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Abstract: Traditional GIS-based statistical models are intended to extrapolate patterns of settlements
and their interactions with the environment. They contribute significantly to our knowledge of past
human–land relationships. Yet, these models are often criticized for their empiricism, lopsided spe-
cific factors, and for overlooking the synergy between variables. Though largely untested, machine
learning and artificial intelligence methods have the potential to overcome these shortcomings com-
prehensively and objectively. The northeastern Tibetan Plateau (NETP) is characterized by diverse
environments and significant changes to the social system from the Neolithic to Bronze Age. In this
study, this area serves as a representative case for assessing the complex relationships between settle-
ment locations and geographic environments, taking full advantages of these new models. We have
explored a novel modeling case by employing GIS and random forests to consider multiple factors,
including terrain, vegetation, soil, climate, hydrology, and land suitability, to construct classification
models identifying environmental variation across different cultural periods. The model exhibited
strong performance and a high archaeological prediction value. Potential living maps were generated
for each cultural stage, revealing distinct environmental selection strategies from the Neolithic to
Bronze Age. The key environmental parameters of elevation, climate, soil erosion, and cultivated
land suitability were calculated with high weights, influencing human environmental decisions
synergistically. Furthermore, we conducted a quantitative analysis of temporal dynamics in climate
and subsistence to understand driving mechanisms behind environmental strategies. These findings
suggest that past human environmental strategies were based on the comprehensive consideration
of various factors, coupled with their social economic scenario. Such subsistence-oriented activities
supported human beings in overcoming elevation limitation, and thus allowed them to inhabit wider
pastoral areas. This study showcases the potential of machine learning in predicting archaeological
probabilities and in interpreting the environmental influence on settlement patterns.

Keywords: archaeological predictive modeling; machine learning; settlement patterns; environmental
selection strategies; the northeastern Tibetan Plateau

1. Introduction

The location of settlements is not random but reflects human sensibility, aligning
with landscape attraction and socioeconomic structure [1–4]. Thus, exploring settlement
patterns and uncovering the mechanisms of human environmental strategies is crucial for
interpreting past human–land relationships. Owing to the accumulation of archaeological
data as well as the advancements in computer science over the past few decades, using GIS
technology for digital data analysis has yielded significant achievements for settlement and
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landscape archaeology [5–7]. Archaeological predictive modeling (APM) is a powerful tool
for explaining settlement patterns and environmental causation, and it can be effectively
used as a guide for heritage surveys to assess the likelihood of land to contain new archaeo-
logical sites [8–10]. More recently, innovative approaches, such as machine learning (ML)
and artificial intelligence (AI) approaches, have the potential to enhance APM performance
and to unearth more valuable archaeological insights [11,12].

APM has been developed over 40 years and primarily utilizes binary classification
methods [13,14]. It typically involves dependent factors regarding known sites and ran-
dom points, and independent variables encompassing various environmental factors. The
classical statistical method of logistic regression has been widely used for predictive mod-
eling, but it is prone to underfitting and low accuracy [2,7,10,11,15]. Newer models like
maximum entropy, weight-of-evidence, and deletion/substitution/addition have also been
explored to improve performance and archaeological interpretation [1,3,4,6,16]. However,
these models perform weakly when handling some complex relationships. ML presents
an opportunity to enhance predictive accuracy and to provide richer archaeological inter-
pretability. For instance, Liu simulated the prehistoric agricultural dispersal routes based
on several ML methods in the Tibetan Plateau (TP) and demonstrated that random forests
(RFs) achieved the highest classification accuracy and that logistic regression yielded the
lowest [12]. Guo suggested that gradient ascent algorithms can greatly improve the accu-
racy of logistic regression in AMP [11]. Some similar cases in geological hazard evaluation
have also shown that tree-based models like RFs and XGBoost perform well in accuracy,
robustness, and generalization ability [17–19]. Furthermore, deep learning technology has
rapidly developed in GIS and RS fields to the point that neural networks can better explain
some uncertain “quantum relationships” [20–23]. The application of ML in settlement
archaeology remains scarce, however. Various supervised classification, unsupervised
clustering, and dimensionality reduction technologies can be effectively exploited in ML
to handle and interpret some complex human–environment interaction processes with
new perspectives.

The northeastern Tibetan Plateau (NETP) stands out as a crucial zone for examining
complex human–environmental interactions, particularly during the period from the Ne-
olithic to Bronze Age, as agricultural economies developed and when year-round sedentary
lifestyles dominated [24–27]. This region can serve as an exceptional case study for the
use of ML due to the complex geographic landforms and the course of culture. Chen et al.
proposed a stepwise pattern of human occupation on the TP using a systematic AMS 14C
chronology and archaeological survey [24]. Around 5200 BP, millet farmers began farming
intensively, inhabiting low-elevation regions (<2500 m a.s.l.) of the NETP. Until 3600 BP,
the introduction and growth of trans-continental economies of wheat–barley agriculture
and cattle–sheep pastoral activities acted as a buffer against climate change and facili-
tated sustained human occupation in high-altitude regions (>2500 m a.s.l.) of the TP [24].
This pattern has been further corroborated and enriched by subsequent archaeological
and genetic discoveries [28–30]. Although this occupation timeline has been basically
outlined, the process details and the variation in human behavior across cultures remain
unclear. Furthermore, our existing knowledge has emphasized the unique influence of
elevation in the TP, but other factors crucial for survival, particularly the coexistence of
agricultural and pastoral economies in the NETP, have been insufficiently considered. GIS
combined with machine learning techniques can provide a new method for interpreting
these issues in-depth.

