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Abstract: This work explores the possibility of automating the aerial survey of bridges to generate
high-resolution images necessary for digital damage inspection. High-quality unmanned aerial vehi-
cle (UAV) based 3D reconstruction of bridges is an important step towards autonomous infrastructure
inspection. However, the calculation of optimal camera poses remains challenging due to the complex
structure of bridges and is therefore often conducted manually. This process is time-consuming and
can lead to quality losses. Research in this field to automate this process is yet sparse and often
requires high informative models of the bridge as the base for calculations, which are not given widely.
Therefore, this paper proposes an automated camera pose calculation method solely based on an
easily accessible polygon mesh of the bridge. For safe operation, point cloud data of the environment
are used for automated ground detection and obstacle avoidance including vegetation. First, an
initial set of camera poses is generated based on a voxelized mesh created in respect to the quality
requirements for 3D reconstruction using defined camera specification. Thereafter, camera poses not
fulfilling safety distances are removed and specific camera poses are added to increase local coverage
quality. Evaluations of three bridges show that for diverse bridge types, near-complete coverage
was achieved. Due to the low computational effort of the voxel approach, the runtime was kept to a
minimum, even for large bridges. The subsequent algorithm is able to find alternative camera poses
even in areas where the optimal pose could not be placed due to obstacles.

Keywords: unmanned aerial vehicles; flight planning; 3D reconstruction; photogrammetry; structural
health monitoring

1. Introduction

Bridges constitute an indispensable component of infrastructure, mandating periodic
safety assessments. Traditional approaches rely on manual bridge inspections, necessitating
a substantial labor force and consequently incurring significant costs. In recent years,
research related to the use of unmanned aerial vehicles (UAVs) equipped with cameras has
steadily increased. As per the work of Zhang et al. [1], the automated inspection process
can be delineated into three phases: data acquisition via camera-equipped UAVs, data
processing through automated damage detection software, and bridge condition assessment
based on the determined damages. The primary emphasis of these investigations has
centered on the second phase, automated damage detection, primarily leveraging deep
learning methodologies.

To ensure the optimal performance of the damage detection methods, images captured
from the bridge must conform to various quality requirements. These requirements, more
detailed and specified later in this work, include considerations related to resolution
and the angle of view on the surface, as well as the need for sufficient overlap with
adjacent images to facilitate flawless composition into a comprehensive image or 3D

Remote Sens. 2024, 16, 1393. https://doi.org/10.3390/rs16081393 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16081393
https://doi.org/10.3390/rs16081393
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0009-0001-1498-3517
https://orcid.org/0009-0003-4721-0961
https://orcid.org/0000-0002-3196-3876
https://doi.org/10.3390/rs16081393
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16081393?type=check_update&version=1


Remote Sens. 2024, 16, 1393 2 of 19

model of the bridge. In conventional manual flights, this objective is achieved through the
acquisition of an extensive quantity of images, yet this method often leads to unnecessary
redundancies, resulting in prolonged computational times for the 3D reconstruction of the
bridge, increased on-site time for inspections, and even so, not consistently ensure optimal
coverage. Our paper aims to develop a methodology that ensures thorough coverage of the
bridge surface through the captured images. First, a method was developed to determine
camera poses time efficient even for larger bridges, and therefore, numerous viewpoints.
Additionally, an algorithm was developed which adds new camera poses afterwards in
insufficiently covered areas to ensure a full coverage of the bridge.

Looking into prior research on viewpoint planning methods for the 3D reconstruction
of large-scale objects, in general, a detailed overview is provided by Maboudi et al. [2].
Considering the specific structure of bridges and the necessity of capturing the object
from below, a more specialized research field can be delineated. Focusing especially on
viewpoint planning for bridges, research is relatively scarce, with only Shang et al. [3]
providing a comprehensive overview of previous approaches. In general, three distinct
methodologies for viewpoint generation can be delineated, which will be described in the
following paragraphs.

In the first method, the sweep-based approach, which is already employed by UAV
software providers like Site Scan [4], Pix4D [5], or UgCS [6] for automated surveys, the ob-
ject is traversed into a grid pattern. Camera poses are positioned based on a bounding box
around the object, although they are not further adapted to the object’s geometry, and there-
fore, keep a high safety distance leading to low image quality. A variation by Peng et al. [7]
generates individual planes adjusted roughly to the object’s geometry, resulting in more
suitable but not necessarily optimal camera positions.

In the second method, the sampling-based approach, random camera poses are gener-
ated and iteratively refined. Bircher et al. [8] divide the object’s surface into small regions,
creating a random camera pose for each, subsequently improving to neighboring poses.
Shang et al. [9] employ a similar method for generating camera poses but imposes sig-
nificantly stricter constraints on the allowable space. However, this approach foregoes
subsequent optimization of camera poses. In a subsequent paper [3], Shang et al. devel-
oped a methodology for post-hoc optimization of camera poses. Another approach by
Li et al. [10] places the camera poses by the Poisson disk sampling algorithm and refines
the viewpoints in a two-step optimization by minimizing the viewpoint redundancies and
maximizing the model point reconstructability.

