavor. Conventional channel estimation methods lack
resilience against significant outliers, and current approaches to handling impulsive noise
often require prior statistical knowledge of the channel and noise, including assumptions
about their distribution [32,33]. Additionally, the high computational demands of these
methods limit their applicability and effectiveness in real-time applications. To address
the challenges outlined above, this work aims to develop a robust and efficient method for
UWA channel estimation in impulsive noise environments. Our main contributions are
as follows:

1. We introduce a robust algorithm by reformulating the channel estimation problem as
an ℓ1 ´ ℓ1 optimization problem, which offers enhanced resilience to outliers. This
new optimization problem is adeptly tackled using the ADMM framework with the
Accelerated Proximal Gradient (APG) method [34]. Furthermore, we incorporate a
non-monotone line search strategy to increase the convergence speed as well as im-
prove the robustness, particularly for ill-conditioned problems. The proposed method
is low in complexity and has robust performance in challenging noise conditions.
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2. We evaluate the performance of the proposed algorithm in various scenarios including
estimating Channel Impulse Response (CIR) and Delay-Doppler (DD) spread func-
tions for single-carrier systems through simulations as well as at-sea experimental
validations for channel estimation in OFDM systems. The results demonstrate the fast
convergence speed and high accuracy of the proposed method in both AWGN and im-
pulsive noise environments, making it well-suited for robust channel estimations for
diverse UWA channel models and communication schemes in practical applications.

The remainder of the paper is structured as follows. Section 2 briefly discusses the
channel estimation problems in UAC systems. Section 3 details the proposed method,
including its implementation and complexity analysis. Numerical simulations and ex-
perimental results are in Sections 4 and 5, respectively. Finally, the conclusion is drawn
in Section 6.

Notations: Vectors and matrices are represented by boldfaced lower-case and upper-
case letters, respectively. The notations p¨q˚, p¨qT , and p¨qH represent complex conjugate,
transpose, and Hermitian transpose, respectively. x¨, ¨y is an inner product operator, and
} ¨ }p represents ℓp-norm.

2. Preliminaries
2.1. Channel Estimation in UAC Systems

In UACs, the discrete input–output relationship concerning the transmission of the
signal through the channel is often converted to the following linear expression:

y “ Φx ` v (1)

where y P CM denotes the received discrete signal or symbols, x P CN is the vector
which encapsulates the unknown channel parameters to estimate, Φ P CMˆN is the matrix
formulated by training signal or symbols, and v corresponds to a noise-related vector. All
variables in (1) are presumed to be complex-valued since channel estimations is usually
performed on the baseband. Specific definitions of Φ and x depend on the type of the
transmitted signal and the channel model adopted. For example, for CIR estimation in
single-carrier transmission systems, the discrete input–output relationship of the UWA
multipath channel at the i-th time instant can be expressed as:

yris “

Nτ
ÿ

k“1

h˚rkssri ´ k ` 1s ` vris (2)

where sris and yris are transmitted and received symbols, respectively, hrks is the amplitude
of the k-th path, and Nτ denotes the number of delay taps or the length of the CIR vector.
Let N “ Nτ and sris “ rsris, sri ´ 1s, ¨ ¨ ¨ , sri ´ N ` 1ss

T . The matrix form in (1) can be
obtained by stacking M consecutive received symbols together, leading to

y fi ryris, yri ´ 1s, ¨ ¨ ¨ , yri ´ M ` 1ss
T

P CM (3a)

x fi rhr1s, hr2s, ¨ ¨ ¨ , hrNss
T

P CN (3b)

Φ fi rsris, sri ´ 1s, ¨ ¨ ¨ , sri ´ M ` 1ss
T

P CMˆN . (3c)

When the assumption of time-invariant channel does not hold, the input–output
relationship in (2) is changed to

yris “

Nτ
ÿ

k“1

h˚ri, kssri ´ k ` 1s ` vris, (4)

where hri, ks fi hpi∆t, pk ´ 1q∆τq is the sampled time-varying CIR, and ∆t and ∆τ denote the
sampling intervals in time and delay domains, respectively. Instead of using CIR, the time-
varying channel can also be represented by its DD spread function url, ks fi urνl , pk ´ 1q∆τs
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with νl “ νmin ` pl ´ 1q∆ν for l “ 1, ¨ ¨ ¨ , Nν, and ∆ν is the sampling interval in the Doppler
domain [35]. The relationship between the DD spread function and the time-varying CIR
is given by the Fourier transform:

hri, ks “

Nν
ÿ

l“1

url, ksej2πνl i∆t. (5)

Substituting (5) into (4), we can obtain

yris “

Nτ
ÿ

k“1

Nν
ÿ

l“1

u˚rl, kse´j2πνl i∆tsri ´ k ` 1s ` vris (6)

which transforms the channel estimation problem to 2-D DD plane. Define the vectorized
2-D matrix of DD spread function u fi rur1, 1s, ¨ ¨ ¨ , urNν, 1s, ¨ ¨ ¨ , ur1, Nτs, ¨ ¨ ¨ , urNν, Nτss

T

and the Fourier transform coefficient vector βris fi
“

e´j2πν1i∆t, ¨ ¨ ¨ , e´j2πνNν i∆t‰T . We can
rewrite (6) as

yris “ psris b βrisqTu˚ ` vris, (7)

where b represents Kronecker product. Similarly, the time-varying channel estimation via
the DD spread function, consistent with the form in (1), can be obtained by stacking M
consecutive received symbols with

Φ fi rpsris b βrisq, ¨ ¨ ¨ , psri ´ M ` 1s b βri ´ M ` 1sqs
T , (8)

and x fi u P CN . Here, N “ Nτ ˆ Nν.
Channel estimation problems in multicarrier modulation schemes can also be for-

mulated as the linear expression shown in (1). Different from the single-carrier systems,
channel estimation in OFDM systems often operates in the frequency domain, turning
time-domain convolutions into straightforward frequency-domain multiplications. Let s, y,
and w denote the M-dimensional vectors of transmitted and received pilot symbols and
noise in the frequency domain, respectively. Under the assumption that the delay spread of
the channel remains within the Cyclic Prefix (CP) length of OFDM symbols, the channel
input–output relationship in the frequency domain can be depicted as

y “ ΛFh ` w, (9)

where Λ “““ diagpppsqqq is the diagonal matrix constructed from the transmitted pilot symbols
s, and F P CMˆN is the discrete Fourier transform (DFT) matrix associated with the
pilot subcarriers, and h “ rhr1s, hr2s, ¨ ¨ ¨ , hrNss

T is the N-dimensional CIR vector. This
relationship can be succinctly represented as in (1) by defining Φ fi ΛF and x fi h.

