
Citation: Zhang, S.; Wang, T.; Liu, C.;

Ren, B. A Fast IAA–Based SR–STAP

Method for Airborne Radar. Remote

Sens. 2024, 16, 1388. https://doi.org/

10.3390/rs16081388

Academic Editor: Michael Obland

Received: 5 February 2024

Revised: 11 April 2024

Accepted: 13 April 2024

Published: 14 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

A Fast IAA–Based SR–STAP Method for Airborne Radar
Shuguang Zhang, Tong Wang *, Cheng Liu and Bing Ren

National Key Laboratory of Radar Signal Processing, Xidian University, Xi’an 710071, China;
1702110226@stu.xidian.edu.cn (S.Z.); 18021210035@stu.xidian.edu.cn (C.L.); 18021110245@stu.xidian.edu.cn (B.R.)
* Correspondence: twang@mail.xidian.edu.cn

Abstract: Space–time adaptive processing (STAP) is an effective technology in clutter suppression
and moving target detection for airborne radar. When working in the heterogeneous environment,
the number of training samples that satisfy independent and identically distributed (IID) conditions
is insufficient, making it difficult to ensure the estimation accuracy of the clutter plus noise covariance
matrix for traditional STAP methods. Sparse recovery–based STAP (SR–STAP) methods have received
widespread attention in the past few years. The accurate estimation of the clutter plus noise covariance
matrix can be achieved using only a few training samples. The iterative adaptive approach (IAA)
can quickly and accurately estimate the power spectrum, but applying this method directly to the
STAP method cannot produce good performance. In this paper, a fast IAA–based SR–STAP method
is proposed. Based on the weighted l1 problem, the IAA spectrum is used as a weighted term to
obtain a good approximation. In order to obtain an analytical solution, we use the weighted l2 norm
to approximate the weighted l1 norm without loss of performance. Compared with the IAA–STAP
method, the proposed method is more robust to errors. Moreover, the proposed method has a fast
computational speed. The effectiveness of the proposed method is demonstrated by simulations.

Keywords: space–time adaptive processing; airborne radar; iterative adaptive approach; sparse recovery

1. Introduction

Space–time adaptive processing (STAP) [1,2] has been widely used in airborne early
warning (AEW) radar since the 1970s and it is a key technology for clutter suppression.
After nearly 40 years of development, the application of the STAP method has also ex-
panded to many aeras, such as spaceborne battlefield surveillance radar [3,4] and radar
imaging [5,6]. Detecting a weak and slow–moving target that is submerged by ground
clutter is a challenging problem, and the STAP method plays an important role in sup-
pressing strong clutter. The core of the STAP method lies in the accurate estimation of the
clutter plus noise covariance matrix (CNCM), but accurately estimating the CNCM requires
a large number of training samples that satisfy independent and identically distributed
(IID) conditions. Unfortunately, it is very difficult to obtain sufficient training samples in
a nonhomogeneous environment. Therefore, the estimation accuracy of the CNCM cannot
be guaranteed and the performance of the traditional STAP method is severely degraded.

To solve this problem, researchers have made improvements in many ways, and sev-
eral methods have been proposed. Airborne radar systems typically have a high degree of
freedom, and reducing the dimensionality can effectively reduce the demand for training
samples. Many reduced–dimension and reduced–rank methods [7–10] have been proposed.
The reduced–dimension methods greatly reduce the requirements for IID training sam-
ples while ensuring the clutter suppression performance. However, these methods still
need many training samples, especially for systems with a large DOF. The reduced–rank
methods have the advantage of small calculation but require the correct selection of the
clutter rank. If its value is too large or too small, it seriously affects the performance. Both
reduced–dimension methods and reduced–rank methods cannot reduce the dimensionality
without limitations and still need to ensure the clutter suppression performance. Thus, the
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problem of insufficient training samples remains serious. The direct data domain (DDD)
method [11,12] further reduces the requirements for training samples. This method only
utilizes the cell under test (CUT) itself to achieve good performance in clutter suppression,
but aperture loss is also inevitable. The knowledge–aided (KA) method [13,14] has also
been proposed. The KA method fully utilizes the available prior information to achieve
good performance in clutter suppression, but the performance of these methods is affected
by the accuracy of the prior information. When there is a deviation between the prior
information and true information, the performance of these methods rapidly decreases.
Furthermore, accurate information is difficult to obtain in practice.

