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Abstract: Hyperspectral (HS) data, encompassing hundreds of spectral channels for the same area,
offer a wealth of spectral information and are increasingly utilized across various fields. However,
their limitations in spatial resolution and imaging width pose challenges for precise recognition and
fine classification in large scenes. Conversely, multispectral (MS) data excel in providing spatial details
for vast landscapes but lack spectral precision. In this article, we proposed an adaptive learning-based
mapping model, including an image fusion module, spectral super-resolution network, and adaptive
learning network. Spectral super-resolution networks learn the mapping between multispectral
and hyperspectral images based on the attention mechanism. The image fusion module leverages
spatial and spectral consistency in training data, providing pseudo labels for spectral super-resolution
training. And the adaptive learning network incorporates spectral response priors via unsupervised
learning, adjusting the output of the super-resolution network to preserve spectral information in
reconstructed data. Through the experiment, the model eliminates the need for the manual setting
of image prior information and complex parameter selection, and can adjust the network structure
and parameters dynamically, eventually enhancing the reconstructed image quality, and enabling
the fine classification of large-scale scenes with high spatial resolution. Compared with the recent
dictionary learning and deep learning spectral super-resolution methods, our approach exhibits
superior performance in terms of both image similarity and classification accuracy.

Keywords: hyperspectral image; multispectral image; spectral super-resolution; adaptive learning

1. Introduction

Remote sensing is a technology for detecting and sensing targets over long distances
by means of sensors carried by satellites or other platforms. The development of passive
optical remote sensing technology has gone through the process of panchromatic imaging,
color imaging, multispectral imaging, and hyperspectral imaging, all of which have become
an important means of Earth Observing.

The hyperspectral images (HSIs) contain both image information and spectral in-
formation. They often have hundreds of spectral channels, which can be regarded as
approximately continuous. The rich spectral information helps to accurately identify these
observed targets, which is beneficial to fine classification, and the image information re-
tains the spatial distribution of the scene, providing context support for the subsequent
interpretation. Therefore, hyperspectral images are increasingly and successfully applied
in the fields of agriculture [1–4], ecological science [5,6], military [7–10], and atmospheric
detection [11–13]. However, constrained by the law of conservation of energy and imaging
capability of the sensors, hyperspectral data have the problems of lower spatial resolution
and smaller imaging widths, universally. Furthermore, the quantity of available HS data
remains limited. While multispectral images (MSIs) can provide rich spatial information in
large scenes, they usually have 4~8 spectral channels with preliminary feature recognition
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capabilities. Therefore, in order to fully utilize the spectral information of hyperspectral
images and the spatial information of multispectral images, and obtain the precise classifi-
cation results of large-scale scenes with high spatial resolution, research on the collaborative
utilization of multispectral–hyperspectral images is being carried out, which mainly aims
at obtaining the high-spatial-resolution hyperspectral images by means of image fusion or
spectral super-resolution.

Image fusion requires that the used HSI and MSI have the same observation scene.
Obviously, this limits the width of the obtained high-spatial-resolution HSIs, which need
to keep the same range as the original LR-HSIs. Conversely, spectral super-resolution is
the process of acquiring a hyperspectral image from a corresponding multispectral image,
and it is not limited by the imaging width. Dictionary learning and deep learning are two
effective methods to achieve spectral super-resolution.

Apparently, dictionary learning often sets priors manually to standardize reconstruc-
tion, and thus the quality of the reconstructed images is often limited by prior knowledge
and computational resources. Furthermore, it is mainly based on a linear model, and its
representation ability and the generalization ability of the model are relatively limited.
Deep learning learns the nonlinear mapping between MSIs and HSIs through a data-driven
strategy. The mapping relationship is represented by the parameters of the neural network,
which are optimized by backpropagation algorithms during training to minimize the dif-
ference between the predicted HSI and the real HSI. However, the methods often do not
take the spatial resolution differences between multispectral and hyperspectral images into
account, which results in the loss of some information during image preprocessing, which
further affects the quality of data reconstruction. And more significantly, most studies
focus on the limited 400–1000 nm range, in the visible and near-infrared bands, which is
the same spectral range as the input MSI, and is limited by the input image.

For the task of spectral super-resolution, different data have adapted parameters
and network structures, and the hidden features in the input data are difficult to extract.
Moreover, compared with traditional convolutional neural networks, the attention-based
model has certain advantages in capturing non-local self-similarity and remote correlation.
If we introduce the adaptive learning module and attention-based mechanism into the
network, we can achieve the goal of automatically adjusting the network structure and
parameters according to the characteristics of the input data, and can precisely capture and
utilize the key features of the input image and realize the adaptive processing of different
data. Consequently, in order to avoid the manual setting of a priori information and the
complex parameter selection in multispectral–hyperspectral image collaborative mapping
based on dictionary learning, and in order to adjust the network parameters automatically,
the reconstructed similarity and classification accuracy of HR-HSIs must be improved,
and then the range of reconstructed spectrum further broadened. Distinguished from
traditional convolutional neural networks, a mapping model based on adaptive learning
is proposed. Specifically, based on the self-attention spectral super-resolution network,
an image fusion module is introduced to provide pseudo-labeling for the training of the
network, while a self-adaptive learning network is designed to increase the a priori spectral
response function and learn the unknown spatial degradation function.

The main contributions of this article can be summarized as follows:

1. An adaptive learning-based mapping model is proposed for precise reconstruction and
fine classification of HSIs. We innovatively design an adaptive learning module and a
self-attention block and felicitously combine them with the image fusion and spectral
resolution module, with the aim of enhancing model generalization capabilities and
significantly achieving high quality and reconstruction precision.

2. A self-attention block is innovatively constructed in a spectral super-resolution net-
work to allow the network’s attention to focus on the parts related to the current task,
thereby capturing non-local self-similarity and spectral correlation. Moreover, we
innovatively design a self-learning network into image reconstruction so as to increase
the a priori spectral response function and learn the unknown spatial degradation
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function. And thus adjust the network structure and parameters dynamically and
improve the performance of the model in processing spectral super-resolution tasks.