In impulsive noise environments, OFDM systems often exhibit better resilience than
single-carrier systems, especially when the power of impulsive noise is moderate. This is
because symbol detection in the frequency domain averages out impulsive noise across
all subcarriers. Conversely, single-carrier systems are more vulnerable to impulsive noise,
particularly when the noise occurrence probability is high.

2.2. Compressed Sensing Approach

Above, we briefly discussed how channel estimation problems in UAC, across different
channel models and communication schemes, can be converted into a linear programming
problem, as shown in (1). A key challenge in solving (1) in the context of UAC is the
underdetermined nature of the system. Channel estimation is often performed with fewer
training symbols or equations compared to the greater number of unknown channel
parameters, i.e., typically M ! N. Fortunately, the inherent sparsity of both CIR and
DD spread function of UWA channels makes it possible to solve (1) by using CS-based
techniques [6,35]. In Gaussian noise environments, the problem is commonly transformed
into the ℓ1-norm regularized LS problem
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minimize
x

||y ´ Φx||2 ` λ|x||1, (10)

where λ is the regularization parameter. The unconstrained convex optimization problem
above can be solved by various optimization algorithms [21,23,25,34,36]. However, as
demonstrated in [37], the performance and robustness of sparse estimation algorithms
based on (10) will be degraded when the measurement y is contaminated by impulsive
noise or heavy-tailed non-Gaussian noise.

In our preceding work [28], we presented a robust channel estimation method utilizing
an alternative objective function

minimize
x

τ||y ´ Φx||1 ` ||x||1, (11)

which applies ℓ1-norm regularization to both solution x and the residue vector r “ y ´ Φx,
and r is related to background noise. Compared to (10), optimizing with an ℓ1 ´ ℓ1 objective
function provides a more robust solution when the measurement y contains large errors
or impulsive noise, as the squared errors imposed by the ℓ2-norm are more sensitive to
outliers [38]. ℓ1 ´ ℓ1 optimization is also widely utilized for denoising and restoration in
image processing [39,40]. In this work, we introduce an improved ADMM-based method
that integrates the APG approach with a non-monotone line search strategy to solve the
problem in (11), offering a faster convergence and a more robust and more accurate solution
for UWA channel estimation in different scenarios.

3. Details of the Proposed Algorithm
3.1. General Framework

ADMM is an effective method to solve large-scale structured optimization problems
in the form

minimize
x,z

f pxq ` gpzq

subject to Ax ` Bz “ c
(12)

leveraging the decomposability of dual ascent methods while benefiting from the robust
convergence properties of the method of multipliers [25]. Given the objective function
in (11), direct optimization is difficult as both ℓ1-norm terms are non-differentiable. By
introducing an auxiliary variable z “ y ´ Φx, we can recast (11) into a form amenable
to ADMM:

minimize
x,z

τ||z||1 ` ||x||1

subject to Φx ` z “ y.
(13)

The Augmented Lagrangian Function (ALF) of (13) is

Lρpx, z, γq “ ||x||1 ` τ||z||1 `
ρ

2
||z ` Φx ´ y ` γ{ρ||22 ´

1
2ρ

||γ||22, (14)

incorporating the dual variable vector γ and a positive penalty factor ρ. Rather than
tackling the minimization of Lρpx, z, γq with respect to both x and z simultaneously, ADMM
decomposes the original problem, allowing for the iterative and alternate updating of x
and z by

xpk`1q “ argmin
x

Lρpx, zpkq, γpkqq (15a)

zpk`1q “ argmin
z

Lρpxpk`1q, z, γpkqq (15b)

γpk`1q “ γpkq ` ρpzpk`1q ` Φxpk`1q ´ yq. (15c)
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Central to the iteration process above are the two subproblems shown in (15a) and (15b),
which, upon transformation, correspond to

minimize
x

Fpxq “ f1pxq ` f2pxq (16)

minimize
z

Gpzq “ g1pzq ` g2pzq (17)

with
f1pxq fi

ρ

2
||zpkq ` Φx ´ y ` γpkq{ρ||22, f2pxq fi ||x||1,

g1pzq fi
ρ

2
||z ` Φxpk`1q ´ y ` γpkq{ρ||22, g2pzq fi τ||z||1.

(18)

Both Fpxq and Gpzq comprise a smooth convex quadratic function alongside a non-
differentiable ℓ1-norm term, which can be solved by PGM. Given a non-differentiable
function hpxq, its proximal mapping is defined as [36]

proxh,tpxq “ argmin
x`

1
2t

||x` ´ x||22 ` hpx`q, (19)

where t is a step-size parameter chosen by the Lipschitz constant of the differentiable
portion of the objective function. For the ℓ1-norm regularization function, its proximal
operator is equivalent to the soft-thresholding operator

Sαpβq fi
maxp|β| ´ α, 0q

maxp|β| ´ α, 0q ` α
β (20)

as the separability of the ℓ1-norm simplifies the proximal mapping problem into a series
of one-dimensional minimization tasks [36]. The following subsections will discuss the
detailed schemes for solving the two subproblems.