Over the past twenty years, researchers have combined the sparse recovery framework
with the STAP framework, and many SR–STAP methods have been proposed. Through
utilizing the sparsity of clutter in the angle–Doppler domain, these SR–STAP methods can
achieve the accurate estimation of the CNCM with only a few training samples. How-
ever, the original l0 norm problem is NP–hard; it cannot be solved directly. Such prob-
lems are solved by seeking approximations. Researchers have proposed many greedy
methods [15,16] to solve such problems, and the orthogonal matching pursuit method
(OMP) [16] is one example. This method is widely used because of its easy implementation
and high solving efficiency. However, it cannot guarantee that the solution is the global
optimal solution, which affects the sparse recovery performance. Another way to solve the
l0 norm problem is to replace the l0 norm penalty term with the l1 norm penalty term [17,18].
Although the l1 norm is the tightest convex hull of the l0 norm, the l1 norm penalty term
takes into account the magnitude of the non–zero entries of the sparse coefficient, which
may result in an “over–penalty” and exaggerate the role of large non–zero elements of the
sparse coefficient. Thus, it will reduce the estimation accuracy of the CNCM. The weighted
l1 norm method [19] can overcome this problem. There are also some SR–STAP methods
based on the sparse Bayesian learning (SBL) framework [20–22], which can also achieve
good clutter suppression performance, but these methods require a huge amount of compu-
tation, which limits the application of these methods. Assigning other sparse priors such as
the generalized double Pareto (GDP) prior to the SBL method can reduce the computational
time compared with the SBL method [23,24].

In this paper, a fast IAA–based SR–STAP method for airborne radar is proposed, which
can achieve a balance between the clutter suppression performance and computing speed.
We design a weighted l1 norm penalty term instead of using the l1 norm penalty term
directly, making full use of the IAA spectrum and using it as the weighting term. Since
there is no analytical solution for the weighted l1 norm, we replace the weighted l1 norm
with the weighted l2 norm, without affecting the performance. The main contributions are
as follows.

(1) We combine the IAA spectrum method with the weighted l1 norm method, and a fast
IAA–based SR–STAP method is proposed. Compared with the STAP method, which
directly uses the IAA method, the proposed method can estimate the CNCM more
accurately. Compared with the weighted l1 norm method, the proposed method has
an analytical solution.

(2) The proposed method has fast convergence performance, a shorter running time, and
good clutter suppression performance.

(3) Through a comparison with other STAP methods, simulation results and a perfor-
mance analysis are given to demonstrate the effectiveness of the proposed method.

The work is organized as follows. Section 2 introduces the data model and gives the
details of the proposed method. Section 3 provides the simulation results and performance
analyses of the proposed method. Conclusions are drawn in Section 4.

Notations: [·]−1, [·]T , and [·]H represent the matrix inverse, transpose, and conjugate
transpose, respectively. ∥·∥0, ∥·∥1, and ∥·∥2 represent the l0 norm, l1 norm, and l2 norm,
respectively. The vector is represented in boldface lowercase and the matrix is represented
in boldface uppercase. ⊙ and ⊗ denote the Hadamard product and Kronecker product,
respectively. IN is an N × N identity matrix.



Remote Sens. 2024, 16, 1388 3 of 19

The acronyms employed throughout the main text are shown in Table 1.

Table 1. Acronyms and definitions.

Acronyms Full Name

AEW Airborne early warning
CNCM Clutter plus noise covariance matrix

CUT Cell under test
DDD Direct data domain
IAA Iterative adaptive approach
IID Independent and identically distributed
KA Knowledge–aided
SBL Sparse Bayesian learning

STAP Space–time adaptive processing

2. Signal Model and Problem Formulation
2.1. Signal Model

This paper considers an airborne radar system equipped with a uniform linear
array (ULA) of N elements and the element spacing between two elements is set to
a half–wavelength. The platform geometry of the airborne radar that is used in this paper
is shown in Figure 1.
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This radar system transmits M pulses at a constant pulse repetition frequency (PRF)
fr. The height of the radar platform is H. The azimuth and elevation angles are denoted as
φ and θ, respectively. The velocity of the airborne radar is v. By uniformly dividing the
distance ring into Nc patches and neglecting the effect of range ambiguity, we obtain the
following signal model:

x = c + n

=
Nc
∑

n=1
ans( fd,n, fs,n) + n

=
Nc
∑

n=1
an(s( fd,n)⊗ s( fs,n)) + n

(1)

