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Abstract: Inland waters consist of multiple concentrations of constituents, and solving the interference
problem of chlorophyll-a and colored dissolved organic matter (CDOM) can help to accurately invert
total suspended matter concentration (Ctsm). In this study, according to the characteristics of the
Multispectral Imager for Inshore (MII) equipped with the first Sustainable Development Goals
Science Satellite (SDGSAT-1), an iterative inversion model was established based on the iterative
analysis of multiple linear regression to estimate Ctsm. The Hydrolight radiative transfer model was
used to simulate the radiative transfer process of Lake Taihu, and it analyzed the effect of three
component concentrations on remote sensing reflectance. The characteristic band combinations B6/3

and B6/5 for multiple linear regression were determined using the correlation of the three component
concentrations with different bands and band combinations. By combining the two multiple linear
regression models, a complete closed iterative inversion model for solving Ctsm was formed, which
was successfully verified by using the modeling data (R2 = 0.97, RMSE = 4.89 g/m3, MAPE = 11.48%)
and the SDGSAT-1 MII image verification data (R2 = 0.87, RMSE = 3.92 g/m3, MAPE = 8.13%). And
it was compared with iterative inversion models constructed based on other combinations of feature
bands and other published models. Remote sensing monitoring Ctsm was carried out using SDGSAT-1
MII images of Lake Taihu in 2022–2023. This study can serve as a technical reference for the SDGSAT-1
satellite in terms of remote sensing monitoring of Ctsm, as well as monitoring and improving the
water environment.

Keywords: the first Sustainable Development Goals Science Satellite (SDGSAT-1); Multispectral
Imager for Inshore (MII); total suspended matter concentration; iterative inversion; Hydrolight

1. Introduction

Inland lakes are essential freshwater storage and supply sources [1] and play an
indispensable role in satisfying human drinking water needs, in providing agricultural
irrigation and industrial water, etc. However, with the rapid development of climate
change, industrialization, and urbanization, the water quality and ecological environment
of inland lakes are increasingly threatened [2]. In response to this challenge, water quality
monitoring is seen as an effective means to protect freshwater resources. Among them,
total suspended matter is an important indicator for measuring water quality and the level
of pollution in water quality monitoring. It mainly consists of solid substances suspended
in water such as insoluble organic matter, inorganic matter, sediment, microorganisms,
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and clay, which have a direct impact on light transmission in water, aquatic vegetation
growth, and the primary productivity of water bodies, as well as being closely related to
the ecological health of water environment [3,4]. Therefore, monitoring total suspended
matter concentration (Ctsm) in water bodies is of great significance for understanding the
current situation and development trend of water quality, in addition to managing water
pollution [5].

Satellite remote sensing technology has been widely used in the field of water envi-
ronment monitoring in recent years, due to its capacity to acquire important information
about water on a regular, timely, and synchronous basis [6]. To improve the effectiveness
of remote sensing monitoring, high spatial resolution is typically required [7]. The first
Sustainable Development Goals Science Satellite (SDGSAT-1) was developed by the Interna-
tional Research Center of Big Data for Sustainable Development Goals (CBAS). The satellite
is equipped with the Multispectral Imager for Inshore (MII), which has a spatial resolution
of 10 m, a width of up to 300 km, and seven different spectral bands, making it highly
effective in water environment monitoring. It has unique advantages in the detection of
Ctsm [8], which provides strong support for remote sensing monitoring of Ctsm.

The optical properties of inland water bodies are quite complex [9], and there are
a variety of optically active components in water bodies, among which total suspended
matter, chlorophyll-a, and colored dissolved organic matter (CDOM) are three major
optically active substances that affect the optical properties of water bodies [10], and
the absorption and scattering of these components jointly affect the reflectivity of water
bodies. At present, scholars at home and abroad have developed a variety of remote sensing
methods for retrieving suspended matter concentration, mainly including analytical models,
empirical models, and semi-empirical/semi-analytical models [11–13]. Among them, the
analytical model is based on the theory of radiative transfer in water bodies and uses the
interaction between apparent optical properties and inherent optical properties to estimate
the concentration of suspended matter [14,15]. Despite its obvious physical significance,
the construction process of the algorithm is complicated, and its application is usually
challenging [16,17]. The empirical model often adopts the statistical regression method to
construct a functional relationship between the concentration of suspended matter and the
reflectance of a single band or a combination of bands [18,19], which is straightforward
and easy to use, but it is relatively dependent on modeling data, and its applicability is
greatly limited [20,21]. The semi-empirical/semi-analytical model not only combines the
absorption and scattering process of light but also uses the empirical relationship to describe
the relationship between Ctsm and the reflectivity [22,23]. In contrast, it is a simplified form
of the analytical model and has more theoretical basis than the empirical model, so it is
widely used [24].

Lake Taihu, as a typical shallow inland eutrophication lake, has an average depth
of less than 2 m [25], and its reflectance is a mixed reflectance composed of several com-
ponents [26]. The current mainstream inversion models of Ctsm do not consider the in-
terference contribution of chlorophyll-a and CDOM deeply, and the directly established
relationship model between water reflectance and Ctsm is not enough to accurately reflect
the information of Ctsm. In fact, when Ctsm in inland water is monitored by remote sensing,
the common influence of other substances in the water body must be taken into account.

The Hydrolight radiative transfer model adopts the absorption and scattering charac-
teristics of each component of the water body to simulate the radiative transfer process of
light in the water body. It can also simulate the spectral contribution of a single component,
which is useful for analyzing the complex interactions between different components of
the water body [27]. Water reflectance can be regarded as a multivariate linear combination
of several components in water [28], and the Hydrolight model can be used to determine
the relationship between the concentration of a single component and its contribution to
reflectance. Therefore, the extraction of Ctsm can be viewed as a multivariate linear issue.

Based on the above analysis, this paper constructs an iterative inversion method of
Ctsm based on multiple linear regression and iterative analysis based on the spectrum
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setting of SDGSAT-1 MII and the Hydrolight radiation transfer simulation experiment in
combination with the measured data in Lake Taihu. Multiple linear regression was used to
establish the relationship between the water reflectance and the contribution of a single
component, and these component contribution relations were replaced into a completely
closed iterative inversion model for solving Ctsm through joint analysis, to solve the problem
of separating the reflectance contribution of other substances in the inversion process of
Ctsm. This study is expected to bring into play the application potential of the SDGSAT-1
satellite in water quality parameter inversion and provide an important technical reference
for improving the water quality of Lake Taihu and controlling the water environment.