3.2. Update of Primal Variable: x

Upon examining (16) and (17) against the standard form of the proximal mapping
defined in (19), it is apparent that while the z-subproblem aligns with the proximal mapping
of function g2pzq, the x-subproblem does not directly correspond due to the existence of
matrix Φ. To make the x-subproblem tractable, we approximate f1pxq using its first-order
Taylor expansion at the point xpkq—the estimate from the preceding iteration:

f̃1pxq fi f1pxpkqq ` x∇ f1pxpkqq, x ´ xpkqy `
1

2tx
||x ´ xpkq||22, (21)

where

∇ f1pxpkqq “ ρΦHpzpkq ` Φxpkq ´ y ` γpkq{ρq. (22)

Replacing f1pxq with f̃1pxq and omitting the constant terms associated with xpkq, (16) is
reduced to an optimization problem equivalent to the proximal mapping of f2pxq as

xpk`1q “ prox f2,tx

´

xpkq ´ tx∇ f1pxpkqq

¯

, (23)

where the step-size parameter tx can be set as the reciprocal of the Lipschitz constant for
f1pxq, i.e., tx “ 1{λmaxpΦHΦq. λmaxp¨q represents the maximum eigenvalue of the given
matrix. The closed-form solution of the proximal operator for ℓ1-norm allows (23) to be
directly computed by

xpk`1q “ Stx{ρ

´

xpkq ´ txΦHpΦxpkq ` zpkq ´ y ` γpkq{ρq

¯

(24)

where Stx{ρp¨q is the soft-thresholding function shown in (20) with the threshold parameter
α “ tx{ρ.
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For practical applications, particularly in UWA channel estimation characterized
by large delay and Doppler spread, evaluation of λmaxpΦHΦq can be computationally
intensive. In such cases, a backtracking line search strategy is a more flexible and efficient
way to adjust the step-size parameters. In [28], we implemented a monotone update scheme
for solving the x-subproblem as detailed in Algorithm 1, where Jpxq denotes the objective
function given in (11).

Algorithm 1 Update of Primary Variable x: Monotone Strategy [28]

Iteration 0: Set xp0q “ 0, t0 ą 0, and ηx ą 1.
¨ ¨ ¨

Iteration k: Get xpk´1q, zpk´1q, γpk´1q and Jpxpk´1qq from previous iteration.

1: Compute the gradient ∇ f1pxpk´1qq using (22).
2: Backtracking Line Search: find the minimum number of iterations lpkq such that with

tpkq
x “ t0{ηlpkq

x and xlpkq “ S
tpkq
x {ρ

´

xpk´1q ´ tpkq
x {ρ ¨ ∇ f1pxpk´1qq

¯

Jpxlpkq q ď Jpxpk´1qq.

3: Set xpkq “ xlpkq .

In this work, we integrate the APG method to enhance convergence speed [34], char-
acterized by an additional extrapolation step to inject momentum from previous iterations

upk`1q “ xpkq `
µ

pk´1q
x

µ
pkq
x

pwpkq
x ´ xpkqq `

µ
pk´1q
x ´ 1

µ
pkq
x

pxpkq ´ xpk´1qq, (25)

where wpkq
x is the output of the proximal operator at upkq from the previous iteration, and

the extrapolation parameter µ
pkq
x is updated by

µ
pk`1q
x “

1 `

c

1 ` 4
´

µ
pkq
x

¯2

2
. (26)

Accordingly, the proximal gradient step in (23) is adjusted to operate at the new
extrapolation point upkq as

xpk`1q “ prox f2,tx

´

upk`1q ´ tx∇ f1pupk`1qq

¯

. (27)

In ill-conditioned problems or when the optimization landscapes comprise flat plateaus
and narrow ravines, enforcing a monotonic decrease in the objective function can slow
down the convergence speed [41]. To address this problem, a non-monotone update strat-
egy that allows temporary increases in the objective function value across iterations is
introduced. Specifically, we define a relaxation criterion using a convex combination of
previous function values tJpxp0qq, Jpxp1q, ¨ ¨ ¨ Jpxpkqqu:

J̄pkq “

řk
j“0 εk´j Jpxpjqq
řk

j“0 εk´j
, (28)

where ε P r0, 1q is an exponentially decreasing weight controlling the non-monotonicity
level. If ε “ 0, the strategy reverts to monotone. If ε “ 1, J̄pkq is the average function value
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from all previous iterations. A similar criterion is also used in non-convex programming to
facilitate faster convergence [42]. J̄ can also be computed efficiently in a recursive fashion:

cpk`1q “ εcpkq ` 1, J̄pk`1q “
εcpkq J̄pkq ` Jpxpk`1qq

cpk`1q
(29)

with cp0q “ 1 and J̄p0q “ Jpxp0qq. Since we do not require the objective function value to de-
crease monotonically as in Algorithm 1, the termination condition of the line search process
can also be relaxed to reduce the number of inner iteration steps and allow a larger step
size to be used. As illuminated in Lemma 2.1 of [23], the linear-quadratic approximation

Fspx̂, xpkqq “ f1pxpkqq ` x∇ f1pxpkqq, x̂ ´ xpkqy `
1

2tpk`1q
x

||x̂ ´ xpkq||22 ` f2px̂q (30)

can be used to indicate that a proper step-size tpk`1q
x is found to ensure adherence to the

Lipschitz continuity condition.
The proposed non-monotone update strategy of primary variable x is summarized

in the Algorithm 2. To avoid the case that upkq might be a bad extrapolation in the APG
method, note that we also incorporate an additional normal proximal gradient step to
serve as a monitor. This step, as specified in lines 7–9 of Algorithm 2, is activated only
when the extrapolation point upkq does not contribute to a decrease in the value of the
relaxed objective function J̄pkq. It ensures the algorithm maintains robust performance and
convergence behavior without substantially increasing the computational burden.

Algorithm 2 Update of Primary Variable x: Non-monotone Strategy

Iteration 0: Set xp0q “ 0, µ
p0q
x “ µ

p´1q
x “ 1, t0 ą 0, and ηx ą 1.

¨ ¨ ¨

Iteration k: Get xpk´1q, xpk´2q, zpk´1q, γpk´1q and J̄pk´1q from previous iteration.

1: Compute the extrapolation point upkq by (25) and the gradient ∇ f1pupkqq

by (22), respectively.
2: Backtracking Line Search: find the minimum number of iterations ipkq such that with

tpkq
x “ t0{ηipkq

x and wpkq
x “ S

tpkq
x {ρ

´

upkq ´ tpkq
x {ρ ¨ ∇ f1pupkqq

¯

Fpwpkq
x q ď Fspwpkq

x q.

3: if Jpwpkq
x q ă J̄pk´1q then

4: set xpkq “ wpkq
x

5: else
6: Compute the gradient ∇ f1pxpk´1qq by (22).
7: Backtracking Line Search: find the minimum number of iterations jpkq such that

with tpkq
x “ t0{η

jpkq

x and w̃pkq
x “ S

tpkq
x {ρ

´

xpk´1q ´ tpkq
x {ρ ¨ ∇ f1pxpk´1qq

¯

Fpw̃pkq
x q ď Fspw̃pkq

x q.

