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Abstract: Atmospheric aerosols affect climate change, air quality, and human health. The aerosol
optical depth (AOD) is a widely utilized parameter for estimating the concentration of atmospheric
aerosols. Consequently, continuous AOD monitoring is crucial for environmental studies. However, a
method to continuously monitor the AOD throughout the day or night remains a challenge. This study
introduces a method for estimating the All-Day AOD using ground air quality and meteorological
data. This method allows for the hourly estimation of the AOD throughout the day in the Beijing–
Tianjin–Hebei (BTH) region and addresses the lack of high temporal resolution monitoring of the
AOD during the nighttime. The results of the proposed All-Day AOD estimation method were
validated against AOD measurements from Advanced Himawari Imager (AHI) and Aerosol Robotic
Network (AERONET). The R2 between the estimated AOD and AHI was 0.855, with a root mean
square error of 0.134. Two AERONET sites in BTH were selected for analysis. The results indicated
that the absolute error between the estimated AOD and AERONET was within acceptable limits. The
estimated AOD showed spatial and temporal trends comparable to those of AERONET and AHI. In
addition, the hourly mean AOD was analyzed for each city in BTH. The hourly mean AOD in each
city exhibits a smooth change at night. In conclusion, the proposed AOD estimation method offers
valuable data for investigating the impact of aerosol radiative forcing and assessing its influence on
climate change.

Keywords: All-Day; Aerosol Optical Depth (AOD); XGBoost; Beijing–Tianjin–Hebei region

1. Introduction

Atmospheric aerosols are multiphase systems comprising solid or liquid particles
suspended in gaseous media [1]. These aerosols significantly influence the Earth’s radiation
balance, air quality, and human health [2]. The impact on the Earth’s radiation balance
can be direct through the scattering and absorption of solar radiation and indirect through
changes in cloud properties [3–5]. Aerosols play a pivotal role in determining air quality.
When the atmosphere contains high concentrations of aerosol particles, the particles will
scatter and absorb light. Consequently, the presence of haze or cloudy air can significantly
reduce visibility and affect daily activities [6,7]. Concurrently, air pollution can also influ-
ence the structural integrity and durability of materials [8,9]. Certain aerosols pose health
risks [10]. For example, fine particles with a diameter smaller than 2.5 µm can penetrate
the human respiratory system and accumulate in the lungs, causing respiratory and other
health issues [11,12].

Atmospheric aerosols are derived from various sources and exhibit spatial and tem-
poral variations [13,14]. Therefore, the real–time monitoring of atmospheric aerosols is

Remote Sens. 2024, 16, 1410. https://doi.org/10.3390/rs16081410 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs16081410
https://doi.org/10.3390/rs16081410
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8762-1878
https://orcid.org/0009-0006-2543-1853
https://doi.org/10.3390/rs16081410
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs16081410?type=check_update&version=2


Remote Sens. 2024, 16, 1410 2 of 23

crucial for evaluating their impact. Ground–based and satellite–based methods are cur-
rently the primary methods used for aerosol monitoring [15]. Ground–based monitoring
provides highly accurate aerosol data. The Aerosol Robotic Network (AERONET) uses
a day–sky–moon photometer to continuously monitor atmospheric aerosols during the
day and night [16]. Satellite monitoring is commonly used for the large–scale monitor-
ing of aerosols. Aerosol retrieval has been conducted using various sensors, including
the dark pixel method [17,18], deep blue algorithm [19], and other techniques adapted
to specific surface features and aerosol types. These approaches have produced aerosol
datasets with improved accuracy and spatial–temporal resolutions, such as Moderate
Resolution Imaging Spectroradiometer (MODIS) and Advanced Himawari Imager (AHI)
aerosol optical depth (AOD). Recent advancements in sensor technology have expanded
the capabilities of satellite aerosol monitoring from low to high resolution, from day to
night. High–resolution satellite sensors are frequently employed to facilitate precise aerosol
monitoring following cross–calibration with reference sensors [20,21]. As the sensitivity of
sensors escalates, the utilization of nighttime band information becomes viable for aerosol
retrieval research. Zhang et al. [22] showed that it is feasible to retrieve the AOD at night
by detecting the attenuation level in the visible/near–infrared band during nighttime
hours. Johnson et al. [23] established a correlation between the AOD and upward radiation
emitted from urban light sources by analyzing upward radiation within different light
source areas. Jiang et al. [24] studied the potential of using NPP/VIIRS DNB low–light
channels to monitor the AOD over North China and examined the distribution of urban
lights and aerosols at night. Li et al. [25] acknowledged the challenges associated with
the uncertainty of urban lights and proposed a method to enhance the precision of AOD
retrieval. This method utilizes combined measurements of satellite low–light channel data
and ground–based integrating spheres.