The presence of archaeological settlements indicates sustained human activity in the
past and calls for an in-depth GIS analysis through the integration of digital geographic
data [31,32]. Previous discussions, which primarily relied on GIS visualization and spatial
analysis, have demonstrated that social subsistence in the NETP heavily influenced settle-
ment distribution patterns during different cultural periods [33–35]. On the other hand,
trans-continental cultural exchange and climate fluctuation served as underlying factors
in shaping societal patterns [34–36]. Many studies have explored these perspectives and
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proposed more factors influencing human activities, including hydrological, topographical,
and vegetation factors. For example, d’Alpoim Guedes emphasized that the effective accu-
mulated temperature plays a pivotal role in agricultural cropping [25,37]. Hou and Ma’s
studies proposed that the distance to a river also influences agricultural settlements [35,38].
Liu demonstrated that elevation, vegetation, river distance, slope, and surface fluctuation
collectively influenced ancient migration patterns and settlements in the prehistoric TP [12].
Chen proposed that herder mobility followed an ecological-oriented strategy from the
Bronze to the Iron Age in the TP [39]. Moreover, some studies intending to reconstruct
ancient traffic routes of the TP have tried to integrate various factors to simulate a moving
cost surface [27,40–42]. However, these studies either only considered the influence of
single factors, one at a time, or determined the weights of various geographic factors
through empirical assessment using tools such as the Analytical Hierarchy Process [43].
APM based on available data appears to be relatively objective and comprehensive in
evaluating environmental rules on settlement selection [4]. Using ML models offers the
great advantages of incorporating a wider range of potential factors to enhance accuracy
and of implementing optimal filtering objectively [44].

Our present study focused on dynamic environmental strategies during different cul-
tural periods in crucial areas of the NETP. To achieve this, we undertook a methodological
exploration using supervised classification tree and random forest algorithms to construct
classifiers for archaeological potential prediction and to interpret human environmental
strategies. Additional environmental data that may have potentially influenced settlements
patterns were involved to increase model reliability. Unsupervised Self-Organizing Map
(SOM) techniques were also applied to visually depict the adaptation process. Furthermore,
the driving mechanism behind the human occupation of high-altitude environments of the
NETP was quantitatively analyzed by investigating climate and socioeconomic changes
during the period from the Neolithic to the Bronze Age.

2. Materials and Methods
2.1. Study Area

The NETP is defined in this study as the region where the TP intersects Gansu and
Qinghai provinces (Figure 1). To account for the influence of adjacent areas, a 20 km buffer
zone was added along the border of the TP. The natural environments in the NETP are
diverse, with a complex topography and significant variations in regional landscapes that
are heavily influenced by elevation [45,46]. The elevation in the NETP ranges between 928
and 6818 m, accompanied by a variety of landform types including plains, basins, hills,
and mountains [47]. Based on data from 62 meteorological stations in the NETP, the annual
temperature varies greatly (from −5.1 to 15.1 ◦C), with an average temperature of 4.2 ◦C.
The average annual precipitation ranges from 15 to over 700 mm (http://data.cma.cn,
accessed on 20 March 2024). The area sits in a typical semi-arid and semi-humid junction.
Being situated in a marginal monsoon region, the climate, vegetation, and other landscape
attributes of the TP are sensitive to global environmental change [48]. Furthermore, being
centrally positioned in the eastern segment of the Silk Road, the NETP serves as a pivotal
hub for continental cultural exchange and agricultural dispersal, with many exotic elements
having emerged early in this region early on [48–50].

http://data.cma.cn
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Figure 1. The study area and archaeological site distribution across different cultural periods from
the Neolithic to Bronze Age.

2.2. Archaeological Context and Data

By reviewing the archaeological cultural lineage and features from the Neolithic to
Bronze Age in the NETP, we have identified three major cultural periods: the Yangshao-
Majiayao (YS-MJY) period, the Qijia (QJ) period, and the Kayue-Xindian-Nuomuhun
(KXN) period [51]. The YS-MJY period (5500–4000 BP) in the Neolithic era encompassed
major cultures such as the Later Yangshao culture (5500–5000 BP), the Majiayao culture
(5300–3900 BP), and the Zongri culture (5600–4000 BP) [51,52]. Among these, the Majiayao
culture, which derived from the Yangshao culture, was the most widely distributed in
the NETP. The YS-MJY period contains three phases: the Majiayao phase (5300–4600 BP),
the Banshan phase (4600–4300 BP) and the Machang phase (4300–3900 BP) [28,53]. The
Zongri culture (5600–4000 BP) was an aboriginal culture that coexisted and interacted with
Mjiayao culture and was predominantly distributed in the higher altitudes of the Gonghe
and Guide basins [29,51]. The QJ culture (4300–3600 BP) was a transitional culture spanning
the Neolithic to Bronze Age [54,55]. In the early period of QJ culture (4300–4000 BP), no
bronze artifacts were found, while in the middle and later periods (4000–3600 BP), bronze
artifacts were discovered in many sites, which led to the latter period being classified as
the beginning of the Bronze Age [56–58]. However, the cultural features and characteristics
of QJ culture were consistent throughout the early, middle, and late periods [57,59]. After
3600 BP, the uniform culture separated into multiple cultures. The NETP mainly included
the Kayue culture (3600–2100 BP), the Xindian culture (3600–2500 BP), and the Nuomuhong
culture (3400–2500 BP) [60,61]. These cultures are typical of the Bronze Age cultures and
influenced by QJ culture [58,62,63].

The data used in this study, which include site locations and cultural attributes from
the Neolithic to the Bronze Age, are derived from the Chinese Cultural Relic Atlas, a digital
database constructed using map scanning that can be accessed on the internet [64–66]. This
dataset comprises a total of 3168 records in our study area. Most of these sites represent
inhabited sites, and the remaining small parts are burial sites. Here, we unified all of the
sites as settlements because both indicate evidence of sustained human activity and can
be considered as parts of a ‘settlement’ in a broad sense. Moreover, burials were typically
performed close to living areas during the Neolithic to the Bronze Age in the NETP [67–69].
The location quality of the data was also evaluated by cross-referencing with the precise
locations of known archaeological sites. These known sites were identified using 14C
data; these data were also used in the temporal analysis in Section 4.2. In addition, we
simulated 1600 random points as non-sites. To ensure the validity of these random points,
these non-site points were situated outside a 5 km buffer area surrounding the actual sites
because prehistoric human activity was generally concentrated within approximately 5 km
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of settlements [70]. Using random points as virtual sites is a widely used method that
is comparable to the rational selection of an environment by humans [1–16]. As a result,
the dependent variables used for the model include four categories: YS-MJY (n = 766), QJ
(n = 733), KXN (n = 1649), and non-sites (n = 1600).