The remainder of the paper is divided into the following five parts: Section 2 describes
the various spectral super-resolution methods published recently based on dictionary
learning and deep learning. Section 3 introduces the proposed method in the article. The
datasets and the evaluation indicators are mentioned in Section 4. And the experimental
results and analysis are described in Section 5. Section 6 presents the conclusion of the work.

2. Related Works

In general, the main challenge of spectral super-resolution is its severe unsuitability, as
there can be an infinite amount of hyperspectral data that can be mapped to the same input
image under certain constraints. The related studies usually employ the introduction of
inherent a priori methods to hyperspectral images to solve the problem mentioned above.

2.1. Spectral Super-Resolution Based on Dictionary Learning

Dictionary learning methods mainly rely on manually setting priors to standardize
reconstruction, which depict the structure of hyperspectral images. Arad et al. [14] proposed
a spectral super-resolution model based on sparse representation, which pre-learns spectral
dictionaries and estimates sparse coefficients by using RGB and hyperspectral training data
and a given high spatial resolution RGB image to obtain high-resolution hyperspectral
images. In addition, Aeschbacher et al. [15] proposed an improved method by introducing a
new shallow learning method to achieve a better spectral super-resolution. In reference [16],
sparse representation is used to recover large-scale hyperspectral images from partially
overlapping hyperspectral and multispectral images. The sparse representation coefficients
and dictionaries are estimated on large-scale multispectral data, and then directly applied
to the reconstruction of hyperspectral data.

Fotiadou et al. [17] proposed a coupled dictionary learning model that considers a
joint feature space composed of low-spectral resolution and high-spectral resolution hyper-
cubes. By using a framework of sparse representation and dictionary learning, the spectral
dimension of the input image is improved to complete the spectral super-resolution. Gao
et al. [18] adopted a joint sparse low-rank learning approach to more accurately recon-
struct hyperspectral images by jointly learning low-rank multispectral and hyperspectral
dictionaries and their corresponding consistent sparse representations. In addition, Han
et al. [19] introduced a spectral library to improve the quality of spectral super-resolution
based on the joint utilization of multi-hyperspectral images through dictionary learning.
Liu et al. [20] proposed a class-guided coupled dictionary-learning method that utilizes
the labels of training samples to construct discriminative sparse representation coefficient
errors and classification errors as regularization terms, so as to effectively construct the com-
pact and discriminative coupled dictionaries for HSI reconstruction. Liu et al. [21] proposed
a method that uses the labels of training samples to construct both class-specific coupled
dictionaries and mutually coupled dictionaries, in order to focus on the class-specificity
characteristics instead of mutuality characteristics, which is beneficial to classification.

In conclusion, dictionary learning-based methods canonically reconstruct the data by
introducing an inherent image prior, whereas it is necessary to set the relevant parameters
manually in dictionary learning, and the changes of parameters often have a significant
impact on the experimental results. And due to its complex iterative approach, dictionary
learning often requires a long time.

2.2. Spectral Super-Resolution Based on Deep Learning

The spectral super-resolution methods based on deep learning rely on the mapping
relationship between LR-HSIs and HR-MSIs by constructing a suitable deep network. In
these methods, three-dimensional multispectral data are often used as input, and the net-
work reconstructs hyperspectral images by extracting spatial and spectral features from the
data. Yan et al. [22] proposed a multi-scale deep convolutional neural network that sym-
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metrically down-samples and up-samples intermediate feature maps through a cascaded
paradigm, enabling joint encoding of local and non-local image information for spectral
reconstruction. Han et al. [23] proposed a cluster-based multi-branch neural network for
end-to-end learning. In addition to spectral similarity, an improved super-pixel segmen-
tation is also introduced to jointly consider spatial contextual information. Hu et al. [24]
proposed a high-resolution learning network for hyperspectral data reconstruction, which
utilizes a spatial–spectral attention module in high-resolution space to extract pixel-level
features and introduces frequency domain learning to reduce frequency domain differences.
Similarly, Li et al. [25] also considered feature extraction of channels or frequency bands and
proposed a hybrid attention network with structural information consistency, combining
spectral gradient constraint loss with mean absolute error as a new loss function. Zamir
et al. [26] designed a multi-stage architecture and achieved information exchange between
different stages through horizontal and vertical connections.

Moreover, DRCRNet [27] is used to remove the contamination of images by noise,
shadows, and other factors. And a dual-channel recalibration module is embedded to
adaptively recalibrate channel feature responses, thereby achieving high-fidelity spectrum
restoration. The DsTer network [28] combines Transformer and ResNet networks, con-
sidering the learning of remote interaction information in images, and finally achieves
spectral super-resolution of multispectral remote sensing images. Li et al. [29] proposed a
multi-sensor SR framework (MSSRF) based on a two-step approach in which the problems
of amplitude inconsistency and band information extraction are solved using an ideal
projection network and an ideal multi-sensor SR network, respectively. And Li and Gu
et al. introduced a progressive spatial–spectral joint network (PSJN) composed of a 2-D
spatial feature extraction module, a 3-D progressive spatial–spectral feature construction
module, and a spectral postprocessing module [30].

In addition, a multitemporal spectral reconstruction network (MTSRN) [31] is pro-
posed to reconstruct HS images from multitemporal MS images, which contains a recon-
struction network and a temporal features extraction, and a multitemporal fusion network
that can independently reconstruct the MS data of a single-phase into HS data and can im-
prove the reconstruction effect by combining neighboring phase information, respectively.
Du et al. [32] proposed a novel convolution and transformer joint network (CTJN) including
cascaded shallow-feature extraction modules (SFEMs) and deep-feature extraction modules
(DFEMs), which can explore local spatial features and global spectral features.

2.3. Attention Mechanism

The attention mechanism originated from the phenomenon that humans can naturally
and effectively find salient areas in complex scenes. More specifically, the human visual
system filters out less important ones as it processes information, and the system only
focuses on the information of interest. The information processing mechanism mentioned
above is called the attention mechanism.