Although progress has been made in the retrieval of the AOD during the day and at
night, there is still a gap in aerosol products that can cover a wide area of the globe and
ensure continuous observation throughout the day. AERONET provides high–precision
AOD data [26]. However, the limited number and uneven distribution of AERONET
sites render large–scale ground–based aerosol monitoring impractical. Polar–orbiting
satellites cannot continuously monitor aerosols because of their limited field of view and
revisit times [27,28]. For example, MODIS collects only aerosol properties twice a day [29],
whereas VIIRS transmits data only at 1:30 am local nighttime overpasses [30]. In contrast,
geostationary satellites have a higher temporal resolution [31]. However, because of
variations in the solar zenith angle, AOD retrieval cannot always be performed. For instance,
the AHI AOD may fail to retrieve solar zenith angles exceeding 70◦ [32]. Moreover, ground–
based and satellite monitoring often experience data gaps during meteorological conditions
such as cloud cover, precipitation, and snowfall [33]. Nighttime aerosol monitoring faces
several challenges. The CE318 developed by the French company Cimel Electronique
instrument used by AERONET has many problems during nighttime measurements. The
AOD measured using the CE318 instrument does not have quality assurance [34,35]. In
addition, the CE318 instrument can only be used for nighttime observations when lunar
illumination exceeds 50%. Therefore, even under optimal observation conditions, the
instrument can cover only 50% of the monthly nighttime hours [16]. The accuracy of
the nighttime AOD retrieval algorithm may be affected by the use of satellite low–light
data because of the uncertainty caused by the radiant brightness of city lights and their
obvious time–varying characteristics [25]. The lack of reliable nighttime aerosol data
impedes the accurate assessment of nighttime aerosol climatic effects and their subsequent
environmental implications. In some instances, researchers have chosen to utilize daytime
AOD approximations instead of nighttime AOD. This can lead to data errors that directly
affect the reliability and applicability of the study. Therefore, it is necessary to develop an
All-Day aerosol–monitoring method.

Atmospheric aerosol particles are primarily classified into two categories: primary
aerosols, which are emitted directly into the atmosphere from emission sources; and sec-
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ondary aerosols, which are generated by the atmospheric chemical reactions of primary
aerosols with gaseous components. As most atmospheric aerosols originate from particu-
late matter or its chemical reactions with gaseous pollutants, the concentrations of major
atmospheric pollutants affect aerosol concentrations [36,37]. However, the correlation
between the AOD and ground air quality data is not a straightforward linear relationship.
The AOD is the integral of the radiative extinction caused by aerosols from the surface
to the top of the atmosphere at a given wavelength. Ground air quality data are concen-
trations of air pollutants measured under dry conditions. This relationship between the
AOD and ground air quality data is influenced by many factors, including meteorological
conditions [38,39]. Many studies have delved into the correlation between PM and the
AOD, as well as its potential implications [40,41]. For instance, Seo et al. [42] elucidated the
correlation between the PM10 concentration and AOD by incorporating several parameters
into an empirical model. These parameters include the boundary layer height, relative
humidity, and the effective radius of the aerosol particle size distribution. Zheng et al. [43]
conducted a comprehensive analysis of the influence of various factors on aerosol distribu-
tion in the Beijing region, utilizing ground–based and satellite observations spanning 2011
to 2015. These factors included the type of aerosol, relative humidity, planetary boundary
layer height, wind speed and direction, as well as the vertical structure of aerosols. The
authors adjusted for the vertical extension and hygroscopic growth effects of aerosols by
incorporating the boundary layer height and relative humidity. However, the processes
of aerosol formation, diffusion, migration, and transformation are complex and variable.
Consequently, the establishment of a relationship between the AOD and ground air quality
data requires the consideration of multifactorial influences.

Ground air quality sites cover the primary study area and provide continuous hourly
data on critical atmospheric pollutants. Therefore, this study aimed to develop an All-Day
AOD estimation model (All-Day AODES) using ground air quality data and meteorological
data. This study presents a valuable tool for estimating the AOD and provides data support
for research on aerosol radiative forcing effects, climate change, and related areas. By
analyzing and discussing the spatial and temporal distributions and the diurnal variations
in the estimated AOD, this study aims to enhance our understanding of aerosol dynamics.

2. Materials and Methods
2.1. Datasets
2.1.1. Ground Air Quality Data

The Beijing–Tianjin–Hebei (BTH) region is located on the North China Plain. It spans
from 113.3–119.5◦E to 36–42.4◦N. This region is a pivotal economic and cultural nexus
within China, ranking among the country’s most advanced areas. Nevertheless, it has
persistently grappled with severe atmospheric environmental challenges due to the conflu-
ence of natural elements, namely its geographical positioning and climatic conditions, and
anthropogenic influences, such as industrialization and transportation. Figure 1 shows the
geographical position and elevation of BTH.

The China National Environmental Monitoring Center plays a vital role in assessing
air pollution levels, and monitoring and issuing air pollution event alerts. It provides
hourly data from ground air quality sites including PM2.5, PM10, SO2, NO2, O3, and CO.
Figure 1 shows the spatial distribution of 135 ground air quality sites across BTH. Data
with missing or negative values were excluded to ensure the credibility of the experiment.
The experimental data time range is 00:00 on 1 January 2020 to 23:00 on 31 December 2020.
In 2020, 648,850 valid data points were collected, accounting for 90% of the total dataset. A
large amount of data indicate sufficient data for the analysis.
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Figure 1. BTH location, elevation information, and distribution of AERONET sites and ground air
quality sites in the region. Blue stars are AERONET sites and red dots are ground air quality sites.