In the third method, the next-best-view (NBV) approach, camera positions are estab-
lished within a certain space around the object from which a subset of usable camera poses
is computed as an optimization problem. The aim here is to identify the optimal set of poses
to best capture the object. Sun et al. [11] select their candidate set based on coverage and
overlap parameters, along with flight distance. Schmid et al. [12] also factor in redundancy
criteria. In this case, every surface must be viewed from at least two different camera
positions from different perspectives. Hoppe et al. [13] employ the same criteria but define
conditions for the extent to which camera images must differ to ensure image triangulation.
Both Schmid et al. [12] and Hoppe et al. [13] treat the selection of camera poses and route
planning as a joint optimization problem. However, they only consider only one flight
in their optimization problem, as they focus on a small number of camera poses and not
on high-resolution images. While for all NBV approaches the resolution may suffice for
3D reconstruction to capture geometry, it falls short of surveying the structural integrity.
A much closer survey requires a significantly higher number of camera poses, rendering
optimization infeasible in terms of computational time.

Only Wang et al. [14] present a methodology tailored to close-range aerial surveys of
bridges for structural assessment. In this approach, the bridge is divided into its structural
components, and camera poses are defined based on predefined patterns for these compo-
nents. However, this necessitates defining each possible structural component, which may
prove challenging given the diversity of bridge structures. Additionally, it presupposes the
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availability of a building information modeling (BIM) model of the bridge, which may not
be accessible in every bridge.

We propose a methodology for the automated generation of camera poses for aerial
surface inspection of bridges. We use a surface mesh of the bridge as the data basis for
all calculations. Given that bridges are often situated in environments with numerous
obstacles such as dense vegetation and other objects, the camera poses are generated with
consideration for the surrounding context. Inadmissible camera poses are systematically
replaced with others until a comprehensive coverage of the inspectable area is attained
through the generated camera poses. All computations are predicated on predefined image
quality criteria, UAV and camera specifications, as well as the minimum safety distance
pertaining to both the bridge’s surroundings and the bridge itself. Our investigations were
conducted on three distinct bridge structures. The results demonstrate that, for all bridges,
near-complete coverage of the inspectable areas can be achieved, thereby ensuring the
bridge inspection complies with the specified quality standards.

2. Method
2.1. Method Overview

Figure 1 delineates the procedural framework of the proposed methodology. First,
a voxelized representation of the bridge is calculated based on the required quality stan-
dards, both in terms of image quality and the overlap factor between individual images.
Based thereon, a first set of camera poses is generated, elaborated in Section 2.2.

Figure 1. Schematic overview of the entire process. In step 1, cameras are computed based on a
voxelized representation of the bridge, and cameras with insufficient safety margins are removed.
In step 2, the bridge is represented as a point cloud, allowing for the evaluation of the quality of the
previous capture. Where necessary, additional cameras are generated iteratively. Finally, in step 3,
trajectories along the camera positions are calculated.
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To set a base for determining the regions of the bridge captured by each camera pose,
the surface mesh of the bridge is discretized into points. To speed up later calculations
and improve their accuracy, irrelevant points are removed. Subsequently, an evaluation is
conducted to identify areas that meet the quality criteria and those requiring the generation
of additional camera poses, given the removal of camera poses that fail to adhere to
safety distances from the surroundings and the bridge structure. An iterative process is
employed to assess coverage quality and add new camera poses until satisfactory coverage
quality is achieved. The methodology developed for this purpose is detailed in Section 2.3.
Subsequently, the shortest path between individual camera poses is determined using
the A* algorithm [15], treating this network as a vehicle routing problem (VRP) to derive
optimal flight routes, as discussed in Section 2.4.

2.2. Calculation of Initial Camera Poses

Our fundamental requirement for the computation of camera poses is the availability
of a surface mesh representation of the bridge. One approach to acquiring such a mesh
involves the utilization of a mesh reconstruction algorithm, such as the Poisson surface
reconstruction [16] or Ball-Pivoting [17] Algorithm. Both of these algorithms are applied to
a point cloud of the bridge but may yield fragments in the resulting mesh when dealing
with noisy or incomplete point clouds. Reconstructing the mesh from satellite imagery is
possible but proves impractical due to the absence of information regarding the bridge’s
underside. In our methodology, we employ a mesh obtained from bridge construction
plans, as detailed by Poku et al. [18], which results in a highly accurate model, even on the
underside of the bridge.

The placement of the initial set of camera poses is approached from two distinct
perspectives. Firstly, the camera poses should be distributed well along the bridge in regards
to the geometrical structure of the bridge in each area to facilitate adequate image overlap
and, consequently, successful image reconstruction. However, secondly, the distribution of
camera poses should not be over-excessively tailored to the specific geometric characteristics
of the bridge, as with a large number of cameras, an unbearable run-time follows. This goal
is to adapt the cameras well enough to make the approach applicable to various bridge
types while minimizing the algorithm’s computational time. These two objectives, however,
inherently compete with each other.