2. Materials and Methods
2.1. Study Area

Lake Taihu (30◦56′~31◦34′N, 119◦54′~120◦36′E, Figure 1), with a water area of 2338.1 km2,
is the third largest freshwater lake in China [29], surrounded by many central cities of the
Yangtze River Delta, such as Shanghai, Suzhou, Wuxi, Changzhou, Huzhou, and Jiaxing. It
occupies an important position in the process of high-quality development and construction
of the surrounding economy and the Yangtze River Delta.
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With the economic development and urbanization of the surrounding basin, the
water environment of Lake Taihu has been gradually damaged, and the problem of water
pollution has become increasingly prominent. Among them, total suspended matter is
an important index that intensifies the eutrophication of Lake Taihu and causes water
pollution. Due to the shallow water characteristics of Lake Taihu, it is easy to be disturbed
by wind and waves, resulting in the suspension of sediment and in perennial turbidity in
the lake and significant suspended matter characteristics [30]. The increase in Ctsm further
induces the flow and release of other substances in the lake, promotes the proliferation of
algae in the lake, intensifies the eutrophication process of the lake, and ultimately leads
to the deterioration of water quality and water pollution. Therefore, monitoring Ctsm in
Lake Taihu is of great significance for improving the water environment and controlling
water pollution.

2.2. Field Measurement Data

This study used two measured data sets: the in situ data set from Lake Taihu collected
in August 2013 and October 2015 for model construction, and the data collection gathered
synchronously with the satellite transit on 27 July 2022, for model verification. In Figure 1,
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the dots with different colors represented the distribution of the actual sampling points at
the three sampling times. The following is a detailed description of the two-part data set:

(1) In August 2013 and October 2015, field data of a total of 54 valid samples were
collected in Lake Taihu. The collection process mainly includes the field collection of water
spectral data and water samples and the subsequent laboratory analysis of the collected
water samples to obtain the concentration data of different components of the water body
and the inherent optical data.

A spectrophotometer was used to detect chlorophyll-a concentration (Cchla). Ctsm was
determined using the calcination weighing method. When measuring the spectral absorp-
tion of chlorophyll-a and suspended matter, the water sample was first filtered by a GF/F
glass fiber filter with a diameter of 25 mm and then measured by an ultraviolet/visible
dual-beam integrating sphere spectrophotometer [31]. For the measurement of the scat-
tering characteristics of total suspended matter and chlorophyll-a, the original data of the
measurement should be corrected and then calculated [32]. CDOM concentration (Ccdom) is
usually stated as its absorption coefficient at 440 nm, which was measured by an ultravio-
let/visible light spectrophotometer and then converted into an absorption coefficient [33].
The CDOM absorption coefficient is calculated according to the following formula:

acdom(λ) = 2.303
D(λ)

Lc
(1)

where acdom(λ) is the absorption coefficient of CDOM. D(λ) is the absorbance of the water
sample at wavelength λ, and Lc is the optical range of the cuvette.

(2) To validate the application effect of the inversion model on satellite images, the mea-
sured Ctsm data were determined using water samples collected in Lake Taihu on 27 July 2022
and consisted of 16 sample points. The field sampling date was 27 July 2022, from 7–11 a.m.,
and the transit of the SDGSAT-1 satellite over Lake Taihu was on 27 July 2022, at 8:51 a.m.
Therefore, the synchronization between the field sampling data and the satellite transit time
on 27 July 2022 was achieved [34]. The latitude and longitude information of the measured
sample points was used to spatially match with the image pixels using geolocalization.

The purpose of water spectral measurement is to obtain water remote sensing re-
flectance Rrs(λ). The water surface spectral data are measured by ASD spectrometer
through the above-water method [35]. In the case of avoiding direct solar reflection and
ignoring external influences such as solar flares and white caps, the formula for calculating
the above-water remote sensing reflectance is as follows:

Rrs(λ) =
ρp(λ)(Lsw(λ)− rsLsky(λ))

πLp(λ)
(2)

where Rrs(λ) is the reflectance of the water body; λ is the wavelength; and Lsw(λ), Lsky(λ),
and Lp(λ) are the signal values measured by the spectrometer facing water, sky, and
reference plate, respectively. rs is the reflectance of the air–water boundary facing the
skylight, which can be 0.022 for a calm water surface, and 0.025 for a wind speed of about
5 m/s, and can be considered between 0.026 and 0.028 for wind speeds of about 10 m/s.
ρp(λ) is the reflectivity of the reference plate.

2.3. Satellite Remote Sensing Data

This study obtained SDGSAT-1 MII images through the data open system provided
by the International Research Center for Big Data for Sustainable Development Goals and
selected SDGSAT-1 MII L4 images of Lake Taihu from February 2022 to November 2023 for
remote sensing monitoring Ctsm in Lake Taihu.

Before using remote sensing image data, a series of pretreatment work should be
performed, including radiometric calibration, atmospheric correction, water extraction,
and so on. The first is radiation calibration, which obtains the calibration gain values of
each band of the image from the MII image meta-file. The specific parameters are shown
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in Table 1. The center wavelength of each channel is the wavelength corresponding to the
maximum spectral response of the remote sensor. The formula for converting the observed
value DN from satellite load to apparent radiance L is as follows:

L = DN × gain (3)

where DN is the observed value of the satellite load, L is the apparent radiance, and gain is
the gain value of the band.

Table 1. Band center wavelength and band gain of SDGSAT-1 MII.

Band Center Wavelength (µm)
Gain

By December 2022 After December 2022

B1 0.406 0.051560133 0.052084676
B2 0.448 0.036241353 0.038928845
B3 0.509 0.023316835 0.025864978
B4 0.569 0.015849666 0.017501881
B5 0.668 0.016096381 0.016499392
B6 0.773 0.019719039 0.021554446
B7 0.848 0.013811458 0.015360482

As new remote sensing data, the SDGSAT-1 MII image is less researched at home and
abroad, and there is no mature atmospheric correction algorithm specially applied to this
image. FLAASH model is the most commonly used atmospheric correction model based
on the MODTRAN radiative transfer algorithm [36], which applies to different types of
sensors, and it can eliminate most of the atmospheric effects effectively. After that, the
FLAASH module was used for atmospheric correction of the image to obtain the corrected
reflectivity, and then, the output reflectivity image was divided by π to approximate the
remote sensing reflectivity of the water [34,37]. Finally, normalized differential water body
index (NDWI) was used to extract the mask from Lake Taihu [38].