where c and n denote the clutter component and white Gaussian noise component, re-
spectively. an and sn are the complex amplitude and the space–time steering vector of the
n − th clutter patch, respectively. s( fd,n) and s( fs,n) are the temporal steering vector and
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spatial steering vector corresponding to the n − th clutter patch, respectively, which can be
expressed as follows:

s( fd,n) = [1, exp(j2π fd,n), · · · , exp(j2π(M − 1) fd,n)]
T

s( fs,n) = [1, exp(j2π fs,n), · · · , exp(j2π(N − 1) fs,n)]
T (2)

where fd,n and fs,n denote the normalized Doppler frequency and normalized spatial
frequency of the n − th clutter patch, respectively, which can be expressed as follows:

fd,n = 2v cos θn cos φn/(λ fr)
fs,n = d cos θn cos φn/λ

(3)

Assuming that the clutter component and noise component are mutually uncorrelated,
the clutter plus noise covariance matrix (CNCM) can be written as

R = E[xxH] =Rc + Rn (4)

where E[·] stands for the expectation operation. Rc and Rn denote the clutter covariance
matrix and noise covariance matrix, respectively, which have the following form:

Rc = E[xcxH
c ] =

Nc
∑

n=1
|an|2s( fd,n, fs,n)sH( fd,n, fs,n)

Rn = E[nnH] =σ2IMN

(5)

where σ2 is the noise power. INM is the MN × MN identity matrix.
In practice, the ideal CNCM is not easy to obtain directly. Taking the adjacent samples

of the cell under test as the training samples and using the maximum likelihood method, we
can estimate the correct CNCM using Formula (6), and the accuracy of CNCM estimation
is related to the number of training samples. The number of training samples should be
greater than twice the system’s degrees of freedom according to the RMB criterion.

^
R =

1
L

L

∑
l=1

xlx
H
l (6)

where L denotes number of training samples.
Under the criterion of the maximum SINR, the optimal STAP weight vector can be

obtained by solving the following problem: min
w

wH
^
Rw

s.t. wHs( fd,t, fs,t) = 1
(7)

Solving the problem in Formula (7), the optimal STAP weight vector of the filter is
given by

w =

^
R
−1

s( fd,t, fs,t)

sH( fd,t, fs,t)
^
R
−1

s( fd,t, fs,t)

(8)

where s( fd,t, fs,t) is the space–time steering vector of the target.
Combining the sparse recovery techniques with STAP to make full use of the sparse

characteristics of clutter data, the signal model can be represented as

x = Ba + n (9)

where B = [b1, . . . , bK] ∈ CMN×K is a dictionary matrix, which can be obtained by uni-
formly dividing the angle–angular two–dimensional plane into K = Ns Md grid points.
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Ns denotes the number of points in the spatial domain and Md denotes the number of
points in the temporal domain. Usually, Ns is set to five times the number of array elements
and Md is set to five times the number of pulses. Each point corresponds to a space–time
steering vector bk and we call it an atom. a ∈ CK×1 is a sparse coefficient and most ele-
ments in a are zero, which correspond to signal components. n ∈ CMN×1 is the zero–mean
Gaussian noise vector.

From the theory of sparse recovery, if we wish to solve the problem of representing x, we
need to estimate a by solving the following objective function, which can be expressed as

min
a

∥a∥0

s.t. ∥x − Ba∥2
2 ≤ ε

(10)

where ε denotes the fitting error tolerance.
However, solving this problem is difficult because the original l0 norm problem is

NP–hard. We need to replace the l0 norm penalty term with the l1 norm penalty term to
obtain the solution:

min
a

∥a∥1

s.t. ∥x − Ba∥2
2 ≤ ε

(11)

In order to obtain the solution of sparse coefficient a, we must solve the objective
function Formula (11) is equivalent to solving an underdetermined linear equation, which
has the following form

a = argmin
a

∥x − Ba∥2
2 + λ∥a∥1 (12)

where λ denotes the regularization parameter.

2.2. Review of IAA

The classical IAA method aims to solve the weighted least squares problem, which is
given by

min
vk

[xl − vkbk]
HR−1

k [xl − vkbk] (13)

where Rk = R − v2
kbkbH

k represents the CNCM that does not contain the bk component.
Paper [25] extends the conventional IAA algorithm to the MMV case, and the MMV case of
the signal can be expressed as

X = BA + N (14)

where X = [x1, . . . , xL] ∈ CMN×L is the clutter data containing L training samples. The
sparse coefficient matrix is denoted by A = [a1, . . . , aL] ∈ CK×L. N = [n1, . . . , nL] ∈
CMN×L is the zero–mean Gaussian noise matrix.