An approach, also employed by Sun et al. [11] in aircraft flyovers, involves representing
the object as voxels. This more abstract representation simplifies the object’s geometry
while retaining essential information. The size of the voxels is determined based on
various parameters, taking into account the image resolution quality requirements and the
specifications of the UAV camera. The specific values used are listed in Table A1.

From the desired ground sampling distance (GSD), the necessary distance between
the UAV and the object can be calculated as

distance between camera and surface =
GSD × Focal Length × Image Width

Sensor Width
(1)

with the focal length and sensor width specified in millimeters and the image width given
in pixels. The GSD is expressed as millimeters per pixel. The area covered on the bridge
can be determined by:

Image AreaWidth =
Sensor Width × Distance

Focal Length
(2)

Image AreaHeight =
Sensor Height × Distance

Focal Length
(3)

The distance, as defined in Equation (1), is expressed in meters. It is important to note
that the calculated image area is an approximation, as the equation does not account for
uneven surfaces and camera effects such as distortion. To reconstruct a point, images from
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three perspectives are required [19,20]. This necessitates an overlap of the image areas.
Given that in most cameras the image area is typically wider horizontally than vertically,
it is prudent to define an overlap factor for the vertical dimension. Ideally, the vertical
overlap should also be set to a minimum of 50% to ensure complete 3D reconstruction [21].
The horizontal overlap is determined by the distance between the focal points in the vertical
direction. The calculation of the voxel size is illustrated schematically in Figure 2.

Figure 2. Methodical approach for calculating the voxel size. Camera view frames are vertically
positioned with the required overlap, and horizontally placed at equal intervals. The camera focal
points are set at the voxel center.

The equation for calculating the voxel size results as follows:

Voxel Size = (1 − Overlap Factor)× Image Height (4)

Placing the camera poses on the voxelized mesh raises the problem that images acquired
at the edges of the bridge would be oriented at a 90° angle to each other, resulting in a
lack of image overlap and, consequently, making the reconstruction process significantly
challenging. To address this issue, we employ the marching cubes algorithm [22] on the
voxelized bridge, which changes the object’s edges to a 45° angle relative to each other,
facilitating the reconstruction process.

2.3. Creating Additional Camera Poses in Uncovered Areas

The initially placed cameras ideally already cover a significant portion of the bridge
with high quality. However, by removing cameras that do not adhere to safety distances, it
is unlikely that all inspectable areas are fully captured. Therefore, in the subsequent steps,
the initial camera poses are supplemented with additional poses.

2.3.1. Preprocessing for Quality Evaluation

To assess the generated camera poses, evenly distributed points are created over the
bridge surface using the Poisson-disk sampling algorithm. These points serve as the basis
for evaluating the surface coverage at these locations. In our study, we examined point
sets with varying inter-point distances, as depicted in Figure 3. We selected a maximum
average distance of 10 cm between the points, as by exceeding this value the points
would not adequately represent the object’s geometry. A finer distribution of points is not
recommended, as the number of points increases quadratically, resulting in a significant
increase in computational time. The bridge models, such as those from [18], include
foundation structures located beneath the ground surface, making them inaccessible for
inspection. To obtain more meaningful results and reduce the runtime of the algorithm,
non-visible surface points of the bridge are removed.
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(a) (b)

Figure 3. Discrete surface representation via the Poisson-Disk sampling algorithm. In (a), a mean
distance of 0.3 m between points was chosen, yet the bridge structure is not accurately represented.
In (b), a mean distance of 0.1 m was selected, requiring three times as many points.

The remaining points are visible through manual inspection, but not necessarily by
UAV flights. In some areas of the bridge, it may be impossible to find a feasible camera
pose to capture a surface point without violating the necessary safety distances. To prevent
the algorithm, described in Section 2.3.3, from attempting to create new camera poses for
non-inspectable points, these points are also eliminated from the set of surface points. In-
spectable points are determined by densely generating potential camera positions along the
perimeter of the no-fly zone. If a surface point is visible from a camera position within the
specified maximum incident angle constraints, it is deemed inspectable. Conversely, if no
potential camera position can view the point, it is considered non-inspectable. The possible
camera positions are generated while accounting for safety distances from the bridge and
its surroundings. Figure 4 illustrates both, not visible and not inspectable points.

(a) (b)

Figure 4. Not visible surface points of the pedestrian bridge marked red in (a) and deleted from the
set of points. In (b), the underside of the bridge is shown, with non-inspectable points due to safety
distances in red.

The final set of points comprises both visible and inspectable points on the bridge
surface. This enables more reliable assessments of the algorithm’s coverage percentage
while simultaneously reducing run-time through a smaller number of surface points.
However, it is important to note that the inspectability of a point does not automatically
guarantee its complete reconstruction. Although a point is classified as inspectable if it is
visible from at least one camera, a successful reconstruction typically requires images from
multiple distinct perspectives. Even so, due to the substantial number of surface points,
such an extensive verification process is impractical to implement.