2.3. Environmental Data

We considered six types of geographical and environmental factors, encompassing a
total of 16 variables. These factors included terrain, vegetation, hydrology, soil, climate,
and agricultural suitability, all of which have the potential to influence human activity. For
example, a high elevation site faces low temperature and low oxygen, which influence hu-
man physiology and survival [71]. Other terrain factors may impact human mobility costs,
light exposure, drainage, air circulation, or disasters [10,40,41]. Vegetation and hydrology
play crucial roles in determining the availability of natural resources and water. Soil and
climatic conditions heavily influence human agricultural practices. Land suitability is a
composite indicator assessing both cultivated land suitability and pastoral land suitability.
These two indictors determined farmers’ and herders’ subsistence-oriented activities [39].
Following the method of Yao et al. [72], we classified agricultural and pastural areas into
four levels: high, moderate, marginal, and unsuitable. Class thresholds were established
using the Jenks class method [73]. For further details, see Supplementary Materials. For
the geographic data, most of the preprocessing and data extraction processes were imple-
mented in R, which is available in GitHub. For a comprehensive overview of data sources
and processing methods, specific details are shown in Table 1.

Table 1. Data introduction, preprocessing, and sources.

Data Variables Type Resolution Time
Period Preprocess in R/ArcGIS 10.8 Data Sources

Terrain

Elevation Continuous 90 m 2000 Original digital elevation model
(DEM) data

https://www.gscloud.cn
(accessed on 10 January 2024)

Slope Continuous 90 m 2000 Slope processing DEM data reprocessing
Aspect Categorical 90 m 2000 Aspect processing DEM data reprocessing

Fluctuation Continuous 90 m 2000 Focal statistics within 20 ha. DEM data reprocessing
Curvature Continuous 90 m 2000 Slope processing for slope DEM data reprocessing

Vegetation

Vegetation types Categorical 1:1,000,000 1990s None https://www.resdc.cn
(accessed on 10 January 2024)

NDVI (normalized
difference

vegetation index)
Continuous 1000 m 1998–2018 Multi-year averaging https://www.resdc.cn

(accessed on 10 January 2024) [74]

Land
suitability

Pastoral land
suitability Continuous 1000 m 2018 Interpolate using Focal statistics https://data.tpdc.ac.cn (accessed on

10 January 2024) [75]
Cultivated land

suitability Continuous 1000 m 2018 Interpolate using Focal statistics https://data.tpdc.ac.cn (accessed on
10 January 2024) [75]

Hydrology

Distance to
Permanent River Ordered Categorical 1:1,000,000 2014 Buffer analysis https://data.tpdc.ac.cn (accessed on

10 January 2024) [76]
Distance to

Intermittent River Ordered Categorical 1:1,000,000 2014 Buffer analysis https://data.tpdc.ac.cn (accessed on
10 January 2024) [76]

Distance to Lake Ordered Categorical 14.5 m 2000 Buffer analysis https://data.tpdc.ac.cn (accessed on
10 January 2024) [77]

Soil
Soil types Ordered Categorical 1000 m 2010 None https://www.resdc.cn (accessed on

10 January 2024)

Soil erosion Categorical 1000 m 1995 None https://www.resdc.cn (accessed on
10 January 2024)

Climate

Mean annual
temperature (MAT) Continuous 1000 m 1998–2017 Multi-year averaging https://data.tpdc.ac.cn (accessed on

10 January 2024) [78]
Mean annual

precipitation (MAP) Continuous 1000 m 1998–2017 Multi-year averaging https://data.tpdc.ac.cn (accessed on
10 January 2024) [78]

2.4. Creating the Models

Through preliminary testing, RFs demonstrated excellent performance in terms of
classification accuracy, robustness, and interpretability. Numerous similar studies have
also reported these advantages, and the RF model has been widely applied for spatial
prediction [12,17,18,79]. In our current study, we constructed a multi-classification RF
model to predict cultural potential probabilities in a landscape scale across the entire NETP.

https://www.gscloud.cn
https://www.resdc.cn
https://www.resdc.cn
https://data.tpdc.ac.cn
https://data.tpdc.ac.cn
https://data.tpdc.ac.cn
https://data.tpdc.ac.cn
https://data.tpdc.ac.cn
https://www.resdc.cn
https://www.resdc.cn
https://data.tpdc.ac.cn
https://data.tpdc.ac.cn
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An explanatory classification tree was also employed for archaeological interpretation.
The modeling process is shown in Figure 2. To comprehensively explore the influence of
multiple variables on settlement selection, we employed an unsupervised SOM to further
investigate landscape differences from the Neolithic to Bronze Age. The main R packages
used are introduced in Table 2.
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Table 2. Software/packages version, usage, and references.