The joint likelihood function with respect to the clutter data matrix X can be expressed as

p(X|R) =
1

πNML|R|L
e−Tr(XHR−1X) (15)

The maximum likelihood estimation (MLE) of the v2
k is equivalent to maximizing

the likelihood function with respect to the clutter data matrix X. In order to simplify
the calculations, the joint likelihood function with respect to the clutter data matrix X
will be written in the corresponding logarithmic form; then, the original problem will be
transformed into the following form:

v̂MLE
m,n = argmax(p(X|R))

= argmin(− ln p(X|R))p(X|R)

= argmin(L ln
∣∣∣R∣∣∣+Tr(XHR−1X))

(16)
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where |R| and R−1 have the following form:

|R| =
∣∣∣Rk + v2

kbkbH
k

∣∣∣
=|Rk|(1+ v2

kbH
k R−1

k bk

) (17)

R−1 = R−1
k −

v2
kR−1

k bkbH
k R−1

k

1+v2
kbH

k R−1
k bk

(18)

Substituting (17) and (18) into (16), we have

v̂MLE
k = argmin(L ln

∣∣∣Rk|(1+ v2
kbH

k R−1
k bk

)
+Tr(XHR−1

k X − XH v2
kR−1

k bkbH
k R−1

k
1+v2

kbH
k R−1

k bk
X))

= argmin(L ln(1+v2
kbH

k R−1
k bk

)
+L ln

∣∣∣Rk

∣∣∣+Tr(XHR−1
k X)

−Tr(XHv2
kbH

k R−1
k bkX))

(19)

The derivative of Equation (19) with respect to v2
k is as follows:

v̂MLE
k =

bH
k R−1

k (
^
R

MLE

− Rk)R
−1
k bk

(bH
k R−1

k bk)
2 (20)

where
^
R

MLE

= 1
L XXH represents the CNCM estimated from the IID training samples.

Applying the matrix inversion lemma to obtain R−1
k and substituting it into Equation (20),

we have
v̂MLE

k = v̂IAA
k + vk − v̂CAPON

k

=
bH

k R−1
^
R

MLE
R−1bk

(bH
k R−1bk)

2 + vk − 1
bH

k R−1bk

(21)

From Equation (21), we know that if R is known, then vk ≈ v̂CAPON
k . Thus, we can

obtain v̂MLE
k ≈ v̂IAA

k . It can be seen from Equation (21) that R is required in the calculation
of the v̂IAA

k , so the solving process needs to be carried out in an iterative way.

2.3. Proposed Method

In this subsection, a fast IAA–based SR–STAP method for airborne radar is presented.
To begin, we extend the objective function in Equation (11) to the MMV case, and it is

equivalent to the following objective function:

A* = argmin
A

∥X − BA∥2
F + λ∥A∥2,0 (22)

where ∥·∥2,0 denotes the l2,0 norm and it is calculated in two steps: first, we calculate the l2
norm of each row of matrix A to form a new vector; second, we calculate the l0 norm of
each row of the new vector.

In order to solve the objective function (22), we define a new variable as follows:

d = [d1, . . . , dK]
T ∈ CK×1

dk =

√
1
L

L
∑

l=1

∣∣ak,l
∣∣2 (23)
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Then, Equation (22) can be written in the following form:

A* = argmin
A

∥X − BA∥2
F + λ∥d∥0 (24)

As mentioned above, the l0 norm problem is an NP–hard problem and the existing
methods cannot directly solve this problem. Thus, the l0 norm problem is relaxed to the l1
norm problem, which can be written as

A* = argmin
A

∥X − BA∥2
F + λ∥d∥1 (25)

However, in clutter signal recovery, the l1 norm problem may not be a good approx-
imation of the l0 norm problem, because it also takes into account the amplitude of the
sparse coefficient, which may ignore the role of smaller non–zero values of the sparse
coefficient. This may lead to inaccurate results. According to the paper [19], we know that
if we can find the upper bound of d = [d1, . . . , dK]

T ∈ CK×1, then Equation (24) can be
written as

A* = argmin
A

∥X − BA∥2
F + λ1Tz

s.t. dk ≤ ukzk, zk ∈ {0, 1}, k = 1, · · · , K
(26)

where uk is the upper bound of dk.
Further, we relax the constraint of Equation (26), and we can obtain

A* = argmin
A

∥X − BA∥2
F + λ1Tz

s.t. dk ≤ ukzk, 0 ≤ zk ≤ 1, k = 1, · · · , K
(27)

Setting hk = 1/uk, Equation (27) can be written as

A* = argmin
A

∥X − BA∥2
F + λ

K

∑
k=1

hkdk (28)

The objective function in Equation (28) is actually the standard form of the weighted
l1 norm directly derived from the canonical l0 norm, which is better than the traditional l1
norm [15].