2.4. Hydrolight Radiation Transfer Simulation
2.4.1. Model Method and Parameter Setting

The Hydrolight model is a tool developed using the radiation transmission theory of
water bodies. This software can simulate the light transmission process in a wide range of
water environments using the absorption and scattering properties of each component of
water bodies. In this paper, the CASE 2 IOPS model of the Hydrolight model is used to
simulate the remote sensing reflectance of Lake Taihu. The inherent optical parameters, wa-
ter quality parameters, environmental conditions, and the spectral range of the absorption
model and the scattering model under this model are set as follows:

• Absorption model

The absorption coefficient a of the water body can be expanded as the sum of all absorp-
tion components [39], which is composed of four absorption contributions of pure water,
chlorophyll-a, total suspended matter, and CDOM, and each absorption component can be
expressed as the product of the inherent optical quantity per unit and the concentration of
related components. Therefore, it can be expressed by the following formula:

a(λ) = aw(λ) + a∗chla(λ)Cchla + a∗cdom(λ)Ccdom + a∗tsm(λ)Ctsm (4)

where a(λ) is the spectral total absorption. aw(λ), a∗chla(λ), and a∗tsm(λ) represent the ab-
sorption coefficient of pure water at wavelength λ, the specific absorption coefficient of
chlorophyll-a, and the specific absorption coefficient of total suspended matter, respectively,
and the values in the literature [40] are used for aw(λ), and the mean values of the specific
absorption coefficients of all sample points are used for a∗chla(λ) and a∗tsm(λ), and the three-
parameter curves are shown in Figure 2. Cchla and Ctsm that used the concentration data of
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54 measured sample points were used. Ccdom could be expressed as the absorption coeffi-
cient of CDOM at a wavelength of 440 nm [41], using 54 measured sample points as the
input data of Ccdom. a∗cdom(λ) is the specific absorption coefficient of CDOM at wavelength
λ, which conforms to the exponential attenuation model with the absorption coefficient of
CDOM at a wavelength of 440 nm, and the specific relationship is as follows:

a∗cdom(λ) = acdom(440) exp
(
−Sg(λ− 440)

)
(5)

where acdom(440) is the absorption coefficient of CDOM at a wavelength of 440 nm. Sg
is the exponential function slope of the CDOM absorption spectrum, and the calculated
average Sg is about 0.015. The mean data of a∗cdom(λ) obtained for 54 sets of sample points
are shown in Figure 2.
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• Backscattering model

The backscattering coefficient of the water body is composed of the backscattering
contributed by pure water, chlorophyll-a, and total suspended matter [26], which can be
expressed as follows

bb(λ) =
∼
bwbw(λ) +

∼
b chlab∗chla(λ)Cchla +

∼
b tsmb∗tsm(λ)Ctsm (6)

where bb(λ) is the backscattering coefficients. bw(λ), b∗chla(λ), and b∗tsm(λ) are the scattering
coefficients of pure water, specific scattering coefficients of chlorophyll-a, and specific
scattering coefficients of total suspended matter at wavelength λ. The values of the model
in the literature [42] are used for bw(λ), and the mean values of the specific scattering
coefficients of all sample points are used for b∗chla(λ) and b∗tsm(λ). The three-parameter

curves are shown in Figure 3.
∼
bw,

∼
bchla, and

∼
b tsm are the backscattering proportions of pure

water, chlorophyll-a, and total suspended matter, and the empirical values in reference [43]
are set as 0.5, 0.005, and 0.028, respectively.

• External environmental condition

The RADTRAN model was selected for the sky radiation transmission model, the
default values of the weather parameters were adopted, and the refraction index of the
water body was set to 1.34.

• The range of the simulated spectrum

The band range of simulated remote sensing reflectance was 400 nm to 800 nm, and
the simulation interval was 1 nm.
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2.4.2. Influence of Single-Component Concentration Change on Reflectance

Based on the measured concentration ranges of three components, total suspended
matter, chlorophyll-a, and CDOM, the Hydrolight model was used to simulate the influence
of single-component concentration changes on remote sensing reflectance. In the simulation
process, other input parameters remained unchanged except for the concentration of three
components. First, a uniform minimum initial concentration was set. Ctsm was 10 g/m3,
Cchla was 0.2 mg/m3, and acdom(440) was 0.2 m−1. Subsequently, only the concentration of
one component was changed, while the other two components remained unchanged. The
change settings of Ctsm, Cchla, and acdom(440) are shown in Table 2, and the remote sensing
reflectance simulation data sets under different component concentrations were generated.

Table 2. Experimental design for characteristic analysis of influence of remote sensing reflectance.

Variable Initial Concentration Concentration Change Settings

Ctsm (g/m3) 10 20, 30, 40, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150

Cchla (mg/m3) 0.2 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90,
100, 110, 120, 130, 140

acdom(440) (m−1) 0.2 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
1.1, 1.2, 1.3, 1.4

The relative change rate is an indicator used to measure the relative change degree
of variables, and its calculation formula is usually the division of the change value by the
previous value [44]. Therefore, in order to evaluate the influence degree of total suspended
matter, chlorophyll-a, and CDOM on the reflectance under different concentrations, the
index of relative change rate R∆

rs(λ) is introduced to quantify the relative change in the
remote sensing reflectance of water body under different conditions. The specific calculation
formula is shown as follows:

R∆
rs(λ) =

RE
rs(λ)− Re

rs(λ)

Re
rs(λ)

100% (7)

where R∆
rs(λ) represents the relative change rate, RE

rs(λ) represents the remote sensing
reflectance of the water body at wavelength λ after the concentration change, and Re

rs(λ)
represents the remote sensing reflectance of the water body at wavelength λ before the
concentration change. The high change rate indicates that the remote sensing reflectance is
easily affected by the concentration, while the low change rate indicates that the remote
sensing reflectance is not easily affected by the concentration.

In order to have a clear understanding of the effect of single-component concentration
changes on band reflectance, simulated Rrs(λ) and R∆

rs(λ) were used to analyze the role of
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single-component concentration changes on the remote sensing reflectance of the center
wavelengths of the sensor’s 2nd–6th bands.

2.5. Sensor Channel Convolution and Multi-Band Combination Enhancement
2.5.1. Sensor Channel Convolution

Since the energy actually received by each band of the satellite sensor is the sum of
the energy received at each wavelength within the wavelength range of the band, it is
necessary to use the spectral response function of the SDGSAT-1 MII sensor (Figure 4) for
the convolution of the spectral reflectance simulated by Hydrolight and convert it into the
remote sensing reflectance of the corresponding channel of the satellite. The calculation
formula is as follows:

Bi =

∫ λ2
λ1

Rrs(λ) fs(λ)dλ∫ λ2
λ1

fs(λ)dλ
(i = 2, 3, 4, . . . , 6) (8)

where Bi is the equivalent remote sensing reflectance of i channel of the satellite; Rrs(λ) is
the reflectance of the simulated spectrum with an interval of 1 nm; and the spectral range
of Hydrolight simulation basically covers the SDGSAT-1 MII channel 2–6. λ1 and λ2 are
wavelengths at both ends of channel i of the satellite; fs(λ) is the spectral response function
of the SDGSAT-1 MII sensor.
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2.5.2. Multi-Band Combination Enhancement

Compared with the original single-band data, the combination of multi-band mathe-
matical operations helps to eliminate the interference between various bands to a certain
extent. Band ratio operation and band difference operation are both effective spectral
processing methods, which can highlight the correlation between water quality parameters
and water reflectivity [45].

Therefore, ratio reflectance combination and difference reflectance combination were
obtained by processing the ratio of and difference in the convolved SDGSAT-1 MII channel
reflectance data according to the following formula:

Bi/j =
Bi
Bj
(i, j = 2, 3, 4, . . . , 6, and i ̸= j) (9)

Bi-j = Bi − Bj(i, j = 2, 3, 4, . . . , 6, and i ̸= j) (10)

where Bi/j is the ratio reflectance combination, and Bi-j is the difference reflectance combination.



