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Abstract: High-resolution wide-swath (HRWS) imaging is the research focus of the modern space-
borne synthetic-aperture radar (SAR) imaging field, with significant relevance and vast application
potential. Staggered SAR, as an innovative imaging system, mitigates blind areas across the entire
swath by periodically altering the radar pulse repetition interval (PRI), thereby extending the swath
width to multiples of that achievable by conventional systems. However, the staggered mode in-
troduces inherent challenges, such as nonuniform azimuth sampling and echo data loss, leading
to azimuth ambiguities and substantially impacting image quality. This paper proposes a sparse
SAR imaging method for the low-oversampled staggered mode via compound regularization. The
proposed method not only effectively suppresses azimuth ambiguities arising from nonuniform sam-
pling without necessitating the restoration of missing echo data, but also incorporates total variation
(TV) regularization into the sparse reconstruction model. This enhances the accurate reconstruction
of distributed targets within the scene. The efficacy of the proposed method is substantiated through
simulations and real data experiments from spaceborne missions.

Keywords: synthetic aperture radar (SAR); staggered SAR; nonuniform sampling; azimuth ambiguity;
compressive sensing (CS); TV regularization

1. Introduction

The synthetic aperture radar (SAR) is an important remote sensing technology capable
of all-weather and all-time imaging, widely utilized in fields including natural environment
monitoring, agricultural mapping, and change detection [1–5]. High-resolution wide-
swath (HRWS) imaging has emerged as a critical developmental direction for spaceborne
SAR systems [6]. However, traditional SAR systems are hampered by constraints such as
the minimum antenna area [7,8] and noise-equivalent sigma zero (NESZ), among other
parameters, preventing the achievement of HRWS imaging. To overcome these limitations,
researchers globally have embarked on extensive research, leading to the proposition of
innovative systems. These include the azimuth multichannel SAR system [9–11], multiple-
input multiple-output (MIMO) SAR technology [12–14], and digital beamforming (DBF)
technology [15,16].

In spaceborne SAR systems, to protect the receiving subsystem from being damaged by
high-power transmitted pulses, signals cannot be transmitted and received simultaneously,
leading to swath-width blind areas. In traditional SAR systems, these blind areas are fixedly
located along the azimuth direction due to the constant pulse-repetition frequency (PRF).
Staggered SAR, an innovative imaging system, introduces variable PRF to mitigate the
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issue of consistently positioned blind areas [17–21]. By periodically altering the radar pulse
repetition interval (PRI), staggered SAR disperses these blind areas across various slant
range gates throughout the swath. Consequently, in staggered SAR, blind areas are not
merely parallel strips along the track axis, but are evenly distributed throughout the swath
in a pattern dictated by the sequence of PRIs [22]. This strategic dispersion allows the
staggered SAR to significantly widen the swath, achieving HRWS imaging—a capability
exemplified by its application in the Tandem-L system [23–25].

The unique variable PRF mode inherent in staggered SAR systems introduces two
principal challenges: nonuniform sampling and echo data loss, around which existing
signal-processing methodologies are centered [26]. The German Aerospace Center (DLR)
has developed an innovative interpolation method utilizing best linear unbiased (BLU)
estimation techniques [22]. This method initially employs BLU interpolation to convert
nonuniform echo data into a uniformly sampled dataset. Following this resampling, tradi-
tional SAR frequency domain imaging algorithms are applied to derive the final imagery.
Nevertheless, it is important to note that the fidelity of BLU interpolation diminishes with
a reduction in the oversampling rate, resulting in this algorithm only being applicable to
highly oversampled staggered SAR. Although high oversampling rates play a critical role
in minimizing azimuth ambiguity within staggered SAR frameworks, it is not desirable for
spaceborne SAR systems due to expansive data volumes.

Recent studies have increasingly focused on low-oversampled staggered SAR, which
presents a promising approach to substantially diminish the volume of echo data requiring
storage [27,28]. A notable advancement in this domain is the introduction of a two-step
algorithm designed for handling low-oversampled staggered SAR data, as detailed in [29].
This process begins with the application of the missing-data iterative adaptive algorithm
(MIAA) [30], grounded in spectrum estimation, to infer the complete echo spectrum and
recuperate absent echo data. Subsequently, a multichannel reconstruction algorithm is
employed to reconstruct the echo signal. Despite its innovative approach, this algorithm
encounters two significant obstacles: the high computational demand associated with the
iterative recovery of missing data and the diminished accuracy of spectral estimation meth-
ods in reconstructing distributed targets. In an effort to refine this approach, [31] introduced
an enhancement to the aforementioned algorithm, integrating it with the BLU interpolation
technique. This enhanced method incorporates a preliminary step to determine if the scene
of interest encompasses distributed targets. Depending on the outcome, the process either
proceeds with BLU interpolation for distributed scenes or applies the original two-step
algorithm otherwise. While the strategies proposed in [29] and [31] offer viable solutions
for low-oversampled staggered SAR, they both hinge on the precise restoration of missing
echo data to effectively mitigate azimuth ambiguities.