Software/Packages Version Usages References

Software
ArcGIS 10.8 Data preprocessing; cartographic visualization https://www.esri.com

(accessed on 10 January 2024)
R Studio 2023.09.1 +494 Write and edit script [80]

R 4.3.2 Modeling, programming [81]

R packages

caret 6.0-94 Construct classification tree, model validation [82]

tidyverse 2.0.0 Visualization, data reading, cleaning,
and reshaping [83]

mlr 2.19.1 Construct RF, hyperparameter optimization,
Cross-Validation [84,85]

kohonen 3.0.12 Construct SOM [86,87]
sp 2.1-3 Data preprocessing [88]

raster 3.6-26 Geographic data analysis [89]

2.4.1. Classification Tree

The classification tree (i.e., decision tree) established a tree-like structure to depict
the relationships between features (independent variables) and classification outcomes.
The prevalent algorithm for building classification trees is through a binary recursive
partitioning (rpart). This algorithm considers all predictor variables and selects those that
differentiate between categories effectively [90]. The process involves iteratively splitting
the data into partitions and further splitting the data up further on each of the branches
until each subset belongs to the same label. The standard techniques for selecting the
best features are based on the Gini index gain, which aims to maximize the reduction in
impurity. Pruning is often necessary to optimize the tree. Classification trees offer easy
interpretability, as they provide straightforward explanations of decision paths. However,
they focus on local information, so there is a risk of overfitting. Hence, these trees often
serve as relatively weak classifiers [44,91].

Gini = 1 −
K

∑
1

p(Xk)
2 (1)

https://www.esri.com
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Gini gain = parent node Gini – child node Gini (2)

• K: Number of classes;
• Xk: Class k; k = 1, . . ., K;
• p(Xk): The classification probability of Xk.

2.4.2. Random Forests

The RF model is a popular ensemble machine learning algorithm making use of the
“bagging” strategy and is usually used to boost the performance of decision trees [92].
The core concept involves randomly selecting samples as training datasets to construct
decision trees. At each split node of these trees, features are also randomly selected. By
repeating those random sampling processes, multiple decision trees are generated. Each
decision tree that constitutes the RF model will predict an output result, and ultimately, the
voting outcomes of each tree determine the final result. The unsampled data in each tree
training process can be used to validate the model, generating “out-of-bag (OOB) errors”
to verify the model’s accuracy. The voting results of multiple trees also determine the
classification probability. The importance of each variable is determined by calculating
the average decrease in Gini impurity across all decision trees in the RF model. In all,
the RF model effectively solves the overfitting problem of a decision tree and improves
model performance. The model is relatively robust and provides an interpretable variable
importance ranking [44]. The RF model has now been widely used in geohazard assessment,
paleoenvironment reconstruction, and remote sensing interpretation [12,17,18,79].

Before model training, variable selection and parameter optimization should be car-
ried out to ensure that different algorithms perform classification tasks under the optimal
variables and parameters. A feature evaluation strategy employing a filter method was
used to exclude factors with a Pearson correlation coefficient greater than 0.8. This helped
mitigate the impact of strong multicollinearity on model performance. Parameter optimiza-
tion was carried out using random search and K-fold cross-validation methods (with K set
to 5). In the random search method, hyperparameter values were randomly selected from
a predefined range for each iteration. This method did not rely on exhaustive searching
through all possible hyperparameter combinations, making it computationally more effi-
cient [44,93]. By randomly sampling from the parameter space, the random search method
had the potential to discover optimal or near-optimal hyperparameter configurations [44].
The K-fold cross-validation (CV) method was used to assess the performance of a model
and to estimate its generalization error. The dataset was divided into K subsets (or folds),
and the model was trained and evaluated K times, each time using a different fold as
the validation set with the remaining folds as the training set. The performance accuracy
was calculated as the average of the performance scores across all K folds. Combining
random search with K-fold CV methods for parameter optimization involved performing
random search iterations when evaluating each hyperparameter configuration using the
CV method [44,93].

2.4.3. Model Assessment

We used OOB, holdout validation, and K-fold CV methods to examine the RF model
classification performance. The OOB error was generated using the RF model. Holdout
validation was conducted, with 80% as the training set and 20% as the test set. To avoid
statistical coincidence, the K-fold CV method was also applied, as mentioned above. We
set K = 10 and repeated the sampling process five times. The model performance was
assessed using accuracy, confusion matrix, kappa, and the AUC. The confusion matrix
was used to evaluate the performance of a classification model by comparing the model’s
predictions against the actual labels. Kappa measures the model’s performance beyond
random guessing in a classification task [94]. The AUC, “area under the receiver operating
characteristic (ROC) curve”, represented the overall performance of the classification
models [95,96]. The ROC curve was the graphical representation of the true positive
rate versus the false positive rate at different classification thresholds [95]. In the context
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of multi-class classification, the AUC is computed by treating each class as the positive
class and all others as the negative class, thus resulting in a set of binary classification
problems [95]. When the kappa and AUC values are closer to 1, the model performs
better [94].

To further verify the model predicting performance, we introduced the Kvamme
gain index, which is widely used in APM assessing and focuses on balancing the ratio of
true positives to false positives [13,97]. As the gain approaches 1, the predictability of the
model increases.

Gain = 1 − pm/ps (3)

• pm is the ratio of the probability area to the total study area;
• ps is the ratio of the number of sites in the probability area to the total number of sites.

2.4.4. Self-Organizing Maps

Self-Organizing Maps (SOMs) are unsupervised learning neural networks applied for
clustering, mapping, and non-linear dimensionality reduction [98–100]. They were inspired
by biological models of neural systems from the 1970s [98]. SOMs have two layers: the
input layer and the output layer. The input layer represents a high-dimensional dataset,
such as the 16-dimensional features used in this study. The SOM (output layer) is typically
visualized as a two-dimensional sheet with neurons arranged in a k × l lattice, where each
element represents a neuron node. These neural networks employ a competitive learning
approach, gradually optimizing the network by competition between neurons or nodes.
Hence, high-dimensional data based on similarities within the input dataset can be mapped
to nearby nodes in the two-dimensional space.

We assumed an input data of size (M, N) where M is the number of training examples
and N is the number of features in each example. The following steps outline the self-
organization process in Self-Organizing Maps (SOMs):

Initialization: Create a k × l lattice as a SOM grid. All SOM nodes are arbitrarily
positioned to random values, usually using small numbers.