8: Compute Jpw̃pkq
x q and

xpkq “

#

w̃pkq
x , if Jpw̃pkq

x q ă Jpw̃pkq
x q,

wpkq
x , otherwise.

9: end if
10: Update the extrapolation parameter µ

pkq
x by (26), and cpkq and J̄pkq by (29).
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3.3. Update of Auxiliary Variable: z

The optimization of z in each iteration only includes the evaluation of the proximal
operator with constant step-size tz “ 1, which is equivalent to performing the element-wise
soft-thresholding step as

zpk`1q “ Sτ{ρ

´

zpkq ´ ∇g1pzpkqq{ρ
¯

(31)

with ∇g1pzpkqq “ ρpzpkq ` Φxpk`1q ´ y ` γpkq{ρq. (32)

Similarly, we integrate the extrapolation step of variable z to improve the
convergence rate:

vpk`1q “ zpkq `
µ

pk´1q
z

µ
pkq
z

pwpkq
z ´ zpkqq `

µ
pk´1q
z ´ 1

µ
pkq
z

pzpkq ´ zpk´1qq, (33)

where wpkq
z “ Sτ{ρ

´

vpkq ´ ∇g1pvpkqq{ρ
¯

, and µ
pkq
z follows the same update procedure as µ

pkq
x

(refer to (26)). The pseudocode of the update process of z is summarized in Algorithm 3.

Algorithm 3 Update of Auxiliary Variable z

Iteration 0: Set zp0q “ y ´ Φxp0q, µ
p0q
z “ µ

p´1q
z “ 1.

¨ ¨ ¨

Iteration k: Get xpkq, zpk´1q, zpk´2q, wpk´1q
z , γpk´1q and Gpzpk´1qq from previous iteration.

1: Compute the extrapolation point vpkq by (33) and the gradient ∇g1pvpkqq by (32).
2: Evaluate the proximal operator: wpkq

z “ Sτ{ρ

´

vpkq ´ ∇g1pvpkqq{ρ
¯

.

3: Compute Gpwpkq
z q by (17) and zpkq “ argmin

z
tGpzq : z “ wpkq

z , zpk´1qu.

4: Update the extrapolation parameter µ
pkq
z by (26).

3.4. Residues, Stopping Criteria, and Penalty Parameter Tuning

The convergence of the ADMM algorithm is typically assessed through primal and
dual feasibility conditions. Following a similar derivation process of the termination criteria
for standard ADMM [25], the primal residue rp and dual residue rd for our algorithm are
given by

rpk`1q
p “ Φxpk`1q ` zpk`1q ´ y, rpk`1q

d “ ρΦHprpk`1q
p ´ rpkq

p q ´
1

tpk`1q
x

pxpk`1q ´ xpkqq. (34)

The iteration stops when the following conditions are met:

||rpkq
p ||2 ď ϵ

pkq
p and ||rpkq

d ||2 ď ϵ
pkq

d (35)

where ϵ
pkq
p and ϵ

pkq

d are updated using absolute and relative criteria:

ϵ
pkq
p “

?
Mϵabs ` ϵrel maxt||Φxpkq||2, ||zpkq||2, ||y||2u, ϵ

pkq

d “
?

Nϵabs ` ϵrel||Φ
Hγpkq||2. (36)

Here, ϵabs and ϵrel denote the absolute and relative tolerances, respectively. In addition,
to balance the convergence of primal and dual residues and to reduce the sensitivity of
the performance to the initial value of penalty parameter ρ, a widely applied adjustment
strategy is employed:
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ρpk`1q “

$

’

’

&

’

’

%

δincrρpkq if ||rpkq
p ||2 ą ξ||rpkq

d ||2

δdecrρpkq if ||rpkq
p ||2 ă ξ´1||rpkq

d ||2

ρpkq otherwise.

(37)

Commonly used values for the constants in (37) are ξ “ 10 and δincr “ δdecr “ 2.
Incorporating the stopping criteria and the penalty parameter adjustment scheme

outlined above, the complete pseudocode for the proposed algorithm is summarized in
Algorithm 4.

Algorithm 4 Proposed Algorithm

1: Initialization: Set ρ, τ, ε, ϵabs, ϵrel ą 0.
2: for k “ 1, 2, 3, . . . do
3: Update the primary variable xpkq with the non-monotone strategy in Algorithm 2.
4: Update the auxiliary variable zpkq by Algorithm 3.
5: Update the dual variable γpkq by (15c).
6: Compute the primal and due residues by (34) and the tolerances by (36).
7: if stopping criteria in (35) are met then
8: break
9: end if

10: Update the penalty parameter ρpkq by (37).
11: end for

3.5. Computational Complexity

The proposed algorithm does not include matrix inversion and matrix–matrix mul-
tiplication. In the x-update procedure, the most computationally expensive part of both
monotone and non-monotone strategies is the evaluation of the gradient ∇ f1p¨q, which
takes two matrix–vector multiplications involving Φ and ΦH , and each multiplication
has a complexity of OpMNq. The complexity of the soft-thresholding operator Stx{ρp¨q

in (24) is OpNq. When the extrapolation point u in (25) does not meet the requirement,
the non-monotone strategy will trigger an additional evaluation of gradient vector and
soft-thresholdng operator. Computation of gradient ∇g1p¨q only requires performing the
matrix–vector product once, which has the same complexity as OpMNq. The evaluation
of the soft-thresholding operator in the z-update has complexity of OpMq. The remain-
ing parts of the proposed algorithm only include vector–vector operations. The overall
computational complexity per iteration is OpMNq.