2.1.2. Meteorological Data

ERA5, developed by the European Centre for Medium–Range Weather Forecasts,
represents the most recent generation of reanalysis data [44]. This ERA5 includes hourly
single– and pressure–level data and has been consistently published since 1940. It provides
meteorological data at a spatial resolution of 0.25◦. In this study, we specifically employed
hourly data for relative humidity (RH) at 1000 hPa, boundary layer height (BLH), surface
pressure (SP), 2 m temperature (T2M), 10 m u–component (U10), and 10 m v–component
(V10) of wind for 2020.

2.1.3. AHI AOD

The AHI is an optical payload aboard the Himawari–8 satellite. The AHI AOD dataset
incorporates L3–level retrieval results at a wavelength of 500 nm. This dataset has a spatial
resolution of 0.05◦ and a temporal resolution of 1 h. This study employed the L3–level AOD
dataset from satellite observations, specifically selecting AOT_Merged and its associated
aerosol labeling data, QA_flag_merged. These datasets were obtained through meticulous
cloud screening and the subsequent spatial–temporal interpolation of the L2–level AOD.

The AOD confidence In QA_flag_merged was divided into four levels: excellent, good,
marginal, and no confidence [31]. To ensure the quality of the AOD in this study, only
excellent and good labels were selected.

2.1.4. AERONET AOD

AERONET has more than 500 sites covering major regions of the world. AERONET
uses a CIMEL CE318 multiband photometer to perform long–term AOD observations.
The high accuracy of AERONET AOD is often used as a reference value for validating
remote sensing AOD. The AERONET Version 3 AOD was computed for three data quality
levels: 1.0 (unscreened), 1.5 (cloud–screened and quality–controlled), and 2.0 (quality–
assured) [45]. The accuracy of the daytime estimated results was verified using Level
1.5 AOD at 500 nm. Table 1 shows the information of the AERONET sites used. Figure 1
illustrates the distribution of AERONET sites in BTH.

Table 1. Latitude and longitude information of AERONET sites in BTH.

Site Latitude/◦N Longitude/◦E

XiangHe 39.754 116.962
Beijing–CAMS 39.933 116.317
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2.2. Methods

Figure 2 shows a flowchart of the method used in this study to estimate the AOD in
BTH. This process includes several steps: data collection and preprocessing, sample dataset
construction, All-Day AODES development, model evaluation, and AOD estimation.
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2.2.1. Data Preprocessing

This study used ground air quality, meteorological, and daytime satellite AOD data.
Table 2 lists the integrated datasets used in this study. To ensure consistent data analysis, it
is necessary to harmonize the spatial–temporal dimensions when integrating data from
diverse sources. Meteorological data were interpolated using bilinear interpolation to
achieve a uniform spatial resolution of 0.05◦. Ground air quality data were converted from
Beijing time (UTC + 8) to Coordinated Universal Time (UTC). To facilitate a comparison
between the estimated, AHI, and AERONET AOD, the AHI and AERONET AOD at 500 nm
were selected. During the process of merging the datasets, data with missing or negative
values were excluded.

Table 2. Descriptive statistics of the dataset.

Category Variable Content Units Spatial
Resolution

Temporal
Resolution

Ground air
quality data

PM2.5 Particulate matter ≤ 2.5 µm 1 h average µg/m3 site Hourly
PM10 Particulate matter ≤ 10 µm 1 h average µg/m3 site Hourly
SO2 SO2 1 h average µg/m3 site Hourly
NO2 NO2 1 h average µg/m3 site Hourly
O3 O3 1 h average µg/m3 site Hourly
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Table 2. Cont.

Category Variable Content Units Spatial
Resolution

Temporal
Resolution

Meteorological data

BLH Boundary layer height m 0.25◦ × 0.25◦ Hourly
SP Surface pressure Pa 0.25◦ × 0.25◦ Hourly

T2M 2 m temperature K 0.25◦ × 0.25◦ Hourly
U10 10 m u–component of wind m/s 0.25◦ × 0.25◦ Hourly
V10 10 m v–component of wind m/s 0.25◦ × 0.25◦ Hourly
RH Relative humidity % 0.25◦ × 0.25◦ Hourly

Satellite AOD data AOD Aerosol Optical Depth – 0.05◦ × 0.05◦ Hourly

2.2.2. All-Day AODES

In this study, the All-Day AODES was constructed using ground air quality data and
meteorological data. Meteorological data, such as BLH, SP, T2M, U10, V10, and RH, were
taken into account. The RH, BLH, and T2M affected the vertical distribution of aerosol
particles and absorption differences. The U10, V10, and SP affected the flow rate and
direction of the atmosphere, which in turn affected the transport and diffusion processes
of aerosols. The impacts of surface air pollutants were assessed through ground–based
monitoring of PM2.5, PM10, SO2, NO2, and O3.