From Equation (28), we know that hk is in fact the weight of the sparse coefficients. We
need to choose the appropriate weights to meet not only the performance requirements but
also the constraints mentioned above. Moreover, the setting of the weights is preferably
related to the clutter environment. Based on this, we set the value of the weights to the IAA
spectrum described above, which is

hk =

√√√√√ (bH
k R−1bk)

2

bH
k R−1

^
R

MLE

R−1bk

=

√
1

v̂IAA
k

(29)

where
^
R

MLE

is the CNCM estimated from the training samples, which is shown in (30).
R is the CNCM that is estimated using dictionary matrix d2

k and it is shown in (31).

^
R

MLE

=
1
L

XXH (30)

R =
1
L

L

∑
l=1

K

∑
k=1

(∣∣ak,l
∣∣2)bkbH

k + σ2I (31)
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According to the previous definition of dk, is the average clutter power of the k − th
atom and v̂IAA

k represents the clutter plus noise power of the k − th atom. Such a setting
satisfies the condition dk ≤ ukzk.

After choosing the appropriate weights, Equation (28) still presents a problem: solving
the problem of the weighted l1 norm requires expensive computation and it does not have
an analytic solution. In practice, the clutter power is much greater than the noise power.
The value of dkhk is approximately equal to (dkhk)

2, which means that we use the weighted
l2 norm instead of the weighted l1 norm. The advantage of this transformation is obvious:
the following objective function has an analytic solution.

A* = argmin
A

∥X − BA∥2
F + λ

K

∑
k=1

h2
kb2

k (32)

The analytic solution of the objective function in Equation (32) is

A = WBH
(

λI + BWBH
)−1

X (33)

W =

(1/h1)
2

. . .
(1/hK)

2

 (34)

As we can see from Equations (29), (33), and (34), calculating A requires the informa-
tion of hk = 1, k = 1, . . . , K and calculating hk = 1, k = 1, . . . , K requires the information of
A. Therefore, the proposed method must work in an iterative way.

Moreover, we need to estimate noise power σ2 and choose the proper value of reg-
ularization parameter λ. According to paper [26], the value of λ can be set equal to σ2.
The noise is updated by

σ2 =
∥X − BA∥2

F
MNL

(35)

The pseudo–code for the proposed method is given in Table 2.

Table 2. Pseudocode for Proposed method.

Step 1 Input data X and dictionary matrix B

Step 2 Initialize σ2 = 1 and hk = 1, k = 1, . . . , K
Step 3 Calculate hk = 1, k = 1, . . . , K using (29)
Step 4 Calculate W using (34)
Step 5 Calculate A using (33)
Step 6 Calculate σ2 using (35)
Step7 Repeat step 3, step 4, step 5, and step 6 until a stopping criterion is satisfied

Step 8 Calculate CNCM R = 1
L

L
∑

l=1

K
∑

k=1

(∣∣ak,l
∣∣2)bkbH

k + σ2I

Step 9 Compute STAP weight w

Next, the computational complexity of the method proposed in this section is ex-
plained. Computational complexity is measured by the number of complex multipli-
cations in a single iteration. The calculation amount of the method proposed in this
section mainly comes from the calculation of each item in the sparse coefficient ma-
trix and the weighted coefficient, which correspond to Formulas (33) and (34), respec-
tively. In an iterative process, the computational complexity of the sparse coefficient
matrix is o

(
(MN)3 + 2MNK2 + 2K(MN)2 + MNKL

)
. The computational complexity of

the weighted coefficient is o
(

4(MN)2 + 2MN
)

.
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3. Performance Assessment

In this section, simulation results will be given to show the effectiveness of the pro-
posed method. This paper considers the uniform linear array and the clutter simulation is
based on Ward’s clutter model. We choose the 600th range gate as CUT and six IID training
samples are chosen. The dictionary matrix B is obtained by dividing the spatial domain
and Doppler domain evenly into 4N and 4M parts, respectively. The main parameters of
a side–looking airborne radar system are listed in Table 3.