2.3.2. Evaluating Point Reconstruction Quality

The evaluation of the surface points is based on fundamental principles that must be
considered for 3D reconstruction [3]:
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Principle 1: Every point on the surface must be captured by at least two [23], and for
sparsely textured surfaces, three high-quality images [19,20].

Principle 2: Small angles between individual images can lead to triangulation errors in
depth interpretation [7].

Principle 3: Redundant images are uninformative and do not increase the reconstruction
quality but only the computation time [3].

Based on these fundamental principles, points are categorized. If a point satisfies the
first two principles, meaning it is observed from at least three different positions, each
with distinct incident angles, the point is considered captured. A point satisfies the first
principle, if the points are within the focus range of the drone camera and a maximum
angle of 65° between the camera view direction and the surface exists. For the second
principle a minimum angle of 15° has to be between each of the three cameras relative to
the others [7]. Once a point is seen by three or more camera poses, each within the quality
angle requirements it is not further considered for subsequent calculations, as dictated
by principle 3. Consequently, this approach allows for a significant reduction in both
the reconstruction run-time and the computational time of the subsequent algorithm for
calculating additional camera poses. The calculations are conducted solely based on the
points that have not yet been completely captured, leading to a substantial reduction in the
run-time without compromising quality.

2.3.3. Camera Pose Placement Algorithm

For areas where the coverage of the bridge is not yet complete, new camera poses are
generated. The process is divided into three stages: grouping of points, with a new camera
pose added for each group. Subsequently, the camera poses are improved in their position
and lastly orientation. The process is schematically depicted in Figure 5.

Figure 5. Placement of additional cameras by grouping uncovered points based on voxels. For each
voxel, a new camera is created, which is refined both (a) in its position and subsequently (b) in its
orientation to obtain a refined camera pose (c).

The points are grouped based on voxels, with the bridge area being segmented and
points sharing the same voxel clustered together. Empirical tests into the most efficacious
voxel sizes were undertaken, culminating in the selection of a voxel size twice that which
was employed for the voxels delineated in Section 2.2. A distinct camera pose is generated
for each voxel group. The camera poses position is established emanating from the center
of the points utilizing the normal vector of the center. The calculated GSD serves as the
distance with the camera’s orientation directed towards the central coordinates of the points
to ensure focused alignment.
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The new camera may be situated in a non-flyable area or may not be optimally placed
yet for the group of points. Therefore, variations of the camera position are created, with the
camera focus always remaining on the center of the points, and the pose with the highest
quality is selected. To avoid creating camera poses that are too similar to existing ones, new
poses within close proximity to another pose with a viewing direction deviation of less
than 15° are not allowed. The evaluation of the camera quality is based on the assessment
of the distance to the points as well as the incident angle. The equation for calculating
camera quality is

Q(Pvox, v) = ∑
p∈Pvox

q(p, v), (5)

with Pvox representing the set of points in a voxel. The evaluation of the camera-point quality

q(p, v) = (1 − w)

(
1 − |dist(p, v)− distsat|

distmax

)
+ w

(
1 − |θ(p, v)− θsat|

θmax

)
(6)

is derived from Shang et al. [3] and incorporates, in addition to weighting the factors of
distance dist and incident angle θ through parameter w, the normalization and saturation
of both factors.

The adjustment in the camera position is limited in relation to the points within the
corresponding voxel, preventing the convergence of camera poses towards a singular
point with minimal coverage and, consequently, a higher reachable Q score. Instead,
the optimization occurs at a local level for each voxel, as visualized in Figure 5a. Following
the refinement in position, a global enhancement of the camera poses’ viewing directions
takes place, involving all as-yet-uncovered points. This strategic approach, illustrated in
Figure 5b, aims to focus the camera poses on localized hotspots. The newly derived camera
poses are added to the existing set, prompting a reassessment of points. The iterative
repetition of this process continues until comprehensive coverage is achieved for those
points that remain incompletely captured.

2.4. Path Planning and Route Optimization

The determination of the optimal trajectory, using the calculated camera positions as
waypoints, is accomplished through the formulation of a VRP. This formulation places
constraints on the flight duration based on the UAV’s battery capacity, for which the
following specifications are defined:

Specification 1: The battery capacity is set to a maximum of 80% of its actual capacity.

Specification 2: Three seconds are added at each waypoint to account for reduced speed
before and after the waypoint, as well as the time required for capturing images.

The connections between waypoints are computed using the A* algorithm. As A* is a
graph-based algorithm, the first step involves constructing a network. This is achieved by
evenly distributing points on a slightly expanded mesh within the permissible flying area
around the bridge, representing the network nodes. The choice of point density has a direct
impact on the optimality of the computed route, but it also affects the network’s size and
computational time. Edges are established between nodes if the connection between points
does not intersect restricted airspace. Additionally, each camera position is connected to
all directly accessible network nodes. In the subsequently generated network, the shortest
path is computed between each pair of camera poses by the A* algorithm.

The connections between camera positions, determined through A*, form the basis
for defining the VRP. Distances between camera positions are converted into flight times.
The optimization problem is then solved using the open-source library OR-Tools, developed
by Google AI [24].