The attention mechanism in the network can be seen as a process of dynamically
adjusting the weights of input image features based on the task, allowing the network’s
attention to focus on key parts of the data, thereby the model can pay more attention to
the parts related to the current task and can process the input data more accurately. And
ultimately, better results are obtained. From this perspective, traditional neural networks
use convolutional operations to feature map the input image, allowing the network to focus
on features that are more closely related to the task. The process above is also a simple
attention mechanism.

The characteristics of the attention mechanism can be expressed as:

Attention = f (g(x), x) (1)

in which g(x) represents the process of the network paying attention to key areas by
entering information. And f (g(x), x) represents the procedure of processing input data
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based on g(x). Particularly, for the self-attention mechanism, the specific process in the
Formula (1) can be expressed as:

Q, K, V = Linear(x) (2)

g(x) = So f tmax(QK) (3)

f (g(x), x) = g(x)V (4)

According to the different domains that the attention module focuses on, attention
mechanisms can be divided into channel attention, spatial attention, temporal attention,
self-attention, mixed attention, etc.

The channel attention mechanism is able to automatically learn the weights of each
channel based on the task. Apparently, in neural networks, different channels often repre-
sent different image features. Therefore, the process of channel attention can be seen as a
feature selection process that enables the network to focus on key features.

The core of the basic channel attention mechanism is a compression–excitation module,
which learns the relationships between different channels by using global average pooling
layers, fully connected layers, and nonlinear layers. And, ultimately, output attention
vectors. Accordingly, the corresponding elements are multiplied in the vectors to change
the input features of each channel. In this case, if X is used as the input and Y is used as
the output, the process can be expressed as follows:

g(x) = σ(W2δ(W1GAP(X))) (5)

Y = g(x)X (6)

where W1 and W2 represent the fully connected layers, and GAP(·) represents the function
of global pooling. Moreover, δ and σ represent the activation functions ReLU(·) and
Sigmoid(·), respectively. The channel attention module not only suppresses noise but, in
particular, emphasizes the important characteristic channels. Moreover, it requires lower
computational resources. Accordingly, a channel attention module can be added after each
residual unit.

The spatial attention mechanism is an adaptive region selection mechanism based on
targets, which focuses attention on the target region while suppressing feature activation in
irrelevant regions. In reality, the attention gate is a representative spatial attention module,
in which, given the input feature map X, the process can be represented as:

g(x) = σ(φ(δ(ϕx(X) + ϕg(G)))) (7)

Y = g(x)X (8)

where G ∈ RC×H×W represents the gating signal, which is collected at a coarser scale.
We can use additive attention to obtain the gating coefficients. Particularly, the gating
signal provides activation and contextual information for image regions, and the spatial
regions of interest are selected by analyzing this signal. Then, φ(·), ϕx(·), ϕg(·) represent
1 × 1 convolution operation. Similarly, δ and σ represent the activation functions named
ReLU(·) and Sigmoid(·), respectively. Furthermore, Y represents the output of the module.
Undeniably, attention gates guide the model’s attention to the desired spatial regions while
suppressing feature activation in irrelevant regions. Due to the lightweight design, the
representational capacity of the model is greatly enhanced without significantly increasing
computational costs. Moreover, the model is universal and modular, which makes it easy
to use in various neural network models.

The temporal attention mechanism is an adaptive mechanism for dynamically se-
lecting temporal regions, which determines the time periods requiring attention, and the
mechanism is commonly used for video processing. In fact, the time-adaptive module
efficiently and flexibly captures complex time relationships in low complexity. And the
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module mainly includes two branches: the localized branch and the global branch, respec-
tively. Let X ∈ RC×T×H×W represent the input feature, which contains the time dimension,
and thus the localized branch can be expressed as:

g(x) = σ(Conv1D(δ(Conv1D(GAP(X))))) (9)

X1 = g(x)X (10)

The global features focus on generating a channel-based adaptive kernel, which relies
on the global temporal information of each channel. And for the C − th channel, the kernel
can be written as:

Θc = So f tmax(FC2(δ(FC1(GAP(X)c)))) (11)

where FC(·) represents the fully connected layer, and Conv1D(·) represents the convolution
operation of 1D. The final output of the module can be expressed as:

Y = Θ ⊗ X1 (12)

3. Proposed Method
3.1. Network Structure

The overall structure of the proposed method is shown in Figure 1. Both low-resolution
hyperspectral images (LR-HSI) and high-resolution multispectral images (HR-MSI) cov-
ering the same area were required as training data for the network. The network was
trained unsupervised to reconstruct high-spatial-resolution hyperspectral images for large
scenes (HR-HSI) with the LR-HSI and the HR-MSI reference images. Thus, completing the
collaborative mapping of the original hyperspectral image at the spatial scale.
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Figure 1. The structure of collaborative mapping model based on adaptive learning.

Firstly, multispectral and hyperspectral images were used as inputs, and the image
fusion module was used in the network to generate pseudo labels. Secondly, the spectral
super-resolution network was supervised and trained based on the pseudo labels to learn
the general image prior information of the mapping from MSIs to HSIs. Then, the output of
the spectral super-resolution network was used to calculate the loss with the pseudo labels
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generated by the fusion module and, thus, guide the update of network parameters. As
shown in Figure 1, the red dashed line represents the direction of gradient backpropagation
in the spectral super-resolution network.

Then, an adaptive learning module was designed for the preliminary reconstructed
images generated by the spectral super-resolution network, with the aim of learning
the residuals between the preliminary reconstructed images and the real HSI to correct
the influence of pseudo labels on the reconstruction results. Finally, the output of the
adaptive learning module was HR-HSIs. They were reconstructed from the original input
data of LR-HSIs and HR-MSIs using a special degradation network and a given spectral
response function. And then the loss was calculated to guide the spatial degradation
process of the network learning image and update the parameters of the adaptive learning
module. As shown in Figure 1, the blue dashed line represents the direction of gradient
backpropagation in the adaptive learning network. It should be noted that the image fusion
module in the model requires the GLP fusion scheme [33], which completes image fusion
in an unsupervised manner.