The processes of aerosol formation, diffusion, migration, and transformation are
complex and variable. These processes exhibit significant nonlinear characteristics, which
make it challenging to accurately estimate their concentrations using a simple linear model.
Machine learning algorithms are not only straightforward to implement but also offer rapid
computational capabilities. Furthermore, they exhibit a high tolerance for outliers and
noise, making them particularly adept at addressing nonlinear problems. Therefore, the
All-Day AODES proposed in this study is based on machine learning algorithms.

The All-Day AODES was based on XGBoost (1.6.2). Figure 3 shows the structure of
the XGBoost model. The XGBoost algorithm iteratively adds trees and performs feature
splitting to grow each tree. At each iteration, a new tree is added to capture the residuals of
the previous prediction. Based on the sample characteristics, it was assigned to a specific
leaf node in each tree, which corresponded to a score. Finally, the predicted value for
the sample was obtained by summing the scores for each tree [46–48]. The relationships
between the features and targets in the training set were trained and learned using the
selected regression algorithms.

This study employed Bayesian optimization to determine the optimal hyperparam-
eters of the model. Bayesian optimization involves updating the posterior distribution
of the objective function through the continuous addition of sample points. Bayesian
optimization consists of two key processes: Prior Function (PF) and Acquisition Function
(AC). The PF uses a Gaussian process to approximate the objective function. The AC was
employed to select the subsequent sampling points [49]. In the Bayesian optimization
in this study, a random search was performed in five steps, followed by ten iterations of
Bayesian optimization. Table 3 lists the optimal parameters obtained after traversing all
parameter combinations for All-Day AODES.

Table 3. Optimal parameter combinations for All-Day AODES.

Model Parameter Meaning Value

All-Day AODES

n_estimators Number of trees 731
max_depth Maximum tree depth 41

min_child_weight Minimum sample weight
sum in child nodes 38.66

learning_rate Learning rate 0.031
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The Pearson correlation coefficient was employed to examine the correlation between
the input variables of the All-Day AODES and AOD. Table 4 presents statistics on the rela-
tionship between the input variables of the All-Day AODES and the AOD. The correlation
between PM2.5 and PM10 in ground air quality data was higher. Similarly, the correlation
of BLH and RH in meteorological data also demonstrated high correlation.
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Table 4. Statistics on the relationship between the input variables of All-Day AODES and AOD.

Variable
AHI AOD

Slope Intercept Correlation Coefficient

PM2.5 0.006 0.24 0.598
PM10 0.003 0.217 0.533
SO2 0.007 0.373 0.259
NO2 0.008 0.274 0.424
O3 1.29 × 10−4 0.454 0.018

BLH −1.33 × 10−4 0.627 −0.303
SP 1.01 × 10−5 −0.539 0.097

T2M 0.004 −0.591 0.101
U10 −0.04 0.497 −0.238
V10 0.037 0.464 0.263
RH 0.008 0.189 0.388

2.2.3. System Model Evaluation

This study validated the model from two perspectives: sample and spatial. It employs
two validation methods, as illustrated in Figure 4: sample–based and leave–one–city
cross–validation [50,51].
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1. Sample–based cross–validation involves partitioning the dataset into ten subsets
and performing ten cycles. In each process, nine subsets were used as training data,
whereas the remaining subsets served as validation data. The performance of the final
trained model was evaluated using a test dataset.

2. Leave–one–city cross–validation involves partitioning the dataset according to the
“city” attribute. This study encompasses a total of 13 cities. In each iteration, data
from one city served as the validation set, whereas data from the remaining 12 cities
constituted the training set. During each iteration, the model was trained on the
training set and subsequently evaluated on the test dataset.

After each iteration of the model evaluation process, the model’s performance is
determined by calculating the coefficient of determination (R2) and root mean square error
(RMSE) between the predicted and actual values. Equations (1) and (2) represent the
formulas for R2 and RMSE.

R2 = 1 −

n
∑

i=1
(AODTure,i − AODEstimated,i)

n
∑

i=1

(
AODTure,i − AODAverage

) (1)

RMSE =

√
1
n

n

∑
i=1

(AODTure,i − AODEstimated,i)
2 (2)