3. Method Validation

The evaluation has been conducted on three bridges of different sizes and locations.
The elaborated methods were implemented in Python, with the methods being tested
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and evaluated on the bridges virtually. Applying the algorithm in practice poses several
challenges, as the GNSS signals for determining the drones position are not sufficient under
the bride. Additional positioning methods like Visual Localisation can be used, but remains
challenging which will be discussed in future works. The algorithm was evaluated by
determining bridge coverage. Surface points along the bridge were categorized as whether
they were captured by at least three viewpoints with at least 15° between each viewpoint
and a maximum angle of the camera to the surface of 65°. All underlying quality principles
were discussed in more detail in Section 2.3.2.

3.1. Bridge 1: Pedestrian Bridge

The first bridge, a pedestrian bridge located in Freiburg, Germany, spanning a river, is
depicted in Figure 6 alongside the bridge mesh derived from [18]. In the provided mesh
the railings are not included, but as they are not the focus of this investigation they can be
accordingly disregarded.

(a) (b)

Figure 6. An image of the bridge used in this study in (a). Pedestrian bridge over the Dreisam river
in Freiburg, Germany with a length of 40 m. The model of the bridge obtained from [18] can be seen
in (b). Parts of the bridge’s foundation are not visible as they are located underground.

The bridge’s relatively diminutive size posed a challenge for the aerial survey. To
achieve a targeted GSD of 1 mm/pixel, the distance of the UAV to the bridge is calculated
to be 3.0 m when using the specifications of the UAV Parrot Anafi. However, the bridge’s
clearance above the riverbed is just under 2.5 m, rendering it impossible to conduct an
aerial survey of the bridge’s underside while adhering to the safety margins of 2.0 m from
the surroundings and the bridge, as specified in Table A1. Hence, the study for this bridge
maintained a safety margin of 1.5 m from the bridge and 1.0 m from the surroundings,
with the understanding that this could only be achieved in a real survey with the use of a
UAV safety cage. This assumption, however, allowed for the survey of the underside of the
bridge and analysis of the algorithm’s behavior in complex geometries. All calculations
were performed with the drone camera specifications of the Parrot Anafi, which allows
a camera pitch of 90° in both directions, allowing the drone to capture images from the
bridges underside.

With the targeted GSD of 1 mm/pixel, a voxel size of 1.71 m was calculated using
Equations (1), (3) and (4). The resulting mesh of the bridge is depicted in Figure 7, along-
side the mesh after employing the marching cubes algorithm [22] on the voxelized mesh.
By applying the algorithm and thereby smoothing the edges of the bridge representation,
additional camera poses are placed along the edges. In Figure 8 the generated camera poses
are displayed, with one camera pose per voxel face. Camera poses that do not adhere to
the required safety distances from the bridge and its surroundings have been excluded.
The environment surrounding the bridge is represented by a sparse point cloud. Large
objects, such as trees, were removed from the representation to make the camera poses
more easily visible in the image but were still considered in the calculations.
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(a) (b)

Figure 7. Voxelized Representation of the bridge in (a). With a desired ground sampling distance
(GSD) of 1mm/pixel a voxel size of 1.71 m was calculated. In (b), the representation after applying
the marching cubes algorithm to (a) is shown. The smoother transitions of the voxel surfaces enable
improved image overlap and, consequently, better model reconstruction.

Figure 8. Camera poses (green axis: viewing direction) placed based on smoothed voxelized bridge
mesh. Camera poses below ground or violating safety distances are removed using overlayed point
cloud information.

Due to the limited clearance from the ground, the initial cameras were placed solely
on the top side of the bridge, which effectively cover the entire top surface of the bridge.
However, no poses could be positioned on the underside, necessitating the generation of
additional poses in this region. Figure 9 illustrates the corresponding coverage of the bridge.
Surface points created as in Section 2.3.1 were colored green when three or more camera
poses captured the point within the quality constraints of Section 2.3.2. As displayed,
the top surface of the bridge was fully covered by the camera poses, the absence of poses
at the underside of the bridge left this area unobserved with the initial cameras. With the
placement of these initial cameras, 51.2% of the surface points were captured by three or
more cameras, which allows a full 3D reconstruction, using 173 camera poses. The rela-
tively low coverage is a result of the lack of cameras beneath the bridge, as the calculated
UAV distance to the object of 1.71 m is within the safety distances to the environment.
After applying the algorithm from Section 2.3.3, new camera poses were placed to improve
the coverage of the bridge. Figure 9 displays the process of the algorithm over the course
of five iterations. The newly placed camera poses increased the coverage of the inspectable
surface to 94.9% after three iterations and finally 96.7% after five iterations with in total
456 camera poses created. Detailed results of all iteration steps are given in Table 1.