3.2. Spectral Super-Resolution Network Based on Self-Attention Mechanism

The attention mechanism in the network can be seen as a process of dynamically
adjusting the weights of input image features based on the task, allowing the network’s
attention to focus on key parts of the data, thereby the model can pay more attention
to the parts related to the current task and can process the input data more accurately.
And ultimately, better results can be obtained. For the task of spectral super-resolution,
compared to traditional convolutional neural networks, the self-attention-based model
has certain advantages in capturing non-local self-similarity and remote correlation. The
structure of the spectral super-resolution model adopted in Figure 1 is shown in Figure 2.
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(a) Spectral super-resolution network; (b) Single-stage spectral transformation module (SST).

Firstly, the network performs a feature mapping against the input MSI, where the
mapping part of Conv1 includes two progressive 3 × 3 convolution operations, which can
raise the dimensions of the feature. Furthermore, the mapping part of Conv2 contains a
3 × 3 convolution operation that keeps the feature dimension unchanged. Particularly, the
network has residual connections between the output of Conv1 and Conv2.

The main part of the network is composed of multiple cascaded single-stage spectral
transformation modules (SST). And the structure of SST is shown in Figure 2b. Specifically,
the main part of the module is symmetrically connected as a U-shaped structure. And
three blocks are included in SST: the up-sampling block, the down-sampling block, and the
spectral attention block (SAB), ensuring that the network can generate features of different
levels. At the same time, jump connections between the corresponding levels of the
encoder and the decoder are designed to accomplish feature aggregation, where the feature
embedding and the feature mapping modules are both composed of 3 × 3 convolutional
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operations with constant input and output feature dimensions. Moreover, the down-
sampling block is a stepwise 4 × 4 convolution, which increases the number of channels in
the feature map while decreasing the size of the feature map. Furthermore, the up-sampling
block is a stepwise 2 × 2 transposed convolution. With the aim of avoiding information
loss during up-sampling, a hopping connection is maintained between the decoder and the
encoder while undergoing a 1 × 1 convolution block for feature aggregation. Ultimately,
the residual connection is established between the output and the input of the module.

The specific structure of the spectral attention module (SAB) is shown in Figure 3,
which is mainly composed of three kinds of blocks for serial connections: the batch normal-
ization, the feed-forward network, and the spectral multi-headed self-attention module
(S-MSA), with residual connections between the inputs and outputs of the module. More-
over, the batch normalization makes the forward propagation of the network more stable,
and at the same time makes the process of gradient backpropagation more stable, which
avoids the overfitting of the network to some degree. And, as shown in Figure 3b, the
feed-forward network consists of three blocks serially connected: the 1 × 1 convolution,
the 3 × 3 depth-wise convolution, and the GELU activation function.
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Specifically, the structure of the spectral multi-headed self-attention module (S-MSA) is
shown in Figure 4. The module considers each spectral feature map as a unit and calculates
the autocorrelation along the spectral dimension to capture non-local correlations.

In the S-MSA, firstly, recombine the input feature maps Xin ∈ RH×W×C as X ∈ RHW×C,
and thus perform three linear feature maps to obtain Q, K and V, respectively.

Q = XWQ, K = XWK, V = XWV (13)

where Q, K, and V are the learnable parameters. Then, the three features are divided into
heads along the spectral channel dimension: Q = [Q, · · · , QN ], K = [K, · · · , KN ] and V =
[V, · · · , VN ]. And the size of each head is dh = C/N. As shown in Figure 4, we have N = 1
at this point. And then, self-attention is calculated according to the obtained Q, K and
Formula (14):

Aj = so f tmax(σjKT
j Qj), head = Vj Aj (14)
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where KT
j represents the transpose of the matrix KT . σj is a learnable parameter. In the

network, KT
j Qj is re-weighted by σj to accommodate the self-attention named Aj. And

then, the output features of divided heads are aggregated and undergo linear mapping.
Finally, the positional information about the spectral features is embedded, and we can
obtain the final output of the module Xout ∈ RH×W×C.

Xout =

(
N

concat
j=1

(headj)

)
W + fp(V) (15)

where W ∈ RC×C is a learnable parameter and fp(·) is a function that generates position
information, which includes two 3 × 3 depth-wise convolutions, a GELU nonlinear activa-
tion function, and the recombination process. In reality, the purpose is to ensure that the
position information of different spectral units can be saved in advance when the module
operates on the input through the network.
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3.3. Adaptive Learning Network

Based on the pseudo labels obtained by the fused multispectral and hyperspectral
training data, the spectral super-resolution network can generate preliminary reconstructed
images with high spatial spectral resolution. Specifically, in order to introduce the spectral
response function priors into the model and learn the specific spatial degradation function
of the image, an adaptive learning module is required in the network for the preliminary
reconstructed images. Through the spatial degradation network and the given spectral
response function, the preliminary reconstructed image is mapped to the original HSI and
MSI, respectively, as shown in Figure 3, by adjusting the residual pixel by pixel and refining
the specific details of the image to complete unsupervised adaptive learning.

The training process of the adaptive learning module can be represented by Formula (16):
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θ,ϑ

∥Ym − RZ∥2 + ∥Ym − ZH∥2, s.t. Z = G
(
Z′; θ

)
, ZH = H

(
Z′; ϑ
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where Z′ is the preliminary reconstructed images generated for the spectral super-resolution
network, and Z represents a reconstructed image of the final output in the network. More-
over, G(Z′; θ) represents the feature mapping process of adaptive learning modules, and
H(·; ϑ) represents the process of image space degradation. And specifically, θ and ϑ are
the learnable parameters in the adaptive learning module and the spatial degradation
networks, respectively.

The main structure of the adaptive learning network is shown in Figure 5. In order to
recover specific details of the image, a residual architecture is introduced in the module,
which mainly includes a feature mapping block, self-guided block, and output convolu-
tional layer. For the input image Z′, firstly, the module performs three layers of 3 × 3
convolution operations, which keeps the input and output feature dimensions invariant
and performs the ReLU activation function. This is followed by self-guided modules and
single-layer convolution operations, so as to ensure that the main part of the module can
recover the residual between the real HS image and the initially reconstructed image of
the spectral super-resolution network. Then, eventually, the output image, named Z, is
obtained by making a residual connection with the input image.
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The structure of the self-guided module in the network is shown in Figure 6. Specif-
ically, the input feature guides the output feature of the network through two branches,
assuming that F and F′ are the input and output features of the self-guided module, re-
spectively. Therefore, the feature mapping process of the module can be represented
as follows:

A = P1(F; υ1); B = P2(F; υ2) (17)

F′ = A·F + B (18)

where P1(·) represents the process of convolution Conv1 and the activation function
Sigmoid(·), and then P2(·) represents the operation of convolution named Conv2. Moreover,
A and B are the output of the middle layer.