Competition: A random input vector m is selected, and the Euclidean distance between
m and each neuron node in the SOM grid is calculated. After calculating the distances, the
neuron closest to the input vector m is identified. This neuron is called the Best Matching
Unit (BMU) or winner node.

Cooperation: The cooperation phase begins after finding the BMU. In this phase,
the BMU’s neighbors are updated. The neighborhood is defined using a neighborhood
function h, which quantifies the degree to which a neuron can be considered a neighbor of
the winning neuron. The basic principle is that neurons closer to the winning node have a
greater updating range, while those further away have a smaller update amplitude. The
Gaussian function (Equation (4)) is commonly used to assess the influence of the BMU on
the neighboring neurons.

h(d(i, j)) = e−
d2(i,j)

2σ2 (4)

• d(i, j): distance between neighbor j and the winning neuron BMU i.
• σ: the standard deviation of the Gaussian function.

Adaptation: Here, the weights of all neurons are updated according to the neighbor-
hood function h:

Wj(n + 1) = Wj(n) + αhij (d (m, Wj(n)) (5)

• n represents the nth iteration;
• m is the select input vector;
• Wj(n) is the weight of neighbor neuron j at iteration nth;
• i represents the BMU;
• α is the learning rate;
• d is a distance function.



Remote Sens. 2024, 16, 1454 9 of 23

Iteration: after completing one iteration (incrementing the number of iterations n + 1),
the SOM returns to the competition step until the set number of iterations is met.

This technology was employed to understand the occupation process at different
cultural stages in the NETP. Primary hyperparameters were set as follows: learning rate α

from 0.05 to 1, iteration numbers rlen = 5000, size of the grid k × l = 20 × 20, topological
structure set to “rectangular”, neighborhood function h set to “gaussian”. SOMs can
effectively handle complex data. They are good for visualization and allow people to reduce
complex problems with their easy interpretation. Now, SOMs have been successfully used
to assess the grade of settlement [101]. But SOMs are not suitable for processing small
amounts of data; hence, a typical principal component analysis (PCA) was used as a
supplementary method for analyzing small amounts of data in the discussion part [100].

2.4.5. Principal Component Analysis

Principal component analysis (PCA) is a linear dimensionality reduction technique
widely applied in exploratory data analysis, visualization, and data preprocessing. It
can extract important information and eliminate redundant (intercorrelated) data. The
main steps of PCA are as follows: (1) Data standardization. (2) Covariance matrix com-
putation: the covariance matrix of the standardized data is calculated, representing the
relationships between different features. (3) Eigenvalue decomposition: the covariance
matrix is decomposed into its eigenvectors and eigenvalues. (4) Selection of principal
components: the eigenvectors corresponding to the largest eigenvalues are selected as
the principal components, determining the directions of maximum variance in the data.
(5) Projection: the original data are projected onto the selected principal components to
obtain the lower-dimensional representation of the data. (6) Visualization: the top two or
three principal components are used to construct 2D or 3D PCA score maps.

3. Results
3.1. Data Assessment and Model Optimization

By comparing the locations of 72 known sites with those in the ‘Chinese Cultural
Relic Atlas dataset’, we calculated the following positional deviation curves (Figure 3).
The results show that ~60% of the site locations have a deviation within 1000 m and
~80% of the site locations have a deviation within 2000 m. This level of error might affect
the interpretation of the microtopographic environment to some extent, but it minimally
impacts the understanding of the broader, macroscopic distribution patterns. Hence, it
was decided to construct a predictive model with a resolution of 1 km to achieve a reliable
prediction in landscape scales.

Remote Sens. 2024, 16, x FOR PEER REVIEW 10 of 24 
 

 

of the site locations have a deviation within 2000 m. This level of error might affect the 
interpretation of the microtopographic environment to some extent, but it minimally im-
pacts the understanding of the broader, macroscopic distribution patterns. Hence, it was 
decided to construct a predictive model with a resolution of 1 km to achieve a reliable 
prediction in landscape scales. 

 
Figure 3. Site location validation using known site locations. 

After calculating the Pearson correlation coefficient matrix of variables, we found 
fluctuations that showed a high correlation with slope and that temperature highly corre-
lated with elevation (Figure S3). We excluded fluctuation and temperature factors in the 
modeling. The results of the hyperparameter optimization of the RF model indicate that 
the number of decision trees was set to 926 (ntree = 926), the number of features randomly 
sampled on each node was set to 5 (mtry = 5), and the minimum number of samples al-
lowed on leaf nodes was set to 20 (nodesize = 20). 

3.2. Model Checking and Archaeological Potential Predictions 
The classification accuracy, kappa, and AUC values for the out-of-bag (OOB), hold-

out, and 10-fold CV methods are summarized in Table 3. All CV results from the stratified 
10-fold CV method, repeated five times, are presented in Table S1. The confusion matrix 
heatmap is displayed in Figure 4. The classification accuracy for distinguishing non-sites 
exceeded 98%, and the accuracy for the KXN culture was also high at ~85%. The YS-MJY 
culture had a lower accuracy and the QJ culture had the lowest accuracy. This indicates 
that the predictions for the distributions of sites/non-sites and of KXN sites were more 
reliable. 

Table 3. Model classification performance results using different validation methods. 

 Accuracy Kappa AUC 
OOB 74.35% 0.6337 - 

Hold out 73.04% 0.6171 0.8607 
Mean value of CV 74.21% 0.6320 0.8952 

Figure 3. Site location validation using known site locations.



Remote Sens. 2024, 16, 1454 10 of 23

After calculating the Pearson correlation coefficient matrix of variables, we found
fluctuations that showed a high correlation with slope and that temperature highly corre-
lated with elevation (Figure S3). We excluded fluctuation and temperature factors in the
modeling. The results of the hyperparameter optimization of the RF model indicate that
the number of decision trees was set to 926 (ntree = 926), the number of features randomly
sampled on each node was set to 5 (mtry = 5), and the minimum number of samples
allowed on leaf nodes was set to 20 (nodesize = 20).