Table 3. Simulation parameters of the radar system.

Parameter Value

Number of elements in array 8
Number of pulses per CPI 8
Pulse repetition frequency 2000 Hz
Receiver bandwidth 2.5 MHz
Platform height 9000 m
Wavelength 0.3 m
Platform velocity 150 m/s
Clutter–to noise ratio 40 dB
Operation frequency 1 Ghz

In this section, the performance of the proposed method is measured with the met-
rics of the improvement factor (IF), the CAPON spectrum, the average SINR loss versus
the number of training samples and the number of iterations, the target detection perfor-
mance, and the STAP output power against the range cell. At the end of this section, we
will also give the average running time of the proposed method and the method used
for comparison.

First, we briefly introduce the concepts of the improvement factor and SINR loss. The
improvement factor is defined as the ratio of the output SINR to the input SINR and its
value reflects the improvement in the detection performance of the airborne radar. The IF
is defined as follows:

IF = (CNR + 1)σ2

∣∣wHs
∣∣

wHRw
(36)

The SINR loss has a linear relationship with the improvement factor and both of them
can reflect the clutter suppression performance of the STAP method. The SINR loss is
defined as follows:

SINRloss =
σ2

MN

∣∣wHs
∣∣

wHRw
(37)

The proposed method is compared with the loaded sample matrix inversion (LSMI)
method, the multiple orthogonal matching pursuit (M–OMP) method, the multiple sparse
Bayesian learning with generalized double Pareto (GDP) prior (M–GDP) method, and
the SR–STAP algorithm with the log summation penalty function (M–LOG). It should be
noted that the difference between the M–GDP method and the M–SBL method lies in the
difference in the sparse priors. The whole experiment is divided into two subsections:
one subsection corresponds to the ideal case and the other subsection corresponds to the
non–ideal case. For the non–ideal case, the amplitude error (standard deviation 0.03) and
phase random error (standard deviation 2◦) are added.

3.1. Ideal Case

In the first experiment, we plot the CAPON spectra of different STAP methods, as in
Figure 2a–f, to illustrate the performance. From Figure 2a–f, we can see that the CAPON
spectra plotted by M–LOG, M–GDP, and the proposed method are closest to the ideal
CAPON spectrum, either in power or position. M–OMP can barely recover the correct
CAPON spectrum and the performance of M–OMP is not acceptable. The M–OMP method
is a greedy algorithm. Although the operation speed is fast, it is easy to regard the local
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optimal solution as the global optimal solution, so the estimated CAPON spectrum is not
accurate. Due to the insufficient number of training samples, the LSMI method cannot
estimate the correct CAPON spectrum.
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Figure 2. CAPON spectra of different methods. (a) The ideal CAPON spectrum; (b) the CAPON
spectrum of LSMI; (c) the CAPON spectrum of M–OMP; (d) the CAPON spectrum of M–GDP;
(e) the CAPON spectrum of M–LOG; (f) the CAPON spectrum of the proposed method.

In the second experiment, we plot the IF versus normalized Doppler frequency curves,
as in Figure 3. Similar to the previous experimental conclusions, the M–LOG method, the
M–GDP method, and the proposed method all can achieve near–optimal performance,
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while the M–OMP method and LSMI method achieve poor performance in both the main
lobe and sidelobe regions.
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In the third experiment, we plot the average SINR loss against the number of training
samples. From the experimental results shown in Figure 4, it can be seen that under
the ideal conditions, the proposed method in this paper has the best performance with
only three training samples. When the number of training samples is less than three, the
proposed method also has the minimum average SINR loss. The M–GDP method and
the M–LOG method also can achieve good performance with three training samples, but
the performance of these methods is not as high as that of the proposed method when
the number of training samples is less than three. The average SINR loss of the M–OMP
method and the LSMI method is poorer than that of the proposed method, the convergence
speed is slow, and the average SINR loss is quite large.
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Figure 4. The average SINR loss against the number of training samples.