The inability to achieve 100% coverage after more than ten iterations is attributed to
the fact that some inspectable points cannot be captured from multiple distinct viewpoints.
As described in Section 2.3.1, points are considered inspectable if they can be observed
from at least one camera position, but for reconstruction, at least two images from different
perspectives are required. Since the incremental gain in coverage diminishes significantly
with each iteration, while the number of added cameras increases disproportionately
at a certain point, it is advisable to terminate the algorithm at an appropriate juncture.
For this bridge, the computed viewpoint set after five iterations was chosen as the final
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set, as the improvement in the covered area in subsequent iterations was less than one
percentage point.

(a) Top—Initial (b) Bottom—Initial

(c) Bottom—Iteration 3 (d) Bottom—Iteration 5

Figure 9. Coverage of the bridge through camera poses. The top is already fully captured by the initial
poses, while the bottom remains entirely uncaptured, gradually becoming almost fully documented
over the course of five iteration steps.

The 4% of the surface that remained unobserved by the algorithm and the points
marked as uninspectable in advance, constituting 15% of the total surface, amount to a
total of 18.4% of uninspected surface. The depiction of all uninspected points is presented
in Figure 10 which serves as a schematic representation of areas yet to be examined. This
provides the opportunity to selectively inspect only these areas in a manual examination,
resulting in significantly greater time efficiency. The final algorithm results are summarized
in Table 2. In total 92.1% of the total surface can be captured from 456 viewpoints, with an
average GSD of 0.99 mm/pixel.

The runtime of the algorithm for five iterations is 73 min, this is relatively high and is
the result of two circumstances. First, the computational cheap initial cameras did not cover
nearly half of the bridge surface, therefore, many camera poses had to be created in each
run of the algorithm. Furthermore, calculating those poses was time-consuming, as the
allowed space under the bridge is small, and therefore, finding an allowed yet suitable
pose was difficult.

Table 1. Results of iteration steps for the pedestrian bridge in Freiburg. Algorithm stopped after five
iterations as no notable improvement was achieved afterwards.

Iteration Camera Poses
Percentage Coverage with

Total Runtime
2 Camera Poses 3 Camera Poses

0 173 51.2% 49.8% 5 min
1 243 80.3% 66.0% 11 min
2 306 92.0% 82.9% 22 min
3 364 94.9% 88.8% 38 min
4 411 96.1% 91.1% 61 min
5 456 96.7% 92.1% 73 min
6 489 97.1% 92.9% 76 min
... ... ... ... ...
10 542 98.3% 94.1% 131 min
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Table 2. Final results for the investigation of the pedestrian bridge. Coverage of camera poses calculated
on the inspectable surface points, hence the final inspected surface is the product of those two values.

Parameter Value

Runtime 73 min
Iteration steps 5

Required camera poses 456
Coverage by at least two camera poses 96.7%

Coverage by at least three camera poses 92.1%
Inspectable surface 85.2%

Final inspected surface 81.6%
Average GSD 0.99 mm/pixel

Figure 10. Uninspectable points of the pedestrian bridge. Comprising points previously identified as
uninspectable and uninspected points after the algorithm.

Route Planning

The calculated points are intended to be traversed with a trajectory of utmost efficiency,
wherein the camera positions are regarded as a VRP. The Euclidean distance between two
camera positions defines the cost associated with connecting the two nodes. In cases where
the direct connection is obstructed by the bridge or its surroundings, A* is employed for
path planning. The closer the cameras are positioned to the bridge, the fewer pairs of
cameras possess a direct connection; consequently, A* must be applied more frequently.
The computational time required for the connections using A* increases disproportionately
with the size of the bridge. Examining the routes computed as VRP reveals that none of
the trajectories calculated by A* are part of the final solution. The computed distances are
so expensive that they are not suitable for the optimal route. A more optimal approach
involves linking nearby waypoints without the need for A*. For a network from which
the connections computed by A* were removed, similar route results could be achieved.
Accordingly, it is sensible to reduce the computational time by initially performing route
calculation without A* and only resorting to it when a route cannot be found.

The distances between camera positions were converted into flight times, assuming
a flight speed of 4 m/s and incorporating a dwell time of three seconds for the UAV to
decelerate, position the camera, and accelerate again at each camera point. A starting and
ending point for the UAV was selected as a location 30 m away and 10 m above the bridge.
The calculated routes are presented in Figure 11 with the route data provided in Table 3,
both for the pedestrian bridge. Upon examination of the routes, it becomes evident that
they are collision-free and that all points are completely traversed, although some routes
are not optimal, necessitating a higher run-time of the solver if desired.

Table 3. Computed routes for the pedestrian bridge.

Parameter Values

Number of routes 2
Total flight time 26.5 min

Individual routes Route 1: 20 min
Route 2: 6.5 min
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Figure 11. Trajectories along the camera poses for the pedestrian bridge in blue and red, calculated
by solving a VRP.

3.2. Bridge 2: Railway Bridge

The second examined bridge was a railway bridge in Aachen, depicted as a point
cloud with its surroundings in Figure 12. With a length of approximately 120 m, it is the
largest bridge investigated in this study. Preceding the analysis, certain areas at both ends
of the bridge and at the central support were deemed non-inspectable due to obstacles
in the vicinity. These areas are illustrated in Figure 13, constituting 10.2% of the visible
surface. For the investigation, as specified in Table A1, a safety distance of two meters was
maintained both from the bridge and its surroundings.