For the spatial degradation network in the adaptive learning process, and considering
the limited amount of data in the MSI and HSI, the structure of the network should be
designed to minimize the computational complexity in the unsupervised learning process
in order to avoid the overfitting of the network. Therefore, the model adopts a simple
structure to implement the degradation network to greatly reduce the number of parameters
in the learning process. In reality, it often involves spatial down-sampling, spatial blurring,
and noise destruction in the image spatial degradation process, where the process of spatial
down-sampling and spatial blurring can be expressed as the convolution of the image and
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a specific kernel, and, specifically, the impact of the noise is close to the addictive zero-mean
stochastic noise. Therefore, the process of spatial degradation can be expressed as:

ZH = (Z ∗ k) ↓ s + N (19)

where k represents a two-dimensional spatial convolution kernel, and ∗ represents the
convolution of the same kernel k and each band of the image, respectively. S represents
the scaling factor for spatial down-sampling, and N represents the additive noise. In order
to design the structure of the network, a single two-dimensional convolutional layer with
a step size S is used to achieve spatial down-sampling and blur. Particularly, the main
learnable parameter is the convolutional kernel named k. And seeing that the loss function
designed in Formula (16) has the function of absorbing additive noise, there is no need to
design a specific structure for N.
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4. Experimental Datasets and Evaluation Indicators
4.1. Experimental Datasets

The hyperspectral data involved in the experiment are the Houston data and the
GF-YR data, where the Houston data were released by the IEEE GRSS Data Fusion Contest
(DFC) in 2013, which was acquired at the Houston University campus and nearby area.
The LR-HSI and the HR-MSI were obtained from spatial and spectral down-sampling of
the raw Houston data, respectively. Furthermore, we obtained the GF-5 hyperspectral and
labeling data from the First Marine Institute, Department of Natural Resources, which
were acquired over the Yellow River Delta National Nature Reserve in China. Table 1
lists the image size, source, spatial resolution, band number, and other indicators of the
experimental data.

Table 1. Experimental datasets.

Dataset HSI or MSI Source Image Size Number of
Bands

Spatial
Resolution

Houston
HSI CASI 171 × 951 144 5 m
MSI simulate 342 × 1902 4 2.5 m

GF-YR
HSI GF5 734 × 763 295 30 m
MSI GF1 1468 × 1526 4 15 m

(1) The Houston data were acquired by the ITRES CASI-1500 sensor (ITRES, Calgary,
AB, Canada). The raw image data size is 349 × 1905, and the data have a total of
144 bands, covering the spectral range of 364–1046 nm. As shown in Figure 7, 71,
39, and 16 bands are selected for false-color display. Moreover, Figure 7b,c show the
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training set and test set labels. And the number of labels for class training sets and
test sets during the classification of Houston data is listed in Table 2.

Table 2. Houston labeling data.

Labels Categories Number of Training
Labels

Number of Testing
Labels

1 Grass healthy 537 699
2 Grass stressed 61 1154
3 Synthetic Grass 340 357
4 Tree 209 1035
5 Soil 74 1168
6 Water 22 303
7 Residential buildings 52 1203
8 Commercial 320 924
9 Road 76 1149
10 Highway 279 948
11 Railway 33 1185
12 Parking lot 1 329 904
13 Parking lot 2 20 449
14 Tennis Court 665 162
15 Running Track 279 381
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(2) The hyperspectral and multispectral data of GF-YR were acquired by the Gaofen-
5 and Gaofen-1 satellites, respectively. The multispectral camera on the Gaofen-1
satellite (GF-1) can provide multispectral data. The data have four different bands,
with the range of 450–520 nm, 520–590 nm, 630–690 nm, and 770–890 nm, respectively.
Moreover, the Gaofen-5 satellite (GF-5) has the highest spectral resolution among the
national Gaofen major projects. It was officially launched in 2019 with six payloads,
including a full-band spectral imager with a spatial resolution of 30 m. Moreover,
the imaging spectrum covers 400~2500 nm, including a total of 330 bands, and the
visible spectral resolution is 5 nm. In reality, it has retained 295 bands after removing
bad bands by preprocessing the satellite data. Figure 8 shows the image of GF-5, and
56, 39, and 25 bands are selected for false-color display of the HSI image. Figure 8c
introduces a schematic representation of the category labels, which lists the features
corresponding to each color. Furthermore, Table 3 shows the number of various labels
of GF-YR data.
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Table 3. GF-YR labeling data.

Labels Categories Number of Global Labels

1 Reeds 171,779
2 Tamarix chinensis 104,809
3 Tidal reeds 83,161
4 Saltmarsh 76,206
5 Suaeda salsa 102,579
6 Naked tidal flat 436,015
7 Water 1,066,570
8 Spartina alterniflora 180,186
9 Nature willow 13,492
10 Road 5371
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4.2. Evaluation Indicators

In the experiment, we evaluated the reconstruction similarity and classification accu-
racy of the reconstructed images to assess their overall quality and performance.

Firstly, the reconstructed HSIs were evaluated using various indexes, encompassing
different perspectives. The article utilizes the following indicators: peak signal-to-noise
ratio (PSNR), the spectral angle index (SAM), the structural similarity (SSIM), spectral
distortion index (Dλ), spatial distortion index (Ds), and the global image quality (QNR).
Secondly, we evaluated the classification results of reconstructed HSIs using overall accu-
racy (OA).

1. PSNR was used to measure the distortion after compression. Higher PSNR values
indicate smaller image distortion, and indicate a higher image similarity. Generally, a
PSNR value above 30 indicates fine image quality.