In the fourth experiment, we evaluate the target detection performance of the dif-
ferent methods. We plot the probability of detection (PD) versus signal–to–noise (SNR)
curves to show the target detection performance. Although there are many excellent
detectors [27,28], the focus of our simulation is to observe the relative relationships be-
tween different methods, and there are no strict restrictions on the choice of detectors.
In this section of the simulation experiment, the cell average constant false alarm rate
(CA–CFAR) detector is adopted, and the probability false alarm rate is set as 10−4. We add
targets from the 550th range gate to the 650th range gate, and the targets are located in the
77th–89th Doppler bins. As shown in Figure 5, except for the M–OMP method, all methods
achieve better target detection performance.
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In the last experiment in this subsection, to further illustrate the target detection
performance, we compare the output power against the range gates for different methods.
We set the SNR as 10 dB to demonstrate the performance. Targets are added in range
gate 574 and two cases with different velocities are considered, where the normalized
Doppler frequency is set to 0.1 for slow–moving targets and 0.3 for fast–moving targets.
The experimental results are normalized for ease of presentation. It can be seen from
Figure 6 that under the ideal conditions, the proposed method, the M–GDP method, and
the M–LOG method can obtain better output power at the position of the target range gate.
The M–OMP method has poor performance and it cannot form the output power at the
position of the target range gate, which means that it is difficult to detect the target.
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Figure 6. STAP output power against the range gate for different methods. (a) Slow–moving target
with SNR of 10 dB; (b) fast–moving target with SNR of 10 dB.

3.2. Non–Ideal Case

In the first experiment, we plot the CAPON spectra of the different STAP methods, as
in Figure 7a–f, to illustrate the performance. Due to the presence of the amplitude error and
phase error, the performance of all methods degrades to some extent. The LSMI method
still faces the problem of insufficient training samples and it cannot recover the correct
CAPON spectrum. The CAPON spectra of the M–OMP method and M–LOG method
are spread out; the situation for the M–LOG method is more serious because this method
is more sensitive to the error. M–GDP and the proposed method are closest to the ideal
CAPON spectrum.
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Figure 7. CAPON spectra of different methods. (a) The ideal CAPON spectrum; (b) the CAPON
spectrum of LSMI; (c) the CAPON spectrum of M–OMP; (d) the CAPON spectrum of M–GDP;
(e) the CAPON spectrum of M–LOG; (f) the CAPON spectrum of the proposed method.

In the second experiment, we plot the IF versus normalized Doppler frequency curves,
as in Figure 8. It can be clearly seen that the M–GDP method and the proposed method
can achieve good performance compared with the other methods. The M–LOG method is
slightly sensitive to the error and its performance is degraded severely in the main lobe
region. The performance of the M–OMP method and LSMI method is not acceptable.
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In the third experiment, we plot the average SINR loss against the number of training
samples. From the experimental results shown in Figure 9, it can be seen that due to the
presence of errors, the average SINR loss is increased for all methods, and the proposed
method in this paper still has the best performance. When the number of training samples
is more than three, the M–GDP method and M–LOG method can achieve the same perfor-
mance as the proposed method. Otherwise, the performance of the proposed method is
better. The average SINR loss of the M–OMP method and the LSMI method increases.
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In the fourth experiment, we evaluate the target detection performance of the different
methods. We plot the probability of detection (PD) versus signal–to–noise (SNR) curves
to show the target detection performance. The other settings are consistent with the
corresponding experiments in the previous subsection. As shown in Figure 10, we can see
that our proposed method is slightly better than the M–GDP method. The target detection
performance of M–LOG is affected by the error, which is mainly reflected in the poor
detection ability for slow–moving targets.

In the last experiment in this subsection, to further illustrate the target detection
performance, we compare the output power against the range gate for the different methods.
Targets are added in range gate 574 and two cases with different velocities are considered,
where the normalized Doppler frequency is set to 0.1 for slow–moving targets and 0.3 for
fast–moving targets. The SNR of the target is set to 10 dB. It can be seen from Figure 11
that the proposed method can obtain better output power at the position of the target
range gate. When dealing with slow–moving targets, the M–LOG method cannot form
the highest output power at the position of the target range gate, which means that this
method is not successful in detecting the slow–moving target. The M–OMP method has
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poor performance too. When dealing with fast–moving targets, all methods except the
M–OMP method can form the output power at the position of the target range gate.
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Figure 11. STAP output power against the range gate for different methods. (a) Slow–moving target
with SNR of 10 dB; (b) fast–moving target with SNR of 10 dB.