Figure 12. Point cloud representation of the railway bridge near Aachen, Germany, with a length of
120 m and dense vegetation.

Figure 13. Uninspectable points of the railway bridge before the algorithm. Note that non-visible
points below the surface have already been removed and are not considered in this representation.
Uninspectable points are located at both ends of the bridge due to dense vegetation and at the
middle pole.
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The bridge is slightly tilted within the voxel grid, resulting in discontinuities in the
voxelized model at certain locations along the bridge, as depicted in Figure 14a. While
aligning the bridge within the voxel grid would be feasible for this particular bridge, it may
not be achievable for every bridge. Curved bridges, for instance, inherently possess these
discontinuities. Consequently, a few cameras in Figure 14b are not optimally aligned at
these discontinuities.

(a)

(b)

Figure 14. Voxelized representation of the bridge in (a). Slightly misaligned placement of the bridge
within the voxel grid results in discontinuities along the bridge, causing individual cameras to be
suboptimally aligned. Placement of camera poses in the environment in (b). No placement of poses
was feasible beneath the right bridge arch due to safety distances.

The coverage of the bridge by voxel-based cameras is 77.3%, with a minimum of
three camera poses per point. Over the course of three iterations, this value could be
increased to 95.1% coverage. Due to the already high percentage capture of voxel-based
camera poses, the algorithm’s runtime was only 31 min, despite the bridge’s substantial
size. The values for each iteration step are listed in Table 4, and the final algorithm values
after three iterations are summarized in Table 5. With 944 camera poses, 88.2% of the bridge,
which spans over 120 m, was captured with an average GSD of 1.07 mm/pixel. Figure 15
illustrates the areas not covered by the initial and final camera pose sets, Figure 16 displays
the poses added in the three iterations. The added poses were positioned predominantly
on the underside of the bridge, as anticipated. While the pose placement may initially
appear random, closer examination reveals that the cameras mostly maintain a consistent
distance from the bridge. The positioning was carried out on a plane where the distance is
sufficiently large to capture all points of the respective voxel group and simultaneously
small enough to meet the requirement of high image quality.
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Table 4. Results of iteration steps for the railway bridge. Algorithm stopped after three iterations as
no notable improvement was achieved afterwards.

Iteration Camera Poses
Percentage Coverage by

Total Runtime
2 Camera Poses 3 Camera Poses

0 764 80.2% 77.3% 7 min
1 857 91.0% 83.3% 12 min
2 909 97.7% 91.5% 25 min
3 944 98.2% 95.1% 31 min
4 979 98.8% 96.1% 39 min
5 998 99.0% 96.5% 43 min
... ... ... ... ...
10 1065 99.7% 98.2% 84 min

Table 5. Final results for the investigation of the railway bridge.

Parameter Value

Runtime 31 min
Iteration steps 3

Required camera poses 944
Coverage by at least two camera poses 98.2%

Coverage by at least three camera poses 95.1%
Inspectable surface 89.8%

Final inspected surface 88.2%
Average GSD 1.07 mm/pixel

(a) (b)

Figure 15. Coverage of the railway bridge by voxel-based camera poses in (a) and after adding
additional cameras in non-captured areas in (b). Red points are captured by one pose or fewer, while
yellow points are captured by two poses. Points covered by three or more cameras are not shown for
better visibility of uncovered areas.

Figure 16. Additional camera poses on the underside of the railway bridge in areas, where voxel-
based camera poses could not be placed and coverage is low.
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3.3. Bridge 3: Highway Bridge

Regarding the topic of this work, the aerial survey of bridges for high-resolution image
generation, only one paper with a similar thematic stance has been published thus far.
To contextualize the findings of this work within the current state of the art, the bridge
model used by Wang et al. [14] has graciously been made available. The bridge, located in
Hastings, New Zealand is illustrated in Figure 17.

(a) (b)

Figure 17. Image of the highway bridge in New Zealand in (a) by [14], represented as a mesh in (b).

As evident from Figure 17b, the surroundings of the bridge are sparsely vegetated,
posing no challenges for the placement of voxel-based camera poses. Only a few points
at the end of the bridge, where the surface inclines, are not inspectable by the UAV. Ac-
cordingly, with the initial set of poses, nearly 88% of the bridge has already been fully
captured. Similar to Wang et al., the underside of the bridge was not inspected to establish
a comparable basis. However, the bridge piers remain part of the investigation.

In Figure 18, the camera poses computed by Wang et al. and those derived through
our methodology are depicted. Results from both approaches are listed in Table 6, along
with a method conducted by Wang et al. derived from the current practice in flight plan
generation for photogrammetric reconstruction [25]. In all three approaches, the camera
specifications of the UAV DJI Phantom 4 Pro v2.0 and an image overlap factor of 66.7%
were employed. For our investigation, as with the other bridges previously considered,
a GSD of 1 mm/pixel was targeted to ensure automated crack detection on high-resolution
images. Wang et al., on the other hand, utilized a GSD of 1.5 mm/pixel.