Remote Sens. 2024, 16, 1385 9 of 27

2.6. Correlation Analysis

Correlation analysis can quantitatively measure the intensity of linear relationship
between variables [46], which provides a basis for the in-depth analysis of the relationship
between the component concentration and reflectivity and for subsequent modeling and
interpretation. Correlation analysis was conducted between the original band and multi-
band combination and the measured Cchla, Ctsm, and acdom(440) in this study.

In the correlation analysis, in addition to the correlation coefficient, a statistic is also
obtained, that is, p. The t-test is usually used to determine whether the correlation between
the variables is significant, and the level of significance is used to obtain the statistic p to
assess whether the correlation between the variables is significant or not. The correlation
coefficient, statistic t, and p are calculated by the following formula:

r =

N
∑

n=1
(xn − x)(yn − y)√

N
∑

n=1
(xn − x)2

√
N
∑

n=1
(yn − y)2

(11)

t =
r
√

N − 2√
1 − r2

(12)

p = 2
(

1 −
∫ t

−∞
t(x)dx

)
(13)

where r is the correlation coefficient, and n is the sample sequence number; N is the
total sample size; x represents different original bands and combinations of bands; and y
represents Cchla, Ctsm, and acdom(440). When p > 0.05, there was no significant correlation
between the variables. When p < 0.01, it means that the correlation between variables at
0.01 level is significant, and the significance is indicated by **; when p < 0.05, it means that
the correlation between variables at the level of 0.05 is significant, and the significance is
indicated by *.

2.7. Iterative Inversion Method of Ctsm

2.7.1. Iterative Inversion Method Based on Multiple Linear Regression Analysis

Remote sensing reflectance of the water body is the mixed reflectance of multiple
components of the water body, and the mixed reflectance R can be regarded as the linear
sum of the contribution of Ctsm and the contribution of other components concentration, as
shown in the following formula:

R = (R)tsm + (R)Other components (14)

where R can be the reflectance in the form of different bands and different combinations
of bands, viewed as consisting of multiple single-component contributions to reflectance.
(R)tsm represents the single-component remote sensing reflectance contributed by Ctsm, and
(R)other components represents the component remote sensing reflectance contributed by the
concentration of other components except Ctsm.

In order to reduce parameter dependence, the contribution of a single component is
regarded as a function of its concentration. For example, the relationship between the single-
component reflectance contributed by Ctsm and Ctsm is given by the following equation:

(R)tsm = h(Ctsm) (15)

where h(Ctsm) represents the functional relationship between the single-component remote
sensing reflectance contributed by Ctsm and Ctsm.

The Hydrolight model can simulate the remote sensing reflectance of a single com-
ponent using a single-component concentration, and the relationship between the remote
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sensing reflectance of a single component and the concentration of a single component
can be obtained. By establishing the multiple linear regression relationship between the
mixed remote sensing reflectance and the remote sensing reflectance contributed by a single
component, Ctsm is taken as the unknown in the multiple regression relationship to solve
Ctsm by using different bands or combinations of bands. Therefore, in theory, it is feasible
to invert Ctsm based on multiple linear regression.

The purpose of this study is to reduce the influence of other component concentrations
on the inversion of Ctsm. The most critical thing is to select the appropriate band or
band combination as the characteristic band or the characteristic band combination to
establish the multiple linear regression relationship between the characteristic band or
the characteristic band combination and the single-component remote sensing reflectance,
according to the analysis results of the influence of single-component concentration change
on the reflectance and the correlation analysis results. This step is a prerequisite for
retrieving Ctsm.

On the premise that the characteristic band or combination of bands is determined
as the mixed reflectance, based on the relationship between the concentration of one
component and the remote sensing reflectance of one component, and the multiple linear
regression relationship between the mixed reflectance and the reflectance of one component,
a closed relationship can be formed with Ctsm as an iterative variable by solving Ctsm in
order to unite the multiple regression model, and an iterative functional relationship can
be formed, as shown in the following equation:

Ctsm
(m+1) = φ

(
Ctsm

(m)
)
(m= 0, 1, 2, . . . , M) (16)

where Ctsm
(m) represents the input value of the model, Ctsm

(m+1) represents the output
value of the model, and m represents the calculation times of the model to solve Ctsm, that
is, the number of iterations.

By iterating the function relation, we can derive the next value from the previous
value one-by-one and control the cycle process in the form of an infinite approximation
solution until the circulation is stopped, when Ctsm remains unchanged. The final output
result Ctsm

(m+1) represents the inversion result of Ctsm.

2.7.2. Evaluation Indicators

Three indexes, namely, determination coefficient
(

R2), root mean square error (RMSE),
and mean absolute percentage error (MAPE), are used to evaluate the effect of the inversion
model. Their specific calculation formulas are as follows:

R2 = 1 −

H
∑

h=1

(
y′h − yh

)2

H
∑

h=1
(y − yh)

2 (17)

RMSE =

√√√√ 1
H

H

∑
h=1

(
y′h − yh

)2 (18)

MAPE =
100%

H

H

∑
h=1

∣∣∣∣y′h − yh

yh

∣∣∣∣ (19)

where y′h represents the retrieved value of Ctsm at the hth sample point; yh represents the
measured value of Ctsm. at the hth sample point. H is the number of sample points.
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3. Results
3.1. Validation of Remote Sensing Reflectance Simulations

According to the method described in Section 2.4.1, 54 sets of simulated Rrs(λ) of
Lake Taihu in the wavelength range of 400–800 nm were obtained and compared with the
measured Rrs(λ). The comparison results are shown in Figure A1. The simulated Rrs(λ)
and the measured Rrs(λ) presented relatively similar curve characteristics, and the spectral
trend was relatively consistent. Figure 5a shows the fitting results of the simulated Rrs(λ) to
the measured Rrs(λ) in the range of 400–800 nm, and there is an obvious linear relationship
between the simulated Rrs(λ) and the measured Rrs(λ) (R2 = 0.906), and the simulation
error is small (RMSE = 0.0031 sr−1). Figure 5b shows the fitting results of the simulated
Rrs(λ) to the measured Rrs(λ) at the center wavelengths of the satellite bands 2–6, and
these scatters are uniformly distributed along the 1:1 line. Error between simulated Rrs(λ)
and measured Rrs(λ) at the center wavelength of the satellite band are shown in Table 3,
with 0.826–0.906 for R2, and RMSE in the range of 0.0025–0.0038 sr−1.
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band center wavelength.

Table 3. Error between simulated Rrs(λ) and measured Rrs(λ) at the center wavelength of the band.