3.2. Model Checking and Archaeological Potential Predictions

The classification accuracy, kappa, and AUC values for the out-of-bag (OOB), holdout,
and 10-fold CV methods are summarized in Table 3. All CV results from the stratified
10-fold CV method, repeated five times, are presented in Table S1. The confusion matrix
heatmap is displayed in Figure 4. The classification accuracy for distinguishing non-sites
exceeded 98%, and the accuracy for the KXN culture was also high at ~85%. The YS-MJY
culture had a lower accuracy and the QJ culture had the lowest accuracy. This indicates that
the predictions for the distributions of sites/non-sites and of KXN sites were more reliable.

Table 3. Model classification performance results using different validation methods.

Accuracy Kappa AUC

OOB 74.35% 0.6337 -
Hold out 73.04% 0.6171 0.8607

Mean value of CV 74.21% 0.6320 0.8952
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By considering archaeological site location deviation and variable raster resolution,
the prediction probabilities were presented with a 1 × 1 km resolution. All geographic
raster data were converted into 1 × 1 km resolution using an averaging process. Then, the
established model was employed to predict classification probabilities for four dependent
categories. The results are displayed in Figure 5. Figure 5a illustrates the potential of
archaeological sites, distributed on a map, generated by 1 − p (non-site). Areas where p
(non-site) < 0.5 were determined as high archaeological potential patches. The results of
the archaeological prediction displayed a high Kvamme gain of 0.89, thus indicating that
the RF model had a high predictive value for the APM. But it should be noted that this
prediction presents a landscape-scale archaeological probability estimation at a resolution
of 1 km, rather than pinpointing specific archaeological sites. The results should be verified
by future archaeological investigations. Predictions were also generated for the different
cultural potentials. Although these maps generally aligned with the distribution of the
original sites, the reliability should be criticized for lower classification accuracy, especially
for YS-MJY and QJ periods (Figure 5b).
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Moreover, the importance of these variables of the four-classification model was
ranked based on mean Gini decrease, which is displayed in Figure 4d. To enhance inter-
pretability, importance rankings were calculated for the three-classification model (YS-MJY,
QJ, and KXN cultures) and the binary classification model (sites and non-sites). These
can be found in Figure S4. All models agreed that the major four factors were elevation,
cultivated land suitability, precipitation, and NDVI. Soil erosion degree showed significant
importance in the binary classification model.

3.3. Geographic Factor Variation between Different Categories

The violin and box plots visually depict the distribution of six crucial variables for the
various cultural phases and non-sites (Figure 6). Non-sites exhibited significant disparities,
which represented environments that were excessively harsh for human survival. The
elevation gradually increased across the different cultural stages, while the MAT decreased,
and the MAP fluctuated around 400 mm. Soil erosion types displayed a distinguish
boundary for sites and non-sites. The main sites were located in moderately cultivated
land suitability areas. The NDVI showed a slight increase from the Neolithic to Bronze Age.
Vegetation coverage revealed a decline in forest percentage from the Neolithic to the Bronze
Age. At the same time, the pastoral area (steppe, grassland, meadow, shrub) increased, and
the percentage of cultivated area decreased, according to current patterns (Figure 4).
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Figure 6. Single factor comparison of several important variables.

The classification tree figure (Figure 7) exhibits the relationship between environment
and culture. Soil erosion was a primary factor, serving as a “root” to effectively distinguish
between most sites and non-sites. Elevation also played an important role, with a boundary
of 3363 m to distinguish non-sites, and a boundary of 2489 m to distinguish KXN cultural
sites. Below the 2489 m elevation limit, cultivated land suitability became crucial, with
a threshold of 58 distinguishing between the YS-MJY and KXN cultures. These results
provide strong archaeological interpretability and offer a more objective partition threshold
than previous studies have.

The SOM method is an unsupervised method focusing on the geographic environ-
ments of sites, and sites with similar factors are grouped together. We analyzed all ge-
ographic variables and the four important variables, respectively, and generated almost
identical results. The findings showed distinguished environmental boundaries in Figure 8.
The YS-MJY, QJ, and KXN cultural sites almost coexisted with a lower elevation and suit-
able environments. Many KXN cultural sites were the first to break the boundary and to
develop in high-elevation areas with harsher environments. Non-site points undoubtedly
occupied cells in extremely harsh environments, further establishing a boundary between
sites and non-sites.



Remote Sens. 2024, 16, 1454 13 of 23

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 24 
 

 

shrub) increased, and the percentage of cultivated area decreased, according to current 
patterns (Figure 4). 

 
Figure 6. Single factor comparison of several important variables. 

The classification tree figure (Figure 7) exhibits the relationship between environment 
and culture. Soil erosion was a primary factor, serving as a “root” to effectively distinguish 
between most sites and non-sites. Elevation also played an important role, with a bound-
ary of 3363 m to distinguish non-sites, and a boundary of 2489 m to distinguish KXN cul-
tural sites. Below the 2489 m elevation limit, cultivated land suitability became crucial, 
with a threshold of 58 distinguishing between the YS-MJY and KXN cultures. These re-
sults provide strong archaeological interpretability and offer a more objective partition 
threshold than previous studies have. 

 
Figure 7. Classification tree for different cultural sites and non-sites. Each leaf node displays the 
predicted category, the proportion of each class within this leaf node, and the proportion of all sam-
ples within this leaf node. 