In our investigation, the voxel-based approach already covered 88% of the inspectable
surface, with the non-covered areas primarily located around the bridge piers. The addition
of extra camera poses increased the overall coverage to 98.1%. The number of required
cameras is 16% higher than that employed by Wang et al., a difference that can be attributed
to two main factors. Firstly, our study utilizes a higher GSD, resulting in an increased
camera count. Secondly, the placement of cameras based on a BIM model, as employed by
Wang et al., is significantly more adapted and, therefore, more efficient than our voxel-based
placement. Consequently, camera pose placement based on a BIM model is preferable to
the voxel-based method, under the conditions that firstly, a BIM model of the bridge is
available, which may not be the case, particularly for smaller or older bridges. And secondly,
all structural components used in the bridge have been predefined, as is necessary in
Wang et al.’s approach. The use of voxels represents a good, if not equally efficient,
alternative when no BIM model of the bridge is available. However, the methodology
for placing additional camera poses in areas not yet fully covered presents a compelling
opportunity to enhance coverage retrospectively for both voxel and BIM-based approaches.
Compared to Wang et al.’s implementation of [25], our approach is significantly superior in
both the number of poses used and the average achieved GSD.
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(a) (b)

Figure 18. Comparison of camera positioning by (a) Wang et al. [14] and (b) our approach. No
capture of the underside of the highway bridge in either investigation.

Table 6. Comparison of the results between our approach, Wang et al., and an implementation of a
Sweep-based approach [25].

Parameter Our Approach Wang et al. [14] Sweep-Based

Required camera poses (initial/final) 619/662 571 755
Avg. GSD (mm/pixel) 1.14 1.51 2.43

Runtime 38 min - -
Coverage with two camera poses 99.6% - -

Coverage with three camera poses 98.1% - -

4. Conclusions

This paper explores the possibility of automating the UAV camera pose generation for
bridges to generate high-resolution images necessary for digital damage inspection and 3D
reconstruction to overcome time and labor-consuming manual inspection.

Camera poses are generated based on a voxelized mesh with the size of the voxels
calculated from quality requirements and camera specifications with poses being checked
for their safety distances to the bridge and the surroundings where disallowed camera
poses are removed. The hereby unscanned areas were approached by a second algorithm
with inadequately covered areas being grouped and new camera poses then being created
and optimized in their position and orientation to the uncovered points. The process was
iteratively repeated until complete coverage of the bridge was achieved.

The methodology was applied to three different bridges with varying structural
components to validate the general applicability of the developed approach. Almost
complete coverage was achieved for all three bridges. The voxel-based approach offers
a significant advantage, especially for large bridges, as the majority of the bridge can be
covered computationally efficiently with camera poses still tailored well to the geometry
of the bridge in each area. The placement of additional cameras in incompletely covered
areas is computationally intensive, and therefore, sensible only as a complement to voxel-
based placement. However, applying this algorithm significantly increases the coverage
for all three bridges, achieving almost maximum coverage of inspectable points. Complete
coverage is practically impossible, as each point must be captured from three different
positions, which is not achievable for every point.

Overall, this paper, through the combination of a computationally efficient, voxel-
based method and individual placement of additional cameras in uncovered areas, provides
the opportunity to calculate optimal camera poses for high-resolution 3D reconstruction
and damage detection, even for large bridges. The inclusion of the bridge environment
elevates the study to a practically applicable level, especially since many bridges are located
in densely vegetated surroundings.
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A potential improvement for this approach in future work lies in the improvement of
the first voxel-based camera pose placement. In this study, poses based on voxels were not
further optimized. However, for curved bridges, discontinuities arise along the voxelized
mesh, causing sub-optimal orientation of camera poses to the bridge. A post-adjustment may
here be beneficial. If a BIM-model of the bridge is available, a combination of our approach
with Wang et al. [14] could be of interest, where, instead of the voxel-based approach, cameras
are placed according to Wang et al., and for areas where camera poses were not placed due to
safety distances, additional cameras could be generated using our second algorithm.
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Appendix A

Table A1. Required parameters, short description, and values used for the algorithm.

Category Parameter Description Value

UAV Flight speed UAV’s flight speed between waypoints 3 m/s
Battery life - 25 min

Camera

Camera angle Horizontal and vertical camera field of view 73.89° × 58.90° (5:4)
Tilt angle Camera tilt limitations in the lateral axis −90°, 90°

Image resolution - 5344 × 4016 pixels
Focal length Actual and 35 mm equivalent 3.92 mm/23 mm
Sensor width - 5.9 mm
Sensor height - 4.43 mm

Quality

Overlap Vertical overlap between adjacent images 50%
Targeted GSD - 1 mm/pixel

Saturated distance Saturation distance between camera and surface 3.02 m
Saturated incidence angle Saturation angle between camera and surface 15°
Maximum incidence angle Max angle between camera and surface 65°

Safety
Bridge clearance Minimum clearance from the bridge 2 m

Environmental clearance Minimum clearance from the surroundings 2 m
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