Rrs(λ) R2 RMSE (1/sr)

Rrs(448) 0.826 0.0025
Rrs(509) 0.837 0.0031
Rrs(569) 0.824 0.0032
Rrs(668) 0.862 0.0038
Rrs(773) 0.906 0.0029

Figure 6 shows the measured data of Cchla, Ctsm, and acdom(440) of 54 sample points,
as well as the correlation coefficients between simulated Rrs(λ) and measured Rrs(λ) of
the 54 sample points. Measured Ctsm ranged from 15–145 g/m3, measured Cchla ranged
from 0.27–133 mg/m3, and measured acdom(440) ranged from 0.22–1.33 m−1. The statistical
results showed that the correlation coefficients between simulated Rrs(λ) and measured
Rrs(λ) of the 54 groups of sample points were above 0.93, and the proportion of samples
with correlation coefficients greater than 0.95 reached 83.3%.

The above results show that the simulated Rrs(λ) could be used as reliable basic data
for correlation theoretical analysis.
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Figure 6. The measured concentration data of 54 sample points and the correlation coefficient between
the simulated Rrs(λ) and the measured Rrs(λ) for 54 sample points.

3.2. Analysis of Influence Characteristics of Remote Sensing Reflectance

Based on the measured single-component concentration range, an experiment on the ef-
fect of single-component concentration changes on Rrs(λ) was designed, and the simulated
Rrs(λ) data sets were obtained under the conditions that Ctsm varied from 10 to 150 g/m3,
Cchla varied from 0.2 to 140 mg/m3, and acdom(440) varied from 0.2 to 1.3 m−1. Using these
simulated Rrs(λ) data sets, the changes in Rrs(λ) and R∆

rs(λ) at different concentrations
were analyzed, as well as the effect of a single-component concentration on the center
wavelength of the sensor’s bands 2–6, and the results are shown in Figures 7 and 8.
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In the range of 400–800 nm, Rrs(λ) and R∆
rs(λ) are shown in Figure 7a,d under different

Ctsm. As Ctsm increased, Rrs(λ) showed a gradual increase trend, and R∆
rs(λ) showed a

gradual decrease trend. When Ctsm was low, R∆
rs(λ) was more obvious, and the maximum

could cause a 90% relative change. With the increase in concentration, R∆
rs(λ

)
gradually

decreased and finally tended to be stable. Rrs(λ) and R∆
rs(λ) are shown in Figure 7b,e

under different Cchla. Before 700 nm, the increase in Cchla led to a decrease in Rrs(λ), and
R∆

rs(λ) decreased. After 700 nm, with the increase in Cchla, Rrs(λ) showed an upward
trend, but R∆

rs(λ) gradually decreased, resulting in a positive change degree of Rrs(λ) up to
12%. Rrs(λ) and R∆

rs(λ) under different acdom(440) are shown in Figure 7c,f. The influence
of acdom(440) on Rrs(λ) was weak on the whole. With the increasing wavelength, Rrs(λ)
gradually decreased, and R∆

rs(λ) gradually decreased. After 700 nm, Rrs(λ) is basically no
longer affected by the change in acdom(440).

On the center wavelength of the sensor’s bands 2–6, Rrs(λ) and R∆
rs(λ) at the center

wavelength of the five bands are shown in Figure 8a,d under different Ctsm. With the
increase in Ctsm, Rrs(λ) at the center wavelength of the five bands showed an increasing
trend at the same time, and Rrs(773) showed a higher degree of change. Rrs(λ) and R∆

rs(λ)
at the center wavelength of the five bands are shown in Figure 8b,e under different Cchla.
As Cchla increased, the trends and extent of changes in Rrs(λ) at the center wavelengths of
the four bands except 773 nm were more consistent. Under different acdom(440), Rrs(λ) and
R∆

rs(λ) at the center wavelength of the five bands are shown in Figure 8c,f. Rrs(773) and
R∆

rs(773) remained essentially unchanged with an increase in acdom(440).

3.3. Correlation between Remote Sensing Reflectance and Concentration of Three Components

The results of the correlation analysis between Bi, Bi/j, and Bi-j and Ctsm, Cchla, and
Ccdom, respectively, are shown in Figure A2, from which the following can be inferred:

(1) The results of correlation analysis between Bi and the different concentrations are
shown in Figure A2a. Ctsm showed a positive correlation with all five bands, with the
strongest significant positive correlation with B6 (r = 0.985 (p < 0.01)); Cchla had the strongest
correlation with B3 (r = −0.465 (p < 0.01)); Ccdom showed a negative correlation with all five
bands, and with B2 with the strongest correlation (r = −0.649 (p < 0.01)).
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(2) In the correlation analysis of Bi/j with the different concentrations (Figure A2b),
55% of Bi/j had a significant correlation with Ctsm above 0.7; 15% of Bi/j had a significant
correlation with Cchla above 0.7; and Ccdom had a correlation above 0.7 with just two ratio
combinations of bands.

(3) The results of the correlation analysis between Bi-j and concentrations are shown
in Figure A2c. The number of Bi-j with significant correlation with Ctsm higher than
0.7 accounted for 50%; the number of Bi-j with significant correlation with Cchla higher than
0.7 accounted for 40%; and the correlation between Ccdom and Bi-j was generally low, among
which the strongest correlation was with B6-4 (r = −0.51 (p < 0.01)).

(4) A comparative analysis of the correlations between concentrations and different
bands and combinations of bands showed that three bands (B2, B3, B4), as well as six
combinations of ratios (B2/3, B2/6, B3/2, B3/6, B4/6, B5/6) and eight combinations of differ-
ences (B2-4, B2-6, B3-6, B4-2, B4-6, B6-2, B6-3, B6-4), were significantly correlated with the three
component concentrations at the same time, indicating that it is inappropriate to rely on
the bands and combinations of bands related to Ctsm alone for the inversion of Ctsm, and it
is not possible to avoid the effects of the other components.

(5) With a further comprehensive comparison of the correlation characteristics of the
three component concentrations, as well as by combining the results of the characterization
of the effects of the three component concentrations on reflectance in Section 3.2, it can
be concluded that Ccdom has a weak effect on reflectance, while there is a more obvious
correlation between Cchla and Ctsm and remote sensing reflectance, and the two are the
dominant factors affecting remote sensing reflectance.

Based on the above conclusions, in order to eliminate the other component contribu-
tions from the remote sensing reflectance and then invert Ctsm independently, the basic idea
of constructing Ctsm model in this study includes the following:

(1) Firstly, the band or combination of bands that did not correlate with Ccdom but
showed a correlation with Ctsm and Cchla were selected, and the results are shown in Figure 9,
which were regarded as the combined contribution of the two components of Ctsm and
Cchla, so that the influence of Ccdom was no longer taken into account.
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(2) Next, the bands or band combinations that showed a significantly strong correlation
(r > 0.70 (p < 0.01)) with both Cchla and Ctsm were selected as factors, and multiple linear
regression and iterative resolution methods were used to remove the signals of Cchla from
the remote sensing reflectance, and thus extract Ctsm.