Figure 7. Classification tree for different cultural sites and non-sites. Each leaf node displays the
predicted category, the proportion of each class within this leaf node, and the proportion of all
samples within this leaf node.
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4. Discussion
4.1. Environmental Selection Strategies across Different Cultural Stages

Archaeological culture is an assemblage of past artifacts and remnants sharing sim-
ilar social features, and it encompasses artifacts and technology, subsistence economy,
settlements, and burial patterns within a specific period and region [102]. The settlement lo-
cations of each type of culture always follow certain rules [103]. In the NETP, models show
a strong connection between geographic environments and settlement locations. Based
on traditional binary sites/non-sites APM, this study further explored the application of a
multi-classification model in examining the environmental differences between cultural
stages. The importance ranking of variables generated by the RF model offered a new
insight for interpreting human environmental selection strategies.

The binary model for sites and non-sites revealed a clear human sensibility, as com-
pared to random points located away from human settlements. The top five variables in the
importance ranking were as follows: soil erosion > elevation > cultivated land suitability
> precipitation > NDVI > vegetation type. Regarding the three-classification model for
different stages, YS-MJY and QJ cultural sites exhibited lower accuracy. By combining
the SOM results, we observed that YS-MJY, QJ, and part of the KXN cultural sites shared
similar environmental strategies at lower elevations with a suitable environment and rich
vegetational area, while the rest of the KXN cultural sites adapted to more challenging
altitude environments. The top five variables in ranking were elevation > precipitation
> cultivated land suitability > pastoral suitability > NDVI. This ranking suggests that
the KXN culture primarily overcame these environmental limitations and exhibited new
adaptations to some extent. All models indicated that elevation had great importance.
This aligns with the fact that elevation largely dictates the local environment and sets the
boundaries for human habitation in the NETP [71,104]. Cultivated land suitability also
played an important role. This metric can even indicate the suitability for human habitation
in an agricultural society [72]. Soil erosion was assigned greater weight in distinguishing
between sites and non-sites because some special areas with water and freeze-thawing
erosion are permanently uninhabitable. Although temperature was excluded from our
models, it remains important for human settlements. Temperature is strongly correlated
with elevation (R2 = 0.95). Numerous studies have demonstrated its crucial role in crop
growth in the NETP, especially in the limited cultivation of millet in lower elevation valley
zones [25,37,105–107]. Precipitation can also influence farming, vegetation, and land suit-
ability. Human societies sensibly respond to climate change by selecting habitats adapted
to their socioeconomic needs [108].

It should be noted that the present model was developed based on modern environ-
mental datasets. This is critical because certain factors, such as vegetation, land suitability,
and climate, have experienced instability over thousands of years. This challenge is
commonly faced in all ancient simulations, as accurately reconstructing past surface envi-
ronmental data is exceedingly difficult. Although some studies argue that slight changes
in temporal environments can be ignored, our study considered this issue from the per-
spective of relative spatial differences. We highlighted the relative spatial differences in
geographic environments, particularly in the NETP region where elevation dominated the
environment. These differences were more robust in a stable climate system over the past
millennia. According to quantitative climate reconstruction curves, temporal fluctuations
matter less than spatial variance in the NETP [109,110]. ML methods also have the potential
to identify these relative differences.

Additionally, data error may limit a precise analysis on micro topographies. In this
study, slope, aspect, and curvature consistently ranked lower. This does not necessarily
indicate their weak impact on settlement location, but the results may be limited by data
precision. As a result, our study focuses on predicting site probabilities at a landscape scale
rather than precisely identifying archaeological potential sites. The RF model can accept
more geographic factors and provide an objective importance ranking. It encompasses high
robustness as well as sensitivity to variable differences in classification [44,92]. For example,
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the slight differences in precipitation and cultivated land suitability between categories
cannot be captured by a single factor comparison, but they may be captured by a higher
ranking in RF models. However, tree-based algorithms focus on the effects of individual
factors and may miss interactions between parameters. Although this may be conducive
to the archeological interpretation of human behaviors, it may be less conducive to the
accurate forecasting of archaeological potential. More AI or ML methods, such as popular
deep learning methods and novel environmental data, could be explored to enhance
model performance and to simulate complex or uncertain human–land relationships in the
future [111,112].

Last but not least, it is undeniable that the database of the ‘Chinese Cultural Relic Atlas’
used in this study was obtained through archaeological surveys rather than systematic
excavations. The quality and comprehensiveness of the data are finite. Some criticism
has been raised regarding its rough cultural division and loose judgments on relics [113].
But the current understanding of cultural distribution from the Neolithic to the Bronze
Age in the NETP is still within the framework of the ‘Chinese Cultural Relic Atlas’ data.
Our analysis is indeed limited to the current archaeological knowledge available. The
simulation results presented in this paper outlined a multistage process that aligns with
current archaeological knowledge.

4.2. Socioeconomic and Climatic Changes Explain Settlements Dynamics in the NETP

The model results offer an objective but somewhat bland perspective, and it is crucial
to interpret them in conjunction with practical archaeology. Previous studies have proposed
several perspectives primarily focused on socioeconomic and climatic changes [24,28,35,36,
114,115]. In the present study, we further analyzed this process by quantitively analyzing
subsistence and climate dynamics across three cultural periods.