RMSE =

√√√√ 1
HWN

N

∑
l=1

H

∑
i=1

W

∑
j=1

(ul(i, j)− ûl(i, j))2, PSNR = 20lg
1

RMSE
(20)

where u is a real HSI, û represents the reconstructed HSI. N, H, and W represent the
number of bands, height, and width of the image, respectively.

2. SAM determines the spectral similarity by calculating the angle of spectrum vectors
between the reconstructed image and the real HS image, so as to quantify the spectral
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information retention of each pixel. Closer SAM values to zero indicate less spectral
distortion, manifesting a higher level of spectral similarity.

SAM =
1

HW

H

∑
i=1

W

∑
j=1

arccos
(
⟨u(i, j), û(i, j)⟩
|u(i, j)||û(i, j)|

)
(21)

where ⟨·⟩ represents the inner product of the vector, and |·| represents the module of
the vector.

3. The similarity of the overall structure between the real HS image and the recon-
structed image was evaluated by SSIM. Closer SSIM values to one indicate higher
image similarity.

SSIM =
(2µuµû + c1)(2σuσû + c2)(

µ2
u + µ2

û + c1
)(

σ2
u + σ2

û + c2
) , c1 = (k1L)2, c2 = (k2L)2, c3 = c2/2 (22)

where µu, µû represent the mean of u and û, respectively. Moreover, σ2
u , σ2

û repre-
sent the variance of u and û, respectively. And c1, c2, c3 are constants, avoiding the
denominator tending to a zero value to make the calculation more stable. Default
k1 = 0.01, k2 = 0.03, L is the range of pixel values in the image.

4. Dλ is used to measure the spectral distortion of the reconstructed image. The closer
the value is to zero, the smaller the spectral distortion.

Q(ûi, ûj) =
4σûi ûj ûiûj

(σ2
ûi
+ σ2

ûj
)(û2

i + û2
j )

(23)

Dλ = q

√√√√ 1
N(N − 1)

N

∑
i=1

N

∑
j=1,j ̸=i

∣∣Q(ûi, ûj)− Q(Hi, Hj)
∣∣q (24)

where û represents the reconstructed image, û represents the average of pixels in the
image û. H represents the LR-HSI.

5. Ds is used to measure the degree of spatial information loss of the image. Closer Ds to
zero leads to less spatial loss of the image.

Ds =
q

√√√√ 1
N

N

∑
i=1

∣∣∣Q(ûi, M)− Q(Hi, M̃)
∣∣∣q (25)

where M is a HR-MSI. And M̃ is a multispectral image after the down-sampling of M,
which has the same spatial resolution as H.

6. QNR measures the global quality of the image. If QNR is close to one, the image
quality is higher. The calculation method is calculated as follows:

QNR = (1 − Dλ)
µ(1 − Ds)

ρ (26)

5. Results and Analysis
5.1. Data Preprocessing

The datasets used in the experiment are Houston and GF-YR, which need to be
preprocessed before the experiment. And the size of the overlapping area between HSI and
MSI in the Houston data is 70 × 1902. During the training process, the data preprocessing
was performed as follows. Firstly, crop the overlapping regions to multiple 64 × 64 image
blocks, which keeps the 50% repetition rate to ensure the coverage of the entire training
area. Then, crop the original training image by randomly selecting a starting point. And
finally, keep the number of training blocks to 800. The partially cropped training data are
shown in Figure 9.
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Furthermore, for GF-YR data, the size of the overlapping area is 500 × 500, and the
regions are cropped to multiple 128 × 128 image blocks. Similarly, the GF-YR data also
need to keep a 50% repetition rate to ensure the coverage of the training area, and then we
also need to randomly select a starting point to choose the training field. And eventually,
keep the number of training blocks to 500.

During the image testing process, considering the amount of data in the image and the
memory usage during program operation, the original test image also needs to be cropped.
Specifically, the Houston data were cropped to 10 image blocks with the size of 336 × 336.
This requires certain areas of overlap between different image blocks, which results in a
total image size of 336 × 1902. Similarly, the GF-YR data were cropped to 256 × 256 image
blocks with a data volume of 64 and, after splicing, the full image size was 1468 × 1562.
During the splicing process, the pixel values of the overlapping regions were determined
by taking the average.

5.2. Analysis of the Training Process

The training and testing of the spectral super-resolution network use the Pytorch
framework. During the training process, the batch size of the training data was set to
eight, the parameter optimization algorithm was selected as Adam, and the parameter
selection was optimized to β1 = 0.9, β2 = 0.999. Moreover, the learning rate was initialized
to 4 × 10−4, and was adjusted by using the cosine annealing scheme based on 200 cycles.
The target of the network was the MRAE loss function between the output image and
the pseudo labels generated by the fusion module. As shown in Formula (27), Y and Ŷ
represent the test image and the reference image, respectively.

MRAE(Y, Ŷ) =
1
N

N

∑
i=1

∣∣Y[i]− Ŷ[i]
∣∣

Y[i]
(27)