3. Results
3.1. Estimation of All-Day AOD
3.1.1. Analytical Comparison of Different Models

Figure 5 presents a scatterplot of the All-Day AODES with sample–based cross–
validation. The x–axis represents the AHI AOD and the y–axis represents the estimated
AOD. In total, 37,989 validation data points were used. Figure 5 shows that the All-Day
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AODES exhibited an R2 of 0.855, an RMSE of 0.134, and a slope of 0.801, indicating good
consistency between the estimated and AHI AOD. However, the All-Day AODES slightly
underestimates the AHI AOD.
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The reliability of the model was evaluated by comparing the cross–validation results
of the All-Day AODES with those of the Random Forest (RF) and LightGBM (LGBM)
models. RF is a decision tree–based ensemble learning method. It constructs numerous
decision trees, each trained on distinct random subsets and features [52]. LGBM employs
histogram–based learning techniques to identify the most informative split point during
each iteration [53]. The primary distinction between the RF, LGBM, and All-Day AODES
models is the assignment of weights and the selection of split points. Table 5 provides
the optimal hyperparameters for the RF and LGBM. Figure 6 shows the scatterplot fitted
to the RF and LGBM models. The RF model exhibited an R2 of 0.824, RMSE of 0.148,
and slope of 0.751. The LGBM showed an R2 of 0.852, RMSE of 0.135, and slope of
0.815. The All-Day AODES exhibited an R2 of 0.855, RMSE of 0.134, and slope of 0.801,
showing an improvement compared to the RF and LGBM models. The All-Day AODES
constructed in this study performed the best among the models, achieving the highest R2

and lowest RMSE.

Table 5. Optimal hyperparameters of RF and LGBM models.

Model Parameter Meaning Value

RF

n_estimators Number of trees 429
max_depth Maximum tree depth 30

max_features Maximum number of features 0.691

min_samples_split Minimum number of samples required
for internal node redistribution 4

LGBM

n_estimators Number of trees 967
max_depth Maximum tree depth 41
num_leaves Number of leaf nodes on a tree 29

learning_rate Learning rate 0.119
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3.1.2. Spatial Extensibility of Different Models

Figures 7 and 8 show the results of the three models (All-Day AODES, RF, LGBM)
using the leave–one–city validation for BTH. The x–axis represents the AHI AOD and the
y–axis represents the estimated AOD. Figure 7 shows that the All-Day AODES exhibited
an R2 of 0.622, RMSE of 0.216, and slope of 0.621 across the 13 cities. The All-Day AODES
showed good spatial extensibility compared to the RF (R2 = 0.609, RMSE = 0.22, and
slope = 0.589) and LGBM (R2 = 0.607, RMSE = 0.22, and slope = 0.645).
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The R2 and RMSE were calculated for each validated city and the corresponding esti-
mated sites. Figure 9 shows the spatial extensibility performance of the three models (RF,
LGBM, All-Day AODES) using the leave–one–city cross–validation method.
Figure 9a–c show multi–radius pie charts with the radius R2 of the validated city. Green
solid circles represent R2 = 0.6 and red dashed circles represent R2 = 0.3. Figure 9a–c show
that seven validated cities in each model exhibit an R2 above 0.6, with none falling below
0.3. Figure 9d–f show the R2 of each site in the validated cities across all models to further
investigate the estimation accuracy of the cities used for validation. A total of 82 estimation
sites were distributed across 13 cities. Analysis of Figure 9d–f reveals a difference in the R2

between the eastern and western cities in BTH, with higher accuracy levels observed at
sites located in the eastern cities. Furthermore, the R2 of southern and northern cities in
BTH also demonstrates a disparity, with a higher accuracy observed at sites located in the
southern cities. Figure 9g–i show multi–radius pie charts with the radius RMSE of the vali-
dated city. The green solid circle indicates RMSE = 0.1 and the red dashed circle indicates
RMSE = 0.25. Figure 9g–i show that the RMSE of the 11 validated cities in each model is less
than 0.25. Figure 9j–l show the RMSE for each estimated site. Figure 9 shows that the spatial
extension method for estimating the AOD using ground air quality and meteorological data
exhibited good estimation accuracy, and the estimation error was within acceptable limits.

Table 6 presents the number of sites in the validated cities with an R2 greater than 0.65
and an RMSE less than 0.2. There were 19 (RF), 21 (LGBM), and 27 (All-Day AODES) sites
with an R2 greater than 0.65, and 17 (RF), 18 (LGBM), and 22 (All-Day AODES) sites with an
RMSE less than 0.2. Figure 9 and Table 6 show that the All-Day AODES had better spatial
extensibility than the RF and LGBM models. The All-Day AODES has a better spatial
performance for verifying rapidly developing cities with a high population density and
heavy industrialization. The urban industrial structure of BTH predominantly consists of
heavy industry, resulting in frequent pollution incidents in this region. The average annual
PM2.5 was around 50 µg/m3 in the heavy industrial cities, exemplified by Shijiazhuang
and Tangshan, while the average annual PM2.5 fell below 35 µg/m3 in the ecological cities,
as represented by Zhangjiakou and Qinhuangdao. Consequently, therefore, the All-Day
AODES has better spatial extensibility in verifying heavy industrialized cities such as
Shijiazhuang and Tangshan. However, Zhangjiakou and Qinhuangdao have limitations
compared with other validated cities. These cities may not demonstrate good spatial
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extensibility, potentially because of substantial variations in their predominant economic
industries and air pollution patterns compared to other cities.
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Table 6. Spatial extensibility of different models in the validated city.