We utilized published data on 14C chronology, archaeological animal and plant re-
mains, and reliable climate reconstruction data [109,110,116,117]. Each accurate 14C data
range (95% confidence interval) was intersected with the climate curves derived from the
Delingha tree ring MAP reconstruction and the TP simulated records of MAT [109,110].
The mean value of each fragment represents the climate context within one 14C age range.
All climate fragments corresponding to 14C data ranges were attributed to each culture,
and the results are displayed in Figure 9. This method presents the climate background
of different cultures more accurately and intuitively and avoids the illusion of period
comparison. The climate context exhibited distinct boundaries, with noticeable changes
during the QJ cultural period that were characterized by a trend towards colder and drier
conditions. This climate change pattern was verified at the regional and global scales as
well [48,118–121]. Additionally, social subsistence economies were quantitatively analyzed
using animal and plant remains through PCA and SOM, respectively (Figure 10). Obvi-
ously, subsistence strategies in the YS-MJY period were dominated by millet and wildlife
resources. The QJ expanded this subsistence to include cattle and sheep livestock, and
minor sites adopted barley and wheat agriculture. Most of the KXN sites shifted to barley-
and wheat-dominated agriculture and pastoral subsistence. By combining the rules gov-
erning settlement location choices with temporal climate and social changes, we deduced
the following dynamics in the human–environment interactions.
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Neolithic YS-MJY cultural migrations introduced innovative technologies, including
millet agriculture, painted pottery, and domesticated pigs around 5200 BP. They often
interacted with indigenous foragers, who lived at higher elevations through trade and
intermarriage [24,28,29]. On a regional scale, settlement locations were closely tied to
agricultural practices and farmers engaged in year-round millet agricultural activities in
the low elevation (<2500 m a.s.l.) area of Hehuang valley with suitable hydrothermal
conditions [37]. Moreover, the YS-MJY cultural period had a warmer and wetter climatic
context. This context was more conducive to agricultural development and also provided
abundant wild resources. Zooarchaeological evidence revealed a high consumption of wild
animals, along with scattered domestic pig remains [122,123]. The Shannashuzha sites in
the marginal NETP even found tropical animal remains, revealing that the prevalence of
high-intensity hunting persisted during the Majiaoyao period [123,124]. Therefore, YS-MJY
cultural settlers selected landscapes with lower elevation and higher forest cover, which
likely suggests a subsistence strategy based on millet cultivation and hunting of wild
animals. Pollen and archaeological charcoal data also support the idea that YS-MJY period
sites (before 4300 BP) had a high probability of being surrounded by forests [125–127].

The QJ culture inherited millet agriculture and developed an increasingly complex
social structure. Its duration overlapped with the YS-MJY cultur due to inter-regional
synchronized developments. New technologies, such as bronzeware, jade carving and
architecture, and intricate social practices, such as graded burials, weapons, and sacrificial
activities, developed during this period, reflecting the heightened social resilience of the QJ
culture [53,57,128,129]. However, this period also faced climatic challenges due to the global
4.2 ka cold and dry climate events [62,63]. This period intensified competition for food
resources and led to a decrease in millet planting probabilities based on ecological niche
considerations [25]. Pollen evidence from Qinghai Lake and Caodalian Lake also indicates a
transition from forest to grassland [125,126]. However, the number and distribution of sites
were similar to those of the YS-MJY culture, suggesting that the QJ cultural living space
was not in decline in the NETP. This is because trans-continental cultural exchange brought
exotic barley and wheat crops, as well as cattle and sheep livestock, around 4000 BP [130].
The nearby locations and climatic deteriorations prompted the QJ cultural group to adopt
novel subsistence strategies to alleviate population pressure. The adoption of barley and
wheat was gradual, according to small site findings and later dates [131]. In contrast, the
utilization of livestock, such as cattle and sheep, was rapid and widespread during this
stage [132]. Climate change potentially led to a decline in wild animals, which would have
made the novel domesticated animals more appealing. Hence, the pastoral subsistence
economy emerged early, likely as a supplement to millet-based economies, thus supporting
the QJ cultural people in resisting climate change. Ethnography suggests that today’s high-
altitude groups utilize similar strategies, engaging in animal husbandry to supplement
agriculture [133].

After 3600 BP, the uniform culture broke up into several branches of Kayue, Xin-
dian, and Nuomuhong (KXN) cultures. Although the climate continued to be cold and
dry, the adaptations to cold-tolerant barley wheat and cattle sheep supported humans
in breaking the previous elevation constraint of ~2500 m, thus enabling them to settle in
more extreme environments [24,121]. Horse and yak utilization further promoted social
resilience [61,134–136]. This occupation occurred around 3600 BP, but it was not sudden,
and it involved a prolonged period of preparation. Bronze Age people occupied more
grasslands and high pastoral land suitability patches, probably for pasturing purposes. It
is worth noting that climate still limited millet agriculture to low-elevation valleys. For
example, many Xindian cultural sites persisted with millet agriculture in valley areas due
to dietary traditions [137]. A special group known as the Nuomuhong culture abandoned
agriculture and instead developed a nomadic pastoral economy in the margins of the arid
Qaidam Basin [61].

In summary, these settlement dynamics reflect intricate social responses to geographic
environments, validating the latest “gear” theory [37]. This study presents a detailed
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process of human–environment interactions that demonstrate a synergy involving the
effect of multiple factors, primarily geography and social subsistence, in the locations of
settlement sites.

5. Conclusions

This study presents a novel methodological exploration and emphasizes the advan-
tages of machine learning in addressing the complex relationship between the environment
and settlements. The binary RF model (distinguishing between sites and non-sites) revealed
a strong correlation between settlement location and the surrounding environment, thus
enabling predictions of archaeological probabilities at a landscape scale across the NETP.
The three-classification RF model (three cultural periods) showed distinguishable environ-
mental selection strategies from the Neolithic to the Bronze Age. The model-generated
importance rankings and the classification tree highlighted the crucial roles that elevation,
cultivated land suitability, precipitation, and soil erosion types play in shaping human
environmental strategies across different cultural periods.

To further interpret the underlying mechanisms of human environmental strategies,
a quantitative analysis encompassing temporal change in climate and social subsistence
was undertaken. The results highlight the synergistic influence that factors related to
social organization and geography had on settlement selection. The YS-MJY cultural
(5500–4000 BP) settlements were located in low-altitude areas with suitable hydrothermal
conditions; these factors aligned with the millet agriculture system and the preference for
wild resources. The QJ culture (4300–3600 BP) was early to accept cattle and sheep livestock
as a supplement, which helped them resist global climatic deterioration. This transitional
period also prepared the people for the larger-scale occupation of high-altitude areas after
3600 BP.
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