Similarly, the training and testing of the adaptive learning network also use the Pytorch
framework. During the training process, adaptive learning was performed on individual
training data based on the given spectral response function. And the average absolute
error as a loss function to output was set, which calculates the average error of each pixel
between the HSI and MSI image. Moreover, the number of iterations for network training
was set to 1500. In the adaptive module, the initial network parameters were randomly
initialized, and the parameter optimization algorithm was selected as Adam. Furthermore,
the learning rate was initialized to 9 × 10−5, and the learning rate weight setting was
adjusted to 1 × 10−5. The size of the convolution kernel in the spatial degenerate network
was 32 × 32. The parameters were initialized using a Gaussian template, and similarly, the
parameter optimization algorithm was also selected as Adam, and the learning rate was
initialized to 1 × 10−4, adjusting the weight to 1 × 10−3.
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Figure 10a shows the variation in the loss of the spectral super-resolution network
with the number of iterations. In the first 50 iterations, the loss of the network rapidly
decreased to zero, and with the increase in iterations, the loss stabilized and became closer
to zero. Similarly, Figure 10b shows the loss of the adaptive learning network varies with
the number of iterations. And during the training process, the number of iterations was
set to 1500. As the number of iterations increases, although the loss of the network still
decreases to a certain extent, the efficiency of network improvement decreases, and the loss
of the network gradually tends to stabilize.
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Figure 11 represents the time required for training the spectral super-resolution net-
work on different datasets. The network was trained on the TITAN Xp GPU, and the figure
calculates the time required for each iteration in the first 50 iterations of the network. For
Houston data, the average time taken for 50 iterations resulted in 122.95 s for each iteration.
And, for GF-YR data, similarly, the average time was 190.22 s. During the training process
of the adaptive learning network, the Houston data were cropped with 10 image blocks
and the network had 1500 iterations. Moreover, the average training time for each image
block was 335.06 s. And, for GF-YR, the training data were a single sheet size of 500 × 500.
We also set the number of iterations to 1500, and the network training took 4339 s.
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As shown in Figure 12, the spectral curves of a fixed pixel on Houston data achieve a
comparative analysis between the reconstructed image and the real HS image during the
training iteration process of the adaptive learning network, where the blue curve shows
the pixels from the reconstructed image, and the red curve shows the pixels on the real HSI.
At the initial iteration, there is a significant deviation between the output of the network
and the real HSI. However, due to learning from the training data in the spectral super-
resolution network, the reconstructed data curve is roughly similar to the true curve, where
there is a lot of noise.
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With the iteration of the adaptive learning network, the residual learning between
the reconstructed image and the real HSI is achieved, and the output spectral curve of the
network gradually approaches the real HS image. In particular, in the first 10 iterations of
the network, there is a significant improvement in the output image; when the number of
iterations is 100, the network output reaches a high degree of overlap with the real HSI;
and when the number of iterations is 1000, the output of the network basically coincides
with the spectral curve of the real HSI, and has fine reconstruction results in the spectral
range of 364~1046 nm.

5.3. Comparative Experiment and Analysis

In the experiment, reconstruction tests were conducted on the cropped image blocks.
Owing to the overlapping areas between different image blocks, the output image needed
to be concatenated. At the same time, the pixel values of the overlapping areas were
determined by taking the average value.

Figure 13 shows the reconstruction and classification results of the Houston data,
where (a) is a false-color display of the Houston original HS image, and (b) is a false-color
display of the reconstructed image, where 71, 39, and 16 bands were selected as RGB.
The model introduced spectral response priors through adaptive learning, and conse-
quently, the reconstructed image was given a function of spectral preservation. Moreover,
Figure 13c shows the results of using the SVM classifier to classify the reconstructed data,
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and the number of labels for the training sets and test sets of the various classes during the
classification process are shown in Table 2.
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Houston data; (b) The reconstruction image of Houston data; (c) the results of using SVM classifier;
(d) All feature categories.

As shown in Figure 14, we compare the spectral curves of various categories between
the reconstructed data and the real HS data. Figure 14a–f respectively depict the spectral
curves of six cover categories: Grass healthy, Synthetic Grass, Soil, Water, Tennis Court,
and Running Track. And, specifically, the red curve represents the spectral curve of the
corresponding pixel in the real HS image, and the blue one represents the spectral curve of
the reconstruction results in the same pixel. In particular, it can be seen that although some
deviation occurs, the spectral curve basically fits, and the evaluation index of the spectral
loss (SAM) is 1.2894.

For the reconstruction image of the Houston data, an SVM classifier was used for
classification. The number of labels used in the training and testing sets for each category is
shown in Table 2. And, eventually, we can obtain the confusion matrix shown in Figure 15,
and the overall accuracy of classification is 76.53%. The highest accuracy for a single
category is 99%, which is the sixth category, and the land feature is water.

In the confusion matrix, the row coordinates represent the category of the input image,
and the column coordinates represent the category of network prediction. Moreover, the
values in the grid show the proportion of the situation represented by the coordinates in
the total number of data in this category, and the depth of the color in the grid represents
the size of the grid value.

For the GF-YR data, the reconstructed hyperspectral data include 295 bands. As
shown in Figure 16b, selecting bands 56, 39, and 25 for a false-color display can obtain the
reconstructed image, which has a certain degree of spectral preservation on the selected
three bands, and the color presented is basically consistent with the real HSI. Moreover,
Figure 16c shows the result of classifying reconstructed images by using the KNN classifier,
and the overall classification accuracy is 82.51%.
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Tables 4 and 5 represent the evaluation index of the reconstruction results in different
methods of the Houston and GF-YR data, respectively, and the highlighted data are the best
indicator among the various methods. Specifically, J-SLoL [18], MPRNet [26], CGCDL [20],
and MSSNet [22] are used as comparison methods, where J-SLoL and CGCDL are dictionary
learning methods, and MPRNet and MSSNet are deep learning methods. In order to ensure
a fair comparison and highlight the effectiveness of the proposed method, we opted for
the same training and testing dataset to conduct a comparison test. In J-SLoL and CGCDL,
we traversed the different atomic numbers of the dictionary, and finally selected the image
with the best reconstruction effect for index calculation; and, in MPRNet and MSSNet,
where the network ran on TITAN Xp GPU, the parameter optimization algorithm was also
selected as Adam, and the initial learning rate was 2 × 10−4, which steadily decreased to
1 × 10−6 using the cosine annealing strategy.

Table 4. Evaluation indicators for reconstruction results in the Houston dataset.

PSNR SAM (◦) SSIM OA DS Dλ QNR

Proposed 43.5576 1.2894 0.9996 0.7653 0.0170 0.0074 0.9756
J-SLoL [18] 35.0719 5.5209 0.9699 0.6764 0.0374 0.0622 0.9027

MPRNet [26] 34.6842 4.2354 0.9541 0.6896 0.0694 0.0781 0.8579
CGCDL [20] 35.5778 4.7765 0.9977 0.6907 0.0364 0.1106 0.8570
MSSNet [22] 31.2342 3.0510 0.9367 0.6975 0.0518 0.1174 0.8367

Table 5. Evaluation indicators for reconstruction results in the GF-YR dataset.