Finally, B6/3 and B6/5 were identified as two band combination characterization factors
for subsequent multiple linear regression and iterative parsing studies.
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3.4. Multivariate Iterative Inversion Model Construction and Evaluation
3.4.1. Multivariate Iterative Inversion Model Construction

• Reflectance simulation of single-component contribution

B6/3 and B6/5 were regarded as the mixed reflectance of both Ctsm and Cchla. In order
to accurately invert Ctsm, it is necessary to simulate the contribution of Ctsm and Cchla,
respectively, followed by contribution elimination through multivariate iteration.

Based on the measured concentration data, Hydrolight was used to simulate the single-
component contributions to obtain the single-component reflectance of the contribution
from Ctsm and the single-component reflectance of the contribution from Cchla (Figures 10
and 11), respectively, and the relationship that exists between the component concentrations
and the respective contributions to the reflectance is shown in the following equations:

(B6/3)
tsm = 0.0066Ctsm + 0.0207

(
R2 = 0.996

)
(20)

(B6/5)
tsm = 0.0028Ctsm + 0.1391

(
R2 = 0.995

)
(21)

(B6/3)
chla = 0.0041Cchla + 0.0065

(
R2 = 0.999

)
(22)

(B6/5)
chla = 0.0054Cchla + 0.1552

(
R2 = 0.997

)
(23)

where (B6/3)
tsm and (B6/5)

tsm are single-component reflectances contributed by Ctsm, and
(B6/3)

chla and (B6/5)
chla are single-component reflectances contributed by Cchla.
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The results showed that there was a significant linear relationship between the compo-
nent concentrations and their respective contributions to remote sensing reflectance, with
R2 being greater than 0.99 in all cases.

• Multiple linear regression analysis

According to Equation (14) in Section 2.7.1, B6/3 and B6/5 are equivalent to the mixed
reflectance R, B6/3 can be regarded as the linear sum of the reflectance contributed by
each of Ctsm and Cchla, i.e., a linear combination of (B6/3)

tsm and (B6/3)
chla, and B6/5 can

be thought of as the linear sum of the reflectance contributed by each of Ctsm and Cchla,
i.e., a linear combination of (B6/5)

tsm and (B6/5)
chla. Multiple linear regression analysis

between the mixed reflectance R and the single-component reflectance using Equation (14).
The objective of this study is to solve Ctsm by combining Equation (15) from Section 2.7.1
with a multiple linear regression analysis, and therefore, a single-component-contributing
reflectance is used as the dependent variable in performing the multiple linear regres-
sion, and a characteristic band combination and another single component contributing
reflectance are used as independent variables.

Considering the correlation between B6/3 and Ctsm (r = 0.942, p < 0.01, Figure 9)
was higher than that with Cchla (r = 0.709, p < 0.01, Figure 9), a multiple regression
was established with (B6/3)

tsm as the dependent variable, and B6/3 and (B6/3)
chla as the

two independent variables. Meanwhile, B6/5 correlation with Cchla (r = 0.912, p < 0.01,
Figure 9) was greater than the correlation with Ctsm (r = 0.779, p < 0.01, Figure 9), and there-
fore, (B6/5)

chla was used as the dependent variable and a multiple regression relationship
was established with B6/5 and (B6/5)

tsm as the two independent variables.
B6/3 and B6/5 were obtained by ratio combination based on satellite channel data after

the convolution of 54 sets of simulated spectra, (B6/3)
tsm and (B6/5)

tsm simulated from
Ctsm of the 54 sample sites (Figure 10), and (B6/3)

chla and (B6/5)
chla simulated from Cchla of

the 54 sample sites (Figure 11), which correspond to the decomposition of the component
contributions to B6/3 and B6/5.

Based on the above analysis and on the principle of Ordinary Least Squares (OLSs), the
multivariate linear regression equations were established by Python, and the two regression
equations obtained were expressed as follows.

(B6/3)
tsm = 1.07305(B6/3)− 0.9504(B6/3)

chla − 0.06868
(

R2 = 0.977
)

(24)

(B6/5)
chla = 1.05341(B6/5)− 0.89225(B6/5)

tsm + 0.09336
(

R2 = 0.991
)

(25)

The corresponding R2 of the two regression equations were 0.977 and 0.991, indicating
that the models were well fitted. The residual is the difference between the predicted
value of the dependent variable and the cause variable obtained after multiple linear re-
gression. The residuals of the two models were located between −0.045–0.059 sr−1 and
−0.015–0.034 sr−1, respectively, with smaller residual values, which indicated that the mul-
tiple linear regression model was able to predict the dependent variable more accurately.

• Construction of the iterative inversion model

Based on the multiple linear regression analysis, the two multiple regression models
(Equations (24) and (25)) were combined with the relationship between the concentra-
tion and the respective contributing reflectance, thus forming a complete closed iterative
inversion model, which is shown in the following equation:

Ctsm
(m+1) = φ

(
Ctsm

(m)
)
= 162.58333(B6/3)− (115.17283(B6/5)− 0.27315Ctsm

(m) − 5.85233)(m = 0, 1, 2, . . . , M) (26)

The input parameter settings of the iterative inversion model in different application
scenarios are shown in Table 4. In the iterative inversion model, B6/3, B6/5, and Ctsm

(0)

were used as the input parameters of the model, and this iterative functional relationship
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was convergent and able to calculate Ctsm iteratively. When the successive output values
gradually converged to be equal, i.e., the difference between the output value and the input
value gradually tended to be zero, which indicated that the algorithm was approaching
the solution until the output value was kept unchanged, the iterative process was stopped,
and the last guessed value Ctsm

(m+1) was used as the final inversion result of Ctsm.

Table 4. Model input parameter setting.

Clarification
Model Application Scenarios

One-Dimensional Reflectance Values SDGSAT-1 MII Images

Ctsm
(0)

a set of one-dimensional values a remote sensing reflectance imageB6/3
B6/5

calculation method iterative on a value-by-value basis iterative image-by-image pixel

3.4.2. Analysis of the Initial Value Setting of Ctsm
(0)

Firstly, the model was applied to the modeling data, and the calculation method was
adopted by numerical iteration one-by-one. The input data of the model included B6/3,
B6/5, and Ctsm

(0). And Ctsm
(m+1) was initialized to 0 as the output value. In the iterative

process, both Ctsm
(m) and Ctsm

(m+1) were updated automatically according to the iterative
formula (Equation (26)).

In order to analyze the impact of the initial value Ctsm
(0) on the model, the Ctsm

(0) of
each group was set as 1 g/m3, 10 g/m3, 50 g/m3, 100 g/m3, 200 g/m3, and 500 g/m3,
respectively. Figure 12 shows the change in the difference between the 54 sets of output
values and input values during iteration, using 54 groups of curves of different colors.
Under different values of Ctsm

(0), the difference between the output value Ctsm
(m+1) and

the input value Ctsm
(m) decreased gradually with the iteration. When the output value and

the input value were consistent, the iteration process stopped, and each group of values
was iterated 29 times. The model achieved the same output results under different Ctsm

(0)

settings, and the number and time of calculation did not change with the specified initial
value of Ctsm

(0). The results showed that the iterative inversion model had no dependence
on the initial value of Ctsm

(0), and the initial value of Ctsm
(0) could be set arbitrarily.