We illustrate the convergence performance of the different methods by plotting the
average SINR loss against the number of iterations. Since only the M–GDP method and the
M–LOG method are related to the number of iterations among the comparison methods
used in this paper, the experimental results only refer to these methods. As can be seen
from Figure 12a, the method proposed in this paper has an extremely high convergence
speed, which is better than that of the other two methods in ideal conditions. In non–ideal
conditions, the proposed method still has a fast convergence speed and the minimum
average SINR loss.

At the end of this section, we compare the average running times of the different
methods and the results are as follows. One hundred independent Monte Carlo trials are
performed to obtain the average running time. The simulation platform is a notebook
computer and the processor is an AMD Ryzen7 5800H with 8 cores and 16 threads. The
MATLAB version is 2021B. It is clear from Table 4 that the proposed method in this paper
runs significantly faster than the M–GDP method. The M–OMP method and M–LOG
method run slightly faster than our proposed method, but the performance of these two
methods is far weaker than that of the method proposed in this paper.
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Table 4. The average running time.

Algorithm Average Running Time (s)

M–OMP 0.03
M–GDP 7.26
M–LOG 0.45

Proposed Method 0.22

At the end of the simulation experiment, we also give the CAPON spectrum estimated
by directly applying the IAA method to the STAP method under ideal conditions and error
conditions. From Figure 13, we can see that the CAPON spectrum of this method is not
acceptable under these conditions. The results are all far from the ideal CAPON spectrum,
and it can be easily seen that the existence of errors causes the large spread of the spectrum.
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3.3. Measured Data

In this section, we evaluate the performance of the proposed method via a public data
set, the Mountain–Top data set (t38pre01v1CPI6). These data were measured by the Lincoln
Laboratory, and the numbers of array elements and pulses of the radar system are 14 and
16, respectively. This data set contains 403 range gates and the target is at the 147th range
gate. Using all 403 range gates, the clutter CAPON spectrum can be estimated, which is
shown in Figure 14.
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Figure 14. Estimated clutter CAPON spectrum with all 403 samples.

The STAP output power against the 130th to 165th range gates is depicted in Figure 15.
In this experiment, the results are normalized. Due to the poor performance of the M–OMP
method, which has been verified in the previous simulation experiments, the experimental
results of this method are not shown. It can be seen from the figure that the proposed
method, the M–GDP method, and the M–LOG method can all obtain better output power
at the range gate where the target is located.
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Figure 15. STAP output power against the range gate for different methods.

To further illustrate the performance of the proposed method, we present the average
background noise power of the different methods in Table 5. The average background noise
power is calculated from the output power of the remaining range gates after excluding
the data of the range gate where the target is located and the data of the left and right
protection range gates. It can be seen from the table that the method proposed in this paper
is slightly better than the comparison methods.

Table 5. Average background noise power.

Algorithm Power (dB)

Proposed Method −12.0662
M–GDP −10.5169
M–LOG −10.1075

4. Discussion

We present the performance of the proposed method in various experiments and thus
we have a preliminary understanding of this method. In the ideal case, the performance
of the proposed method is close to that of the M–GDP method and M–LOG method, and
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both of them can achieve excellent clutter suppression performance. In the non–ideal
case, the performance of the M–LOG method is degraded. Only our proposed method
and the M–GDP method can achieve better clutter suppression in this case. It is worth
noting that the proposed method can achieve the same performance as the M–GDP method
in a shorter running time, which is also the greatest advantage of the proposed method
over the M–GDP method. According to previous research [24], the running time of the
M–GDP method is much shorter than that of the M–SBL method. Meanwhile, the proposed
method has a high convergence rate compared with the M–GDP method. From the results
of the measured data, it can be seen that the proposed method also shows good clutter
suppression performance.

5. Conclusions

In this paper, a fast IAA–based SR–STAP method for airborne radar was proposed.
The proposed method combined the IAA method and weighted l1 norm method. Com-
pared with the STAP method, which directly uses the IAA method, the proposed method
could estimate the CNCM more accurately. Compared with the weighted l1 norm method,
the proposed method had an analytical solution and could estimate the CNCM quickly and
accurately. At the end of this paper, simulation results and a performance analysis were
given to show the effectiveness of the proposed method.

Although the proposed method can estimate the clutter plus noise covariance matrix
quickly and accurately, there are still many challenges to be addressed. In future research,
it is necessary to propose a method to alleviate the influence of the presence of amplitude
and phase errors. Furthermore, grid mismatch will affect the performance of the STAP
method, and we also need to improve the performance of the method in such cases.
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