OA DS Dλ QNR

Proposed 0.8251 0.0471 0.0549 0.9004
J-SLoL [18] 0.7815 0.1218 0.1667 0.7317

MPRNet [26] 0.7726 0.1496 0.1238 0.7451
CGCDL [20] 0.8636 0.1803 0.1772 0.6744
MSSNet [22] 0.7842 0.1121 0.1614 0.7451

In Tables 4 and 5, the various indexes of the proposed method were significantly
improved compared with the comparison methods. For the Houston data, the proposed
method improved PSNR by 6.4482, and classification accuracy increased by 2.78%. For the
GF-YR, the classification accuracy of the reconstructed model improved by 2.59%, and the
global image quality evaluation index QNR improved by 0.1661.

However, for the GF data, the overall accuracy (OA) in classification is slightly lower
than CGCDL, which could be due to CGCDL’s focus on classifying reconstructed images,
neglecting spectral super-resolution. Consequently, while CGCDL achieves high classifi-
cation accuracy, its spectral and spatial authenticity is slightly compromised. In contrast,
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our proposed method effectively balances the similarity of image reconstruction with high
classification accuracy, delivering impressive results on both Houston and GF datasets.

5.4. Ablation Experiments on Partial Network Structures

In the multispectral–hyperspectral collaborative mapping model based on adaptive
learning, the adaptive learning network introduces spectral response priors and learns
the specific spatial degradation functions of the image. And, then, through the spatial
degradation network and the given spectral response function, the preliminarily recon-
structed image is mapped to the original HSI and MSI, respectively. The residual is adjusted
pixel by pixel and, thus, the details of the image are refined to complete the unsupervised
adaptive learning. The image fusion module provides pseudo labels for the training of
spectral super-resolution networks based on training HSI and MSI, enabling the network
to learn the mapping between HSI and MSI in a supervised manner. In order to verify the
performance of some modules in the network, this section conducted ablation experiments
on the following two network structures: the adaptive learning module and the image
fusion module. Particularly, in the ablation experiment of the image fusion module, the
module is replaced by a bilinear interpolation operation.

As shown in Figure 17, the reconstructed spectral curves of some categories before
and after adaptive learning for GF-YR data are represented, where (a–f) respectively depict
the spectral curves of six categories: Reed, Tidal Reed, Saltmarsh, Bare Tidal Flats, Water,
and Spartina Alterniflora. Specifically, the red curve in the figure represents the spectra of
corresponding pixels in the real HS image. Moreover, the blue curve represents the output
of the network before adaptive learning, and the yellow curve represents the spectra of
the same pixels in the reconstruction results of the network after adaptive learning. It can
be seen that before the adaptive learning, although the output of the network’s spectral
curve roughly follows the curve of the real HSI, there is still a certain offset. And noise
is generated in some bands, causing the network to produce more spikes. Whereas, after
the adaptive learning, the fitting of spectral curves further improves, and finally, has fine
reconstruction results in the 295 spectral bands with the spectral range of 400~2500 nm.

As shown in Tables 6 and 7, the comparison of the evaluation indicators for the
adaptive learning network and the ablation experiment of the image fusion module is
represented, where w/o adaptation represents the reconstruction results of the model after
removing the adaptive learning network, and w/o fusion represents the reconstruction
results of the model after removing the image fusion module. Specifically, in the Houston
data, the adaptive learning network improves the SNR, spectral loss, and classification
accuracy of the reconstruction image by using spectral response priors. Although the spatial
evaluation index is slightly reduced, the overall reconstruction effect is better. Moreover,
the fusion module obviously improves the SNR by 6.9, and the spectral loss evaluation
index SAM is improved by 2.9641, which obviously improves the reconstruction quality
of the network. Similarly, for the GF-YR data, both modules can improve classification
accuracy and the unsupervised spatial and spectral evaluation indexes.

Table 6. Comparison of evaluation indicators for reconstruction results of ablation experiments on
the Houston dataset.

Methods PSNR SAM (◦) SSIM OA DS Dλ QNR

w/o adaptation 40.9896 1.3752 0.9997 0.7480 0.0164 0.0094 0.9741
w/o fusion 36.6576 3.2535 0.9538 0.7644 0.0331 0.0345 0.9315
Proposed 43.5576 1.2894 0.9996 0.7653 0.0170 0.0074 0.9756
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Table 7. Comparison of evaluation indicators for reconstruction results of ablation experiments on
the GF-YR dataset.

Methods OA DS Dλ QNR

w/o adaptation 0.8150 0.0736 0.0552 0.8752
w/o fusion 0.8077 0.1726 0.1259 0.7232
Proposed 0.8251 0.0471 0.0549 0.9004

6. Conclusions

For multispectral–hyperspectral collaborative mapping and refined classification tasks,
in order to avoid the complex parameter selection based on dictionary learning, a collab-
orative mapping model based on adaptive learning is constructed, which provides the
required pseudo labels through a fusion module. Moreover, we design an adaptive learning
network to increase the spectral response prior and learn the unknown spatial degradation
function, so as to further improve the quality of the reconstructed image. Then, ablation
experiments are designed to verify the effectiveness of the relevant network structures.
Finally, we obtain the conclusion that the classification accuracy of reconstruction results in
the mapping model based on adaptive learning improved by 2.78% and 2.59% in the two
datasets: Houston and GF-YR, respectively.

The innovation of this paper is the design of the adaptive learning-based multi-
hyperspectral collaborative mapping model. A physical model embedding is realized
by designing an adaptive learning network to introduce the spectral response function,
which further guides the high precision of spectral reconstruction. Specifically, using the
adaptive learning module to incorporate spectral response priors that adjust the output
of the super-resolution network to preserve spectral information in reconstructed data,
and the attention-based model, has advantages in capturing the characteristics conducive
to spectral super-resolution. The image fusion module leverages spatial and spectral
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consistency in training data, providing pseudo labels for spectral super-resolution training.
The implementation of these modules can significantly enhance the quality and precision
of reconstruction.

In addition, there are still some issues worth considering and researching in relation
to the content of this article: in the mapping model based on adaptive learning, adding an
image fusion block to the training process of the model should be considered to further
improve the learning ability.
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