In addition, the relative error (RE) was used to quantify the convergence accuracy in
the iterative process, which was defined as the difference between the output value of the
current iteration and the final output value divided by the final output value, and was
expressed as a percentage. When Ctsm

(0) = 1 g/m3, RE changes in the iteration process
are shown in Figure 13. With the progress of iteration, RE decreased gradually. When the
number of iterations was five, RE reached −0.15%. When the number of iterations was 10,
RE decreased to −0.0002%. When the number of iterations reached 29, RE dropped to 0,
indicating that the model had successfully converged to the final solution and reached a
stable output state.

By analyzing the measured Ctsm and the retrieved Ctsm
(m+1) of the iterative inversion

model, the accuracy of the iterative inversion model was evaluated (Figure 14). There
was a highly significant linear relationship between the measured value of Ctsm and the
inversion value, R2 was 0.97, and the difference between the two was small, and the
obtained RMSE and MAPE were 4.89 g/m3 and 11.48%, respectively, indicating that the
model had good accuracy.
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3.4.3. Valuation of Ctsm Estimation Methods for SDGSAT-1 MII Image

The iterative inversion model constructed in this paper was applied to the pre-
processed SDGSAT-1 MII image of 27 July 2022, and verified by using the ground and
satellite synchronization data by adopting the pixel-by-pixel iterative calculation method.
The comparison results between the measured Ctsm and the retrieved Ctsm are shown in
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Figure 15. They were uniformly distributed along the 1:1 line, and their R2 was 0.87, show-
ing extremely high linear correlation and consistency, and the error level was relatively
low, with a RMSE of 3.92 g/m3 and a MAPE of 8.13%. The verification results showed that
the iterative inversion model proposed in this paper showed a good application effect and
good application accuracy on the SDGSAT-1 MII image.
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4. Discussion
4.1. Comparison between Different Characteristic Band Combinations

The aim of this paper is to eliminate the other component contributions from the
reflectance and thus invert the suspension concentration independently, and based on the
results of the analyses in Sections 3.2 and 3.3, it is concluded that B6, B6/2, B6/3, B6/4, and
B6/5 do not correlate with Ccdom but rather correlate with Ctsm and Cchla. Thus, it is possible
to consider B6, B6/2, B6/3, B6/4, and B6/5 as Ctsm and Cchla as the combined contribution
of the two components (Figure 9); thus, the effect of Ccdom is no longer considered. Fur-
thermore, to remove the signal of Cchla present in reflectance, B6/3 and B6/5, which showed
significant strong correlation (r > 0.70 (p < 0.01)) with both Ctsm and Cchla, were selected as
factors for multiple linear regression and iterative resolution.

In order to evaluate the advantage of constructing an iterative inversion model for the
inversion of Ctsm using B6/3 and B6/5 as characteristic band combinations, from the band
and band combinations that do not correlate with Ccdom but correlate with Ctsm and Cchla
(Figure 9), other band and band combinations were selected as new characteristic band
combinations to construct new iterative inversion models for comparative studies.

Considering that only B6/5 had a greater correlation with Cchla than Ctsm, B6/5 was
left unchanged. Among the bands and band combinations with higher correlation with
suspended matter concentration than Cchla, the correlations of B6, B6/2, B6/3, and B6/4 with
Ctsm were all greater than 0.9, but there was a difference in the correlation with Cchla, where
the correlation of B6/3 was greater than 0.7 and the correlation of B6 with Cchla was only
0.471, and the correlations of B6/2, B6/4, and Cchla were greater than 0.65, and B6, B6/2
and B6/4 were used as the characteristic band combinations for constructing the iterative
inversion model together with B6/5, respectively.

Three iterative inversion models based on B6 and B6/5, B6/2 and B6/5, and B6/4 and
B6/5 were formed by repeating the previous processing process. The iterative inversion of
Ctsm applied to the modeling data are shown in Figure 16 by the three newly constructed
iterative inversion models, the 54 sets of curves with different colors represent the changes
in the difference between the 54 sets of output values and input values during the iteration
process. When models were applied to the modeled data, Ctsm

(0) was uniformly set as
1 g/m3, and the three iterative inversion models carried out 29 iterations for each set of
values. Figure 17 shows the fitting of the three iterative inversion models between the final
output iterative inversion values and the measured values of each group, and the results
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are relatively close. Subsequently, the three newly constructed iterative inversion models
were applied to the pre-processed SDGSAT-1 MII image of 27 July 2022, and verified using
the ground and satellite synchronization data. The results are shown in Figure 18, where a
few points deviate from the 1:1 line to a large extent.
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By comparing the modeling errors of the four iterative inversion models and the errors
applied to the SDGSAT-1 MII image (Table 5), the comparison results showed that the
modeling accuracy and application effect of the three new iterative inversion models were
not as good as the iterative inversion models based on B6/3 and B6/5, which indicated the
iterative inversion model based on B6/3 and B6/5 showed higher accuracy and a better
ability of retrieving Ctsm.

Table 5. Error statistics for four iterative inversion models.

Characteristic Band
Combinations

The Modeled Data The SDGSAT-1 MII Image

R2 RMSE (g/m3)
MAPE

(%) R2 RMSE (g/m3)
MAPE

(%)

B6 and B6/5 0.91 8.05 16.93 0.82 8.48 31.06
B6/3 and B6/5 0.97 4.89 11.48 0.87 3.92 8.13
B6/2 and B6/5 0.95 6.03 14.05 0.84 8.67 30.47
B6/4 and B6/5 0.96 5.49 12.58 0.86 6.63 23.06

4.2. Comparison with Other Inversion Models

Referring to the inversion models of Ctsm proposed by other researchers in recent years,
the measured data used in this study were applied to the corresponding models to obtain
the adapted models (Table 6), which were applied for the estimation of Ctsm in Lake Taihu,
and the results of the fit between measured Ctsm and retrieved Ctsm are shown in Figure 19.
Among these adapted models, the Hou_2017 model [18] had the highest modeled accuracy
in Lake Taihu, but its error was still large compared with the iterative inversion model
proposed in this paper when models were applied to the modeled data.

Table 6. The model and accuracy of Ctsm inversion model after adaption.