RF LGBM All-Day AODES

R2 > 0.65 19 21 27
RMSE < 0.2 17 18 22

3.2. Verification of All-Day AOD
3.2.1. Comparison with AERONET AOD

To evaluate the estimation accuracy of the model, the Beijing–CAMS in Beijing
and Xianghe AERONET site in Hebei province were selected as the validation sites.
The AERONET solar photometer records observations at three–minute intervals. The
AERONET AOD was filtered by selecting a five–minute window before and after the
clock time and the average value within this window was used as the clock data. These
clock–time data were used to validate the accuracy of the estimates.

The ground air quality sites of Guanyuan and Xianghe No. 1 Middle School, which
are closest to the Beijing–CAMS and Xianghe AERONET sites, were selected as sources for
estimating the AOD. They extracted the AOD at the coordinates of the AERONET sites.
Time matching was performed between the estimated, AHI, and AERONET AOD.

Figure 10 illustrates the absolute errors between the estimated, AHI, and AERONET
AOD. Figure 10a,c show histograms of the absolute error (X−AERONET) between the
estimated, AHI, and daytime AERONET AOD. The red solid line represents the normal
distribution curve fitted to the absolute error between the estimated and AERONET AOD,
whereas the blue dashed line represents the normal distribution curve fitted to the absolute
error between the AHI and AERONET AOD. Figure 10a shows that the average absolute
error between the estimated and daytime AERONET AOD at the Beijing–CAMS site was
0.0537, with a standard deviation (Std) of 0.2256. The average absolute error between the
AHI and AERONET AOD was 0.1289, with an Std of 0.2262. Figure 10c shows that the
average absolute error between the estimated and daytime AERONET AOD at the Xianghe
site was 0.0384, with an Std of 0.2146. The average absolute error between the AHI and
AERONET AOD was 0.0926, with an Std of 0.1873. Figure 10a,c show that the average
absolute error between the estimated and AERONET AOD was lower than that of the AHI,
in which the average difference between the estimated AOD and AERONET was reduced.

Figure 10e shows histograms of the absolute error between the daytime/nighttime
estimated and AERONET AOD. The red solid line represents the normal distribution
curve fitted to the absolute error between the daytime estimated and AERONET AOD,
whereas the green dashed line represents the normal distribution curve fitted to the abso-
lute error between the nighttime estimated and AERONET AOD. The average absolute
error between the nighttime estimated and AERONET AOD was 0.0510, with an Std of
0.1927. The absolute errors between the daytime estimated and AERONET AOD exhibit a
more concentrated distribution. The shape of this distribution aligns more closely with a
normal distribution. Conversely, for the nighttime AOD, the absolute errors were primarily
concentrated within the range of 0.1–0.2.

Figure 10b,d,f show box plots of the absolute error between the estimated and
AERONET AOD. The x–axis represents the AERONET AOD and the y–axis represents the
absolute error. These boxes represent an error range of 25–75%. The median absolute error
is indicated by the solid line at the center of each box. The short lines at the top and bottom
of the box plot represent the 10th and 90th percentiles, respectively. The red circles represent
the mean of the errors within each interval of size 0.05 of the AOD. The blue diamonds
represent the outliers. Figure 10b shows that the estimated AOD at the Beijing–CAMS site
changed from overestimation (AOD < 0.6) to underestimation (AOD > 0.6) with an increas-
ing AOD. The dashed line represents the expected uncertainty of the AHI AOD, denoted as
±(0.1 + 0.3 × AOD) [54–56]. Figure 10b,d show that 91% of the average absolute errors fall
within the expected uncertainty range, indicating that the estimated AOD generally meets
the expectations with a slight deviation. Figure 10f shows that 87.5% of the average absolute
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errors fall within the expected uncertainty range. It indicates that the estimated AOD is
generally as expected, but slightly biased. Notably, an overestimation of the nighttime
AOD is observed at low values (AOD < 0.45).
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3.2.2. Comparison of Time Trends

Figures 11–13 depict the variation in the estimated, AHI, and AERONET AOD. Con-
sidering the temporal coverage of the AHI and AERONET, valid data with the time of
afternoon (16:00) and next morning (7:00–9:00) in local time were selected. Figure 11 shows
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the variation in the three parameters at the Xianghe site from 28 March 2020 22:00 to
30 March 2020 01:00 (UTC). Figures 12 and 13 show the variation in the three parameters
at the Beijing–CAMS site from 2 June 2020 22:00 to 4 June 2020 01:00 and from 14 July
2020 22:00 to 16 July 2020 01:00 (UTC), respectively. During the daytime, the trends of
the estimated, AHI, and AERONET AOD were similar. From the afternoon to noon of
the following day, the variation in the estimated AOD was consistent with the AHI and
AERONET production and elimination processes.
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to 16 July 2020 01:00.

The shaded areas in Figures 11–13 represent nighttime periods. The nighttime AOD
exhibited a nonlinear and complex trend rather than a simple changing pattern. The
complexity of the nighttime AOD is affected by several factors, such as atmospheric
stability at night, emissions from terrestrial sources (urban lighting, heating, and industrial
production), and changes in meteorological conditions [57]. Together, these factors affect
nighttime AOD trends and contribute to their inherent complexity.