In the past decade, sparse signal processing algorithms based on compressive sens-
ing (CS) theory [32,33] have been successfully introduced to SAR signal processing and
markedly enhanced SAR imaging quality [34,35]. Studies indicate that, under the condition
where the observation matrix adheres to the restricted isometric property (RIP) [36], it is
feasible to recover the original sparse signal from a smaller set of samples than what is
mandated by the traditional Shannon–Nyquist sampling theorem [37,38]. The pioneering
work of Çetin et al. in 2001 [39] introduced the concept of applying regularization the-
ory to SAR imaging, aiming at the enhancement of image features. Following this, Patel
et al. in 2010 [40] formulated a more comprehensive CS-based SAR model, facilitating
scene reconstruction by tackling the L1 regularization problem. This model has since been
widely adopted in CS-based SAR imaging [41]. Subsequently, Zhang et al. [42] and Çetin
et al. [43] furthered this line of inquiry by integrating sparse signal processing with SAR
imaging, coining the concept of “sparse SAR imaging”. This approach leverages solving the
Lq(0 < q ≤1) regularization problem to recover scenes of interest. Compared with matched
filtering (MF), sparse SAR imaging exhibits superior capabilities in noise and sidelobe
suppression, as well as in mitigating azimuth ambiguities attributed to under-sampling.
The introduction of the approximate observation concept based on azimuth-range de-
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coupling [44] has enabled the application of sparse SAR imaging to large-scale scene
reconstructions. This technique has found applications across various constant PRF modes,
including strip-map [45], sliding spotlight [46], terrain observation by progressive scans
(TOPS) [47], and variable PRF modes [48]. Nevertheless, few studies have applied sparse
signal processing to the staggered SAR system. In addition, SAR imaging methods that
utilize the internal information of images have been focused on research. A novel SAR
imaging strategy was proposed in [49]. This method segregates the SAR image into sparse
and low-rank matrices, reflecting the image’s redundancy characteristics, thereby framing
the SAR imaging process as a joint sparse and low-rank matrix recovery problem. In [50], a
new structural sparse representation-based SAR imaging approach is proposed to effec-
tively depict SAR image structures. This approach establishes an adaptive sparse space to
accurately represent the varying local structures of images.

The L1 regularization problem, when translated into an equivalent convex quadratic
optimization issue, can be resolved with notable efficiency. However, L1 regularization of-
ten introduces additional bias into estimations and affects the reconstruction accuracy [51].
Recent studies in CS have highlighted the unique advantages of L1/2 regularization [52].
As a nonconvex penalty, L1/2 regularization is lauded for its unbiasedness, capacity to
enforce sparsity, and oracle properties, delivering solutions that are notably sparser than
those yielded by L1 regularization [53]. Moreover, region-based features play a crucial role
in applications such as target classification and image segmentation. To this end, the total
variation (TV) norm of image magnitude has been integrated as a constraint within the
SAR imaging model [54], facilitating the maintenance of continuity in the backscattering
coefficient across distributed targets within specified areas [55,56]. Obviously, combining
L1/2 regularization with TV regularization can significantly enhance the quality of recon-
structed SAR images. In [57], the authors proposed an SAR imaging method based on Lp
and TV composite norm regularization. However, this method will inevitably result in
huge computational and memory costs. In recent years, deep learning methodologies, par-
ticularly those involving deep convolutional neural networks (CNNs), have demonstrated
exceptional prowess across various domains, including image restoration [58] and speech
signal processing [59]. The fusion of deep learning techniques with sparse SAR imaging
will emerge as a promising avenue for future research.

In this paper, we propose a sparse SAR imaging method for low-oversampled stag-
gered mode via compound regularization. This method integrates L1/2-regularization-
based sparse signal processing to mitigate azimuth ambiguities, while the incorporation
of the TV regularization term boosts the reconstruction accuracy of distributed targets.
Our proposed method uniquely accounts for the positioning of blind areas within the
sparse SAR imaging model, constructing a blind-area index matrix that signifies echo data
loss. This allows for the suppression of azimuth ambiguities without necessitating the
recovery of missing data. Furthermore, acknowledging the nonuniform sampling inherent
in the staggered mode, our approach employs nonuniform Fourier-transform techniques in
the formation of imaging and echo simulation operators, diverging from the traditional
azimuth-range decouple operators used in conventional SAR systems. Additionally, we
incorporate the TV regularization term into our sparse reconstruction model, facilitat-
ing the precise reconstruction of distributed targets. The effectiveness of our method is
demonstrated through both simulated data and real spaceborne SAR data experiments.

The remainder of this paper is structured as follows. Section 2 delves into the sparse
imaging and reconstruction models specific to staggered SAR. Section 3 outlines the recon-
struction process employing L1/2&TV regularization, detailing the construction of imaging
and echo simulation operators for staggered SAR and introducing our proposed method.
Section 4 is dedicated to numerical simulations and experiments with real data. Section 5
thoroughly analyzes the experimental outcomes. Finally, Section 6 concludes the paper
with a succinct summary.
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2. Sparse Observation Model of Staggered SAR
2.1. Observation Matrix-Based Sparse Imaging Model of Staggered SAR

In strip-map SAR imaging, we assume that the observed scene is rectangular. Let
X denote the backscattering coefficient matrix, whose (p, q) entry is the backscattering
coefficient, x(p, q), of the observed scene. The fully sampled echo data of all targets in the
observed scene can be expressed as

y f (t, τ) =
x

(p,q)∈Cb
x(p, q) · ωa

(
t − p

v

)
· exp

{
−j

4π

λ
R(p, q, t)

}
· s
(

τ − 2R(p, q, t)
c

)
dpdq, (1)

where Cb is the observed scene; t and τ are the slow time in azimuth and fast time in range,
respectively; p and q are the azimuth and range coordinate indexes of the target in the
observation scene, respectively; ωa(·) is the azimuth antenna weight; c is the speed of light;
v is the platform velocity; λ is the wavelength of the transmitted signal; R(p, q, t) is the slant
range from the transmitting antenna to the target; and s(·) is the transmitted pulse signal.

Let Nt and Nτ denote the number