Model Name Typology Formulas Evaluation Indicators

Shi_2015 [47]
original model Ctsm = 9.65e58.81Rrs(645) R2 = 0.70; RMSE = 14.3; MAPE = 23
adapted model Ctsm = 8.98e53.766Rrs(645) R2 = 0.66; RMSE = 16.96; MAPE = 27.01

Li_2015 [48]
original model Ctsm = −20.7 + 2.8e61.9Rrs(660) R2 = 0.95; RMSE = 14.7
adapted model Ctsm = 12.05e53.177Rrs(660) R2 = 0.64; RMSE = 17.59; MAPE = 29.45

Hou_2017 [18]
original model Ctsm = 132.83(Rrs(645)/Rrs(555)) 2 −

52.618(Rrs(645)/Rrs(555))
R2 = 0.88; RMSE = 34.2; MRE = 33.79

adapted model Ctsm = 1.21e4.11(Rrs(645)/Rrs(555)) R2 = 0.82; RMSE = 12.44; MAPE = 16.97
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These models were applied to the pre-processed SDGSAT-1 MII image of 27 July 2022,
using B4 as Rrs(555), and B5 as Rrs(645) and Rrs(660), and validating them using the
synchronized ground-satellite data (Figure 20). The RMSE and MAPE between measured
Ctsm and inverted Ctsm are listed in Table 7. The results showed that the Shi_2015 model [47]
had the smallest error in the imagery among the adapted models. However, all of these
adapted models performed poorly in terms of imagery applicability when compared to the
iterative inversion model proposed in this paper.
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Table 7. Error statistics when models are applied to the SDGSAT-1 MII image of 27 July 2022.

Model RMSE (g/m3) MAPE (%)

in this paper 3.92 8.13
Shi_2015 [47] 10.91 37.9
Li_2015 [48] 18.00 57.62

Hou_2017 [18] 15.24 44.1

4.3. Temporal and Spatial Distribution Characteristics of Ctsm in Lake Taihu

The iterative inversion model based on B6/3 and B6/5 is applied to the SDGSAT-1 MII
images available in 2022–2023 for the observation of Ctsm in Lake Taihu, and the spatial
distribution results are shown in Figure 21. There were some seasonal differences in the
spatial distribution of Ctsm in Lake Taihu, with low concentrations mainly concentrated
in the center of the lake. In May, June, July, and November, Ctsm in the center of the lake
was low and lower than that in the surrounding waters. The reason for this was that the
vegetation growing in the water could effectively prevent suspended sediment from being
resuspended, thus slowing down the increase in Ctsm; in January and February, the aquatic
vegetation was in the sinking stage, coupled with the frequent monsoon winds, and the
suspended sediment was resuspended again under the action of the wind; thus, Ctsm in
this period showed a phenomenon of accumulation in the central area of the lake.

In order to analyze the temporal changes in Ctsm in Lake Taihu, the inversion results
of Ctsm were divided into six concentration intervals, including 0–15 g/m3, 15–30 g/m3,
30–45 g/m3, 45–60 g/m3, 60–75 g/m3, and > 75 g/m3, and the proportion of image pixels
of Ctsm of each interval in each quarter was counted as a percentage of the overall effective
image pixels. The effective pixels did not include the algal bloom pixels and the pixels
covered by clouds and fog. Figure 22 shows the results of the proportion of Ctsm pixels in
each concentration interval in different seasons in Lake Taihu. In general, Ctsm was higher
in spring, summer, and winter, while it was lower in fall. Due to the small amount of
available SDGSAT-1 MII images in 2022 and 2023, detailed seasonal changes will need to
be determined through the long-term monitoring of data.
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5. Conclusions

Considering that the composition and optical properties of inland water are affected
by the concentration of different components in water, in order to overcome the interference
of Cchla and Ccdom in the inversion study of Ctsm, this study established an iterative inversion
model for estimating Ctsm based on multiple linear regression based on the characteristics
of SDGSAT-1 MII sensor. The Hydrolight model was used to simulate the radiative transfer
process of Lake Taihu, and the influence characteristics and correlation analysis of Ctsm, Cchla,
and Ccdom on remote sensing reflectance were carried out. On this basis, the characteristic
band combinations for multiple linear regression analysis were determined. The iterative
inversion model of solving Ctsm is formed by combining two multivariate linear regression
models. The iterative inversion model was validated using modeling data and image data,
and it was compared with the iterative inversion model built with other band combinations
as characteristic band combinations, as well as with other published models. Furthermore,
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the spatiotemporal distribution characteristics of Ctsm in Lake Taihu were investigated
using SDGSAT-1 MII images taken in 2022–2023. The primary conclusions of this study are
as follows:

(1) The simulation of the Hydrolight model produced 54 groups of 400–800 nm simu-
lated remote sensing reflectance of Lake Taihu, and validation revealed that the simulated
spectra had a high similarity with the shape of the measured spectral curves, and the
correlation between the simulated spectra and the measured spectra of each group was
over 0.93, and the coefficient of determination of the two fitted together was R2 of 0.906,
which provided the necessary data for the accurate inverse inversion of Ctsm.

(2) Through the characterization of the influence of remote sensing reflectance and the
analysis of the correlation between different bands and band combinations and the concen-
trations of the three components of total suspended matter, chlorophyll-a, and CDOM, the
band combinations that did not correlate with Ccdom and showed a significant correlation
with Ctsm and Cchla (r > 0.7 (p < 0.01)), B6/3, and B6/5 were selected as the characteristic band
combinations, which provided a theoretical basis for the role of removing chlorophyll-a
and CDOM in the inverse study of Ctsm.

(3) The two multiple linear regression models established with B6/3 and B6/5 as the
combination of the characteristic bands fit well, with R2 of 0.977 and 0.991, respectively;
combining the relationship between the concentration of a single component and its contri-
bution to the remote sensing reflectance, the two multiple regression models were joined
to form a complete closed iterative inversion model. And applying the iterative inversion
model to the modeling data and the image data, the R2 was 0.97 and 0.87, the RMSE was
4.89 g/m3 and 3.92 g/m3, and the MAPE was 11.48% and 8.13%, respectively, with strong
consistency between the retrieved Ctsm and the measured Ctsm.

(4) Compared with the iterative inversion model based on B6 and B6/5, the iterative
inversion model based on B6/2 and B6/5, the iterative inversion model based on B6/4 and
B6/5, and other published models, the iterative inversion model established in this paper
based on B6/3 and B6/5 had higher accuracy and was more suitable for the SDGSAT-1 MII
images of Lake Taihu, and Ctsm of Lake Taihu in 2022–2023 remote sensing monitoring
results showed that there were differences in the spatial distribution of Ctsm, with low
concentrations mainly concentrated in the center region of the lake, and lower Ctsm in
autumn than in the other three seasons.

Overall, the iterative inversion model developed for SDGSAT-1 MII in this study had
good applicability in the Lake Taihu area. Due to the limited number of measured Ctsm
synchronized with the time of SDGSAT-1 satellite transit over Lake Taihu, the collection
time of field sample points failed to cover four seasons, and it is a challenge to fully validate
the model using multiple images. In future research, we endeavor to collect more measured
Ctsm synchronized with the SDGSAT-1 satellite transit time of Lake Taihu in different
seasons to explore and validate the applicability of the inversion model on SDGSAT-1
satellite more comprehensively, and to provide a theoretical basis and technical support for
remote sensing monitoring and improvement of the water environment in Lake Taihu and
other inland water.
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