4. Numerical Simulations

In this section, we evaluate the performance of the proposed algorithm for both CIR
and DD spread function estimations within the single-carrier transmission scheme. A two-
component Gaussian mixture noise (GMN) model [2] is adopted to simulate environments
contaminated by impulsive noise with the probability density function denoted as

Ppvrisq “ p1 ´ qqN p0, σ2
Wq ` qN p0, σ2

I q, i “ 1, ¨ ¨ ¨ , N (38)

Here, v “ vW ` vI . vW and vI denote AWGN and impulsive noise with variances
σ2

W and σ2
I , respectively, 0 ď q ă 1 indicates the impulsive noise occurrence probability,

and N p¨q represents the complex Gaussian distribution function. We benchmarked our
algorithm against three widely applied first-order methods: OMP, Fast ISTA (FISTA), and
the original ADMM developed to solve the ℓ1-norm regularized least squares problem
in (10). The second-order IPM with Preconditioned Conjugate Gradient (PCG) is also
considered [21]. For clarity, the algorithms from our previous work [28] and this study are
termed mADMM (monotone) and nmADMM (non-monotone), respectively. All simula-
tions were conducted on a desktop PC manufactured by Dell, located in China, utilizing
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an Intel Core i5 2.30 GHz CPU and 16 GB RAM (Intel, Santa Clara, CA, USA), running
MATLAB 2023a and Windows 10 (Microsoft, Redmond, WA, USA).

4.1. Simulation I: CIR Estimation in Single-Carrier System

We simulate the UWA channel using the model from [43]. The channel has a total
possible delay spread of 128 ms with a sampling interval ∆τ “ 0.25 ms, leading to a CIR of
N “ 512 potential taps. Npa “ 64 of these taps are non-zero, highlighting the sparsity of the
channel. The interarrival times for these non-zero taps are exponentially distributed, and
their amplitudes follow a Rayleigh distribution with a variance that decreases as the delay
increases. We employ the widely used Pseudo-Random Binary Sequence (PRBS) as the probe
signal after binary phase-shift keying (BPSK) modulation. The probe symbol sequence length
is set at M “ 1

2 N “ 256, rendering the problem underdetermined. In the impulsive noise
environment, the Interference-to-Noise Ratio (INR) defined as INR “ 10 log10 pσ2

I {σ2
Wq is set

to 30 dB and the occurrence probability q “ 5 ˆ 10´2. To quantify estimation accuracy, we use
the Normalized Mean-Square Deviation (NMSD) metric: NMSD “ 20 logp||x˚ ´ x̂||2{||x˚||2q,
where x˚ is the true CIR and x̂ denotes its estimate.

Regularization factors for algorithms FISTA, ADMM, and IPM-PCG are all set to
λ “ 0.01 λ8, where λ8 fi ||2ΦHy||8. For the mADMM and nmADMM algorithms,
the regularization factor is set as τ “ 1{p0.05λ8q. Algorithms with a backtracking line
search process, specifically FISTA, IPM-PCG, mADMM, and the proposed method, have
their scale parameter η for stepsize reduction set to 1.5. The initial penalty parameter
ρ for all ADMM-based algorithms is set to 1, and the absolute and relative tolerance
thresholds for the stopping criterion are ϵabs “ 10´3 and ϵrel “ 10´2, respectively. The
additional exponentially decreasing weight parameter which controls the non-monotonicity
of the proposed nmADMM algorithm is set as ε “ 0.95. The stopping criterion for the
FISTA algorithm evaluates the relative change ratio of residuals between two consecutive
iterations, given as ||rpk`1q ´ rpkq||2{||rpkq||2, where rpkq “ y ´ Φxpkq, and the tolerance for this
ratio is ϵfista “ 10´3. The relative tolerance of the duality gap for the IPM-PCG algorithm is
ϵipm “ 10´3. Prior to deploying IPM-PCG, the problem is transitioned to the real domain
using the method outlined in ref. [21]. All results are averaged over 100 independent runs.

Figures 1 and 2 present an estimated CIR example in two noise environments at
a Signal-to-Noise Ratio (SNR) of 10 dB, aligning with the practical conditions in UWA
applications. The NMSD versus iteration curves are depicted in Figure 3. One can see that
all algorithms achieve a similar NMSD of approximately ´12 dB in the AWGN environment.
The OMP algorithm can attain the lowest NMSD with precise prior information of sparsity
and optimal stopping conditions. The second-order IPM-PCG algorithm offers the fastest
convergence; however, its accuracy is compromised due to the problem conversion to
the real domain and it has a much higher computational load than other algorithms. In
the presence of impulsive noise, the performance of OMP, FISTA, ADMM, and IPM-PCG
deteriorates drastically where the estimated CIR contains a large number of noisy taps
that are supposed to be inactive. The accuracy of mADMM and nmADMM also decreases
by less than 1 dB compared to their performance in the AWGN environment. Yet, they
still effectively estimate the channel components. One can also observe that the proposed
nmADMM algorithm exhibits a faster convergence speed than the mADMM algorithm,
achieving convergence within approximately 20 iterations.
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Figure 1. Estimated CIR in AWGN environment: (a) OMP, (b) FISTA, (c) ADMM, (d) IPM-PCG,
(e) mADMM, and (f) nmADMM.
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Figure 2. Estimated CIR in impulsive noise environment: (a) OMP, (b) FISTA, (c) ADMM, (d) IPM-
PCG, (e) mADMM, (f) nmADMM.

0 20 40 60 80 100

Iterations

-15

-10

-5

0

N
M

S
D

 (
d
B

)

OMP

FISTA

ADMM

IPM-PCG

mADMM

nmADMM

(a)

0 20 40 60 80 100

Iterations

-15

-10

-5

0

5

10

15

N
M

S
D

 (
d
B

) OMP

FISTA

ADMM

IPM-PCG

mADMM

nmADMM

(b)

Figure 3. Comparison of convergence trends of NMSD across iterations: (a) AWGN environment and
(b) impulsive noise environment.

Figure 4 shows the variation in NMSD with a different number of measurements, which
further highlights the robust performance of the proposed method in impulsive noise environ-
ments. Table 1 summarizes the average number of iterations to reach stop criteria, runtime for
single estimation, and converged NMSD values. While the proposed non-monotone strategy
requires longer computation due to the extra proximal step, it excels in convergence speed
and estimation accuracy in both AWGN and impulsive noise environments compared to the
mADMM algorithm. Figure 5 displays the NMSD across various SNR levels. In AWGN envi-
ronments, with precise channel sparsity information, the OMP algorithm obtains the lowest
NMSD at high SNR levels (ě10 dB), while other algorithms perform similarly. However, in
impulsive noise environments, both the mADMM and nmADMM algorithms outperform
other competing algorithms by over 15 dB across all SNR levels. Notably, the proposed
nmADMM algorithm achieves lowest estimation error under impulsive noise conditions as
well as in AWGN environments at low SNR levels (ď10 dB).
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Figure 4. Variation in NMSD with different numbers of measurements. (a) AWGN environment.
(b) Impulsive noise environment.