3.2.3. Comparison of Spatial Distribution

Figure 14 presents a comparison of the spatial distribution of the true–color image
from the Himawari–8, AHI, and estimated AOD in BTH. Considering the characteristics of
different seasons, Figure 14 selects the time with snow cover in winter, cloudy in summer,
and clear in autumn. Figure 14a shows the true–color image taken by Himawari–8 on
12 January 2020 at 05:00 UTC and Figure 14d shows the distribution of the AHI/estimated
AOD during the same period. The spatial distribution of the estimated AOD was similar
to that of the AHI, with a significantly higher AOD in the southern region than in the
northern region.

Figure 14b,c are true–color images captured by Himawari–8 on 30 May 2020 at 01:00
and 19 September 2020 at 02:00, respectively. Figure 14e,f show the distribution of the
AHI/estimated AOD during the same period. In general, the AOD estimated from the
All-Day AODES had a spatial distribution similar to that of the AHI. However, the AHI
AOD is prone to data gaps owing to clouds, snow, and high surface albedo. In contrast, the
All-Day AODES exhibited better stability. The All-Day AODES provides continuous data
for different meteorological environments.

Figure 14g–i illustrate the disparities between the estimated and AHI AOD. As de-
picted in Figure 14g–i, the spatial disparities of the estimated AOD and AHI are minimal.
However, in Figure 14g, a significant disparity in the estimated AOD at the southern sites
in BTH is observed. This disparity may be attributed to the limited retrieval capabilities of
satellites in snow–covered regions, leading to increased disparities in the estimated AOD.
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(a–c): True–color image from Himawari–8; (d–f): the distribution of the AHI/estimated AOD;
(g–i): the disparities between estimated and AHI AOD.

3.3. Analysis of All-Day AOD

Figure 15 shows the variation in the hourly mean AOD across each city within BTH. As
shown in Figure 15, except for Zhangjiakou and Chengde, all cities displayed similar trends
in their hourly mean AOD variations, with an initial increase, followed by a decrease, and
eventually leveling off, with peak values typically observed around noon. The divergence in
the daytime hourly mean AOD between Zhangjiakou and Chengde is primarily attributed
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to significant disparities in air pollution patterns, industrial structures, and population
distribution between these two cities and the rest of BTH.
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The shaded region in Figure 15 represents nighttime hours. It is evident from this
shaded region that the hourly average AOD exhibited a smoother change during the
nighttime than during the daytime. There are two main reasons for this phenomenon:

1. Reduction in human activity, with reductions in transportation, industrial production,
and other nighttime activities leading to a decrease in airborne particulate emissions.

2. Relative weakening of atmospheric turbulence during the nighttime, which slows the
vertical movement of air, diminishing the diffusion and mixing of aerosols.

4. Discussion

This study proposed a method for estimating the AOD throughout the day using
ground air quality and meteorological data. The proposed method achieved an All-Day
hourly estimated AOD for BTH. Using ground air quality data (PM2.5, PM10, SO2, NO2, and
O3) and meteorological data (BLH, SP, T2M, U10, V10, and RH), we constructed three AOD
models (RF, LGBM, All-Day AODES) to estimate the AOD throughout the day and night.
In a comparison of model performance and spatial extensibility with the RF and LGBM
models, the All-Day AODES showed a sample–based cross–validation accuracy R2 of 0.855,
an RMSE value of 0.134, and a slope of 0.801. The All-Day AODES achieved an accuracy
R2 of 0.622, RMSE of 0.216, and slope of 0.621 using a leave–one–city cross–validation.
The All-Day AODES outperformed both the RF and LGBM models in terms of estimation
accuracy and spatial extensibility. However, the validation of the spatial extensibility of
the model was unsatisfactory for Zhangjiakou and Qinhuangdao. This can be attributed to
the significant differences in air pollution patterns between these and other cities. Most
cities in BTH have industrial structures mainly based on heavy industries. Therefore, large
amounts of industrial emissions have worsened the air pollution. In contrast, Zhangjiakou
and Qinhuangdao, which are crucial ecological conservation areas, maintained good air
quality. The annual average PM2.5 concentration in Zhangjiakou is 23 µg/m3, compared to
34 µg/m3 in Qinhuangdao. Owing to the significant atmospheric differences among the
cities in BTH, cross–validation of the model by excluding one city shows that the model
designed to capture the characteristics of industrial cities’ air lacks spatial extensibility
when adapted to cities with better air quality.