Table 1. Performance comparisons for CIR estimation in the single-carrier system with respect to the
average number of iterations, runtime, and NMSD in AWGN (left side of ‘/’) and impulsive noise
(right side of ‘/’) environments.

Method # Iter. Runtime (s) NMSD (dB)

OMP [15] 64/64 0.32/0.32 ´12.05/8.85
FISTA [23] 43/40 0.11/0.17 ´11.89/7.85
ADMM [25] 35/23 0.12/0.11 ´11.83/8.45
IPM-PCG [21] 24/21 11.86/24.66 ´11.48/8.67
mADMM [28] 54/57 0.23/0.25 ´12.20/´11.25
nmADMM 43/42 0.31/0.33 ´12.22/´11.49
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Figure 5. Variation in NMSD with different SNR levels. (a) AWGN environment. (b) Impulsive
noise environment.

4.2. Simulation II: Doubly Spread Channel Estimation

In this section, we simulate a four-path DD spread channel with the parameters de-
tailed in Table 2. The SNR is set at 10 dB, aligning with the moderate noise level commonly
encountered in practical UWA conditions. Impulsive noise probability is configured at
q “ 10´3 with an INR of 30 dB. Similar to Simulation I, a PRBS employing BPSK modulation
serves as the probe signal, featuring a symbol rate Rs “ 2 kbaud and a pulse-shaping roll-off
factor of 0.4. For channel estimation, we assign an upper bound for the maximum channel
delay at τmax “ 5 ms, where the delay domain sampling interval matches the symbol
duration at ∆τ “ 1{Rs “ 0.5 ms. The Doppler shift sampling interval is set at ∆ν “ 0.2 Hz,
with estimation bounds ranging from νmin “ ´5 Hz to νmax “ 5 Hz. This leads to a total
of N “ 500 unknown channel parameters to estimate. For sparse channel estimation, the
probe symbol sequence length is M “ 2

3 N « 330, highlighting the problem is ill-posed. The
second-order method, IPM-PCG, is excluded due to computational intensity and reduced
accuracy in complex-valued problems.
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Table 2. Parameter setting of the simulated DD channel.

Path No. 1 2 3 4

Delays (ms) 0.5 2 4 4
Doppler shift (Hz) ´1 2 ´4 4
Modulus of amplitude 1 0.8 0.5 0.5

Before performing sparse methods, the Cross-Ambiguity Function (CAF) serves as our
benchmark for channel spread function estimation [44]. The resolution of the CAF method
is highly dependent on the auto-correlation properties of the probe signal. To effectively dis-
tinguish the four paths, we extend the length of the probe signal for CAF to M “ 4

3 N « 670.
The delay and Doppler resolutions approximate τres « 1

Rs
“ 0.5 ms and νres «

Rs
M “ 3 Hz.

Since the problem here has a similar scale to the CIR channel estimation problem in the
previous section, we maintain consistent parameter settings for all algorithms except the
stopping criteria. For ADMM-based methods, the absolute and relative tolerances are set
at ϵabs “ 5 ˆ 10´5 and ϵrel “ 5 ˆ 10´4, respectively. The residue ratio tolerance for the
FISTA algorithm is set at ϵfista “ 10´6. We reduced the tolerance thresholds to achieve finer
estimation precision, particularly as inaccuracies in the Doppler frequency shift estimation
can severely impair subsequent equalization quality. The iteration number for the OMP
algorithm is set at four, aligning with the sparsity of the simulated channel.

Figures 6 and 7 display the estimated DD spread functions under AWGN and im-
pulsive noise environments. Following the probe signal, 2,000 data symbols of the same
symbol rate and modulation configurations are transmitted through the channel. Based
on the channel input–output relationships shown in (4)–(6), the estimated DD functions
are first converted to the time-varying CIR, and then fed into the linear MMSE equalizer
to retrieve the distorted data symbols. The equalization outputs using Ground Truth (GT)
channel information and estimations from different methods are shown in Figures 8 and 9.
We summarize the average number of iterations, runtime for single estimation, number of
error bits, and Bit Error Rate (BER) of the data sequence in Table 3. Notice that given the
limitations of the MMSE equalizer in addressing impulse noise, the BER in an impulsive
noise environment rises by 8.75%, even when utilizing GT channel information.
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Figure 6. DD channel spread function estimation in AWGN environment: (a) CAF, (b) OMP,
(c) FISTA, (d) ADMM, (e) mADMM, and (f) nmADMM.
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Figure 7. DD channel spread function estimation in impulsive noise environment: (a) CAF, (b) OMP,
(c) FISTA, (d) ADMM, (e) mADMM, and (f) nmADMM.



Remote Sens. 2024, 16, 1380 15 of 22

-2 -1 0 1 2

In-Phase

-2

-1

0

1

2

Q
u
a
d
ra

tu
re

(a)

-2 -1 0 1 2

In-Phase

(b)

-2 -1 0 1 2

In-Phase

(c)

-2 -1 0 1 2

In-Phase

(d)

-2 -1 0 1 2

In-Phase

(e)

-2 -1 0 1 2

In-Phase

(f)

Figure 8. Constellation diagrams from linear MMSE equalizer outputs using different estimation
results in AWGN environment: (a) GT, (b) OMP, (c) FISTA, (d) ADMM, (e) mADMM, (f) nmADMM.

-2 -1 0 1 2

In-Phase

-2

-1

0

1

2

Q
u
a
d
ra

tu
re

(a)

-2 -1 0 1 2

In-Phase

(b)

-2 -1 0 1 2

In-Phase

(c)

-2 -1 0 1 2

In-Phase

(d)

-2 -1 0 1 2

In-Phase

(e)

-2 -1 0 1 2

In-Phase

(f)

Figure 9. Constellation diagrams from linear MMSE equalizer outputs using different estimation
results in impulsive noise environment: (a) GT, (b) OMP, (c) FISTA, (d) ADMM, (e) mADMM,
(f) nmADMM.

Table 3. Performance comparison for DD spread function estimation in AWGN (left of ‘/’) and
impulsive noise (right of ‘/’) environments with respect to average iterations, computing time, bit
errors, and BER.

Method # Iter. Runtime (s) # Err. BER (%)

Ground Truth -/- -/- 0/179 0/8.75
OMP [15] 4/4 0.004/0.004 179/791 8.95/39.55
FISTA [23] 564/835 1.16/1.54 9/729 0.45/ 36.45
ADMM [25] 662/610 0.51/0.63 0/619 0/30.95
mADMM [28] 1577/2193 5.85/7.89 557/547 27.85/27.35
nmADMM 481/527 3.15/3.51 0/252 0/12.60

In comparison to the CIR estimation discussed in the previous section, the current
problem exhibits a similar scale but features higher sparsity and a greater number of
observations. However, all sparse algorithms demand more iterations, except for OMP.
This is not merely due to the reduced tolerances for stopping criteria but also stems from
the “poor” property of the measurement matrix Φ. In Simulation I, the measurement matrix
constructed directly by the PRBS had an average rank of 256 and a mutual coherence of
0.24. In contrast, for the problem here, the matrix determined by (8) has a rank of 140 and
mutual coherence of 0.998. The high correlation among column vectors in Φ makes the
identification of correct sparse solutions more difficult, particularly for greedy methods
such as OMP. The iterative process of OMP, which selects the column most correlated with
the current residue, can misidentify the correct support element due to this high coherence,
further leading the entire estimate to be severely incorrect [19]. This is evident in Figure 8b,
where the estimated channel components of OMP deviate from true values, leading to
phase rotation during equalization even in the AWGN environment. Compared to greedy
methods, convex optimization-based approaches such as FISTA, ADMM, and the proposed
algorithm require less restrictive conditions on the measurement matrix for successful
sparse estimation [45,46]. One can observe from Figure 6c–f that all convex optimization
methods accurately identify the DD channel path in AWGN environment. However,
under the influence of impulsive noise, FISTA and the original ADMM algorithms exhibit
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increased estimation errors, particularly in identifying paths with smaller amplitudes.
As illustrated in Figure 7c,d, the estimated locations of paths 3 and 4 by FISTA and the
original ADMM algorithms deviate from their true positions. The high mutual coherence
of the measurement matrix also makes the optimization landscape of non-differentiable
ℓ1 ´ ℓ1 objective function more challenging, impacting both the convergence rate and the
accuracy of the optimization algorithm. As shown in Figures 6 and 7, the DD functions
estimated by the mADMM algorithm appear dispersive even after extensive iterations,
although it retains a similar performance in both AWGN and impulsive noise settings. This
is also evident in Figure 10, which illustrates the iteration curves of objective functions for
both the mADMM and nmADMM algorithms. One can see that the accelerated gradient
scheme and non-monotone line search strategy of the nmADMM algorithm facilitate faster
convergence and greater precision. The proposed nmADMM algorithm can identify both
the locations and amplitudes of the DD channel paths successfully, achieving the lowest
BER with minimal iterations across both AWGN and impulsive noise environments.

Table 4 presents the comparison results of the BER performance of various algorithms
at INR of 15 and 25 dB across different probabilities (q) of impulsive noise occurrence.
The results demonstrate that the nmADMM algorithm achieves the lowest BER, closely
approximating the BER derived from the GT channel information across all scenarios.
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Figure 10. Iteration curves of the objective function for mADMM and nmADMM in DD channel
estimation: (a) AWGN environment and (b) impulsive noise environment.

Table 4. Comparison of BER performance across different algorithms under INR conditions of 15 and
25 dB with impulsive noise occurrence probabilities of q “ 0.01, 0.005, and 0.001.

INR = 15 dB INR = 25 dB

q 0.01 0.005 0.001 0.01 0.005 0.001

Ground Truth 2.10 0.80 0.30 18.80 8.85 2.50
OMP [15] 36.25 34.95 10.25 48.60 47.20 35.85
FISTA [23] 27.85 11.65 0.50 55.35 45.80 8.35
ADMM [25] 27.65 13.55 0.55 55.25 42.85 8.10
mADMM [28] 5.70 4.30 3.35 23.90 15.15 8.30
nmADMM 5.25 2.05 0.45 22.15 13.50 3.85

5. At-Sea Experiment

To evaluate the real-world performance of the proposed nmADMM algorithm for
UWA channel estimation, we conducted an at-sea experiment. The data were collected
in the shallow waters of Wuyuan Bay, Xiamen, China, in July 2021 (GPS: 24°321102N,
118°111312E). Figure 11a depicts the location and deployment of the experiment. The
transmitter and receiver, separated by approximately 1 km, were both anchored 2 m deep
near the coastline. During the experiment, CP-OFDM signals with subcarriers modulated
by Quadrature Phase Shift Keying (QPSK) symbols were transmitted. The center frequency
of the system is 21 kHz, with a sampling frequency of 96 kHz. In the OFDM configuration,
256 subcarriers with 23.4 Hz spacing, an FFT size of 4096, and a CP length of 3840 were
utilized. Each OFDM symbol had a length of 82.7 ms. Figure 11b presents the frame
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format of the transmitted signal, where each frame of the signal consists of one Hyperbolic
Frequency Modulation (HFM) preamble signal followed by OFDM symbols. A received
signal sample is shown in Figure 12a. As the experiment site is near the coast, various
industrial and human activities and the flow noise resulting from water currents and turbu-
lence make the received signal contaminated by strong impulsive noise. Before channel
estimation, pre-processing is conducted, including large impulsive noise reduction via
peak detection and threshold clipping. Figure 12b shows the signal sample after removing
large impulsive noise. Following frame synchronization through matched filtering with
HFM preamble signals, large-scale Doppler spread is compensated for by resampling. The
Carrier Frequency Offset (CFO) resulting from residual Doppler effects is estimated and
mitigated through a one-dimensional search strategy, as detailed in [47]. The pre-processed
signal is then forwarded to various channel estimators for evaluations. Consistent with the
hardware configurations employed in previous numerical simulations, all algorithms are
run on MATLAB 2023a, Windows 10, using a Dell-manufactured desktop PC with an Intel
Core i5 2.30 GHz CPU and 16 GB RAM.