To further verify the accuracy of the AOD estimation, a comprehensive analysis was
conducted to explore both temporal and spatial aspects. The results showed that, in
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terms of the temporal dimension, the estimated AOD was consistent with the trends of
the AHI and AERONET AOD measured data during the daytime. The absolute errors
of the estimated AOD relative to the AERONET sites were relatively small compared
to those of the AHI AOD. The estimated AOD was closer to the AERONET than to the
AHI. Furthermore, when satellite or ground monitoring values are missing during the day,
the estimated AOD improves the temporal coverage and represents temporal variations
more effectively. Simultaneously, the estimated AOD captured complex nighttime AOD
variations. These nighttime changes in the estimated AOD not only coincided with the
generation and elimination processes observed in the AHI AOD and AERONET AOD
but also described the hourly resolution fluctuations in the nighttime AOD. In addition,
the estimated nighttime AOD showed non–monotonic variation. Complex variations in
the nighttime AOD hinder the accurate assessment of indirect aerosol radiative forcing
effects and their impact on climate change. Therefore, the estimated AOD from the All-Day
AODES partially fills the gap in high temporal resolution nighttime AOD monitoring, thus
providing valuable data support for nighttime aerosol research. The spatial distribution
of the estimated AOD was similar to that of the AHI AOD. Notably, the All-Day AODES
can still provide accurate AOD data even when satellite AOD data are missing due to
clouds, snow, and high surface albedo cover. Reasonable use of the estimated AOD can
fill gaps in the satellite AOD data, thereby improving aerosol monitoring and increasing
spatial coverage.

The estimated AOD of the All-Day AODES showed improved temporal completeness
compared to those of the AHI and AERONET AOD. In 2020, the All-Day AODES generated
648,850 data points with up to 90% temporal coverage. Figure 16 shows the temporal
completeness of the AERONET, AHI, and estimated AOD from the All-Day AODES for
two AERONET sites in 2020. The estimated AOD had a data completeness of up to 80%
per hour. Compared to the AERONET and AHI AOD, the temporal completeness of the
estimated AOD from the All-Day AODES was significantly improved. It is worth noting
that the All-Day AODES provided data throughout the night, whereas the AERONET AOD
and AHI AOD did not.
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Although this study proposed a more advanced model for monitoring the AOD
throughout the day, it is necessary to realize its inherent limitations. Firstly, the feasibility of
the All-Day AODES was demonstrated only through experiments using ground air quality
sites in BTH. However, enhancing the experiment with a larger air quality monitoring
network and more ground air quality sites could produce more accurate and refined AOD
data. Secondly, currently common parameters were used. However, other factors such as
aerosol type, aerosol chemistry, surface type, population, and economy may have affected
the experimental results. Expanding the range of parameters can improve the accuracy of
the model. Thirdly, given that this study utilizes daytime AOD for model construction, it
may not sufficiently account for the daily variations in ground air quality and meteoro-
logical data. Future advancements in AERONET and lunar photometer algorithms would



Remote Sens. 2024, 16, 1410 20 of 23

enable the acquisition of nighttime aerosol properties. Finally, the All-Day AODES relies
on ground air quality data; therefore, the estimated AOD is point data. To further explore
the aerosol distribution and trends, it is beneficial to use spatial interpolation techniques or
satellite data to obtain All-Day aerosol data with continuous spatial coverage.

5. Conclusions

The All-Day AODES was constructed using ground air quality data, meteorological
data, and daytime satellite AOD data to estimate the hourly AOD throughout the day in
BTH. Following the validation, several conclusions were drawn.

1. The All-Day AODES achieved an R2 of 0.855, RMSE of 0.134, and slope of 0.801 based
on sample–based cross–validation. Additionally, the All-Day AODES demonstrated
commendable spatial extensibility based on leave–one–city cross–validation, achiev-
ing an R2 of 0.622, RMSE of 0.216, and slope of 0.621. In this study, the All-Day
AODES outperformed the RF and LGBM under two different cross–validations. The
All-Day AODES has a higher estimation accuracy and fitting ability, and can better
capture the differences between different cities.

2. The average absolute error between the estimated and daytime AERONET AOD at
the Beijing–CAMS site was 0.0537 with an Std of 0.2256; the average absolute error
between the estimated and nighttime AERONET AOD at the Beijing–CAMS site was
0.0510, with an Std of 0.1927; and the average absolute error between the estimated
and daytime AERONET AOD at the Xianghe site was 0.0384 with an Std of 0.2146.
The average disparities between the estimated AOD and AERONET are minimal.
A comparison between the estimated, AHI, and AERONET AOD showed that the
average absolute errors between the estimated and AERONET AOD were smaller
than those between the AHI and AERONET AOD. The estimated value was closer to
the AERONET AOD than to the AHI AOD. In addition, 91% of the average absolute
errors of the daytime estimated values were within the uncertainty range of the AHI
AOD, 87.5% of the average absolute errors of the nighttime estimated AOD fall within
the expected uncertainty range.

3. The estimated AOD of the All-Day AODES shows spatial and temporal trends similar
to those of the AERONET and AHI and can more accurately reflect the nighttime
AOD trend.

4. The All-Day AODES showed an enhanced level of temporal completeness. This
compensates for the absence of satellite AOD data and furnishes hourly estimated
nighttime AOD.

In conclusion, the All-Day AODES implements continuous monitoring of the AOD in
BTH and addresses the lack of high temporal resolution monitoring of the AOD during
nighttime. Continuous estimation of the AOD offers valuable data for evaluating the
impact of aerosol radiation and climate change.
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