(a) (b)

Figure 11. Experiment configuration: (a) Experiment site map at Wuyuan Bay, Xiamen City, China,
and (b) frame format of the transmitted signal.
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Figure 12. Sample of the received signal: (a) Raw signal and (b) signal after pre-processing to
eliminate large impulsive noise.

We adopted block-type, pilot-based channel estimation using the first OFDM symbol
of each frame. The channel order is set to the maximum value that the estimator can take,
which corresponds to the length of the CP (i.e., N “ 3840). Pilot symbols carried by M “ 256
subcarriers are used for channel estimation, where M ! N indicates the problem is highly
ill-defined. In addition to classic OMP, FISTA, and ADMM algorithms, we incorporate
recently introduced channel estimation methods for OFDM systems, including the Adap-
tive OMP (A-OMP) algorithm [14] and the Fast Marginal Likelihood Maximization (FM)
based Sparse Bayesian Learning (SBL) algorithm [48], for comparative analysis. Figure 13
presents the estimated channel via different algorithms. The monotone strategy-based
mADMM algorithm is not included here due to its slow convergence rate with high mutual
coherence measurement matrices, as demonstrated in Section 4.2. Regularization factors
for FISTA and ADMM were set to λ “ 0.01 λ8, and for the nmADMM, τ “ 1{p0.02λ8q.
We configured the tolerance parameters of the stopping criteria to ϵabs “ 10´2, ϵrel “ 10´1,
and ϵfista “ 10´3. The convergence tolerance parameter for the FM-SBL algorithm is set
to ϵfm-sbl “ 10´4. The prior sparsity information required by the OMP algorithm is de-
rived from coarse channel estimation using matched filtering on the preamble signal. The
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A-OMP algorithm does not require prior sparsity information for the channel. We set its
stopping criterion, the power ratio of the residual to the received symbols, at 5 ˆ 10´2

through empirical evaluations.

(a) (b) (c)

(d) (e) (f)

Figure 13. Estimated CIR from at-sea experiment using (a) OMP, (b) A-OMP, (c) FISTA, (d) FM-SBL,
(e) ADMM, and (f) nmADMM.

After the channel estimation, the derived results are utilized to restore the subse-
quent distorted data symbols using the linear MMSE equalizer. Figure 14 presents the
constellation diagrams of the equalized QPSK symbols based on channel estimation from
different algorithms. A total of 51 signal frames with 26,112 received QPSK data symbols
were analyzed. Table 5 shows a comparison in terms of the average number of iterations,
computation time, and Symbol Error Rate (SER) for the four algorithms. It can be observed
that the greedy method OMP has the lowest computational complexity but with low es-
timation accuracy and high SER of 10.68%. The A-OMP algorithm, with an improved
termination condition, lowers the SER by 3.23% compared to the OMP algorithm. When
contrasted against numerical simulations of smaller scale in the previous section, the com-
putational cost of the original ADMM algorithm increases sharply due to the evaluation
of matrix inverse pΦHΦ ` ρIq´1 in each estimation. Although the FM-SBL algorithm has
reduced computational complexity of less than OpM2Nq compared to the Expectation
Maximization (EM)-SBL algorithm [48], it exhibits the second highest runtime at 9.73 s. The
advantages of the proposed nmADMM algorithm are less pronounced compared to the
simulations, as the time-to-frequency domain conversion in OFDM demodulation and the
pre-processing mitigate the effects of impulsive noise. Nevertheless, it maintains high esti-
mation accuracy, delivering the lowest SER of 4.48%. Figure 15 examines the convergence
behavior of the nmADMM algorithm, showcasing iteration curves of the objective function
and both primal and dual residues. One can see that the proposed algorithm can converge
within tens of iterations in all estimations.
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Figure 14. Constellation diagrams of raw received symbols and equalization outputs based on
various channel estimates: (a) raw received symbols, (b) OMP, (c) A-OMP, (d) FISTA, (e) FM-SBL,
(f) ADMM, and (g) nmADMM.

Table 5. Performance comparison for channel estimation in the at-sea experiment including average
number of iterations, runtime for single estimation, and SER.

Method # Iter. Runtime (s) SER (%)

OMP [15] 74 0.3152 10.68
A-OMP [14] 85 0.56 7.45
FISTA [23] 24 1.0852 5.87
FM-SBL [48] 57 9.73 5.83
ADMM [25] 47 13.1543 6.61
nmADMM 32 1.4681 4.48
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Figure 15. Convergence analysis of the nmADMM algorithm: Iteration curves of (a) the objective
function and (b) the primal residue (top) and the dual residue (bottom).

6. Conclusions

In this work, we present a robust channel estimation method for UAC in impulsive
noise environments. Our approach redefines channel estimation as an ℓ1 ´ ℓ1 optimization
problem, leveraging UWA channel sparsity and addressing impulsive noise outliers. Using
the ADMM framework, we decompose this convex but non-differentiable problem into
two subproblems, each efficiently solved using the APG method. We also introduce a non-
monotone backtracking line search strategy to adaptively adjust the step-size parameter,
avoiding the need for complex evaluation of the Lipschitz constant.
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The proposed nmADMM algorithm, with a complexity of OpMNq and devoid of
matrix inversion or multiplication operations, is tested across various estimation tasks and
communication schemes. Numerical simulations show that only a slight NMSD increase of
0.73 dB occurs in impulsive noise environments, compared to AWGN conditions, at an SNR
of 10 dB and an INR of 30 dB for CIR estimation. Compared with its monotone counterpart,
the mADMM algorithm, the proposed algorithm demonstrates faster convergence speed
and higher estimation accuracy for both CIR and DD spread function estimations across
various SNR and INR levels. At-sea experiments further validate that the nmADMM algo-
rithm outperforms the OMP, A-OMP, FISTA, ADMM, and FM-SBL algorithms, achieving
the lowest raw SER with simple MMSE equalization at 4.48%. Consistently, the nmADMM
algorithm converges within tens of iterations, proving its robustness in both AWGN and
impulsive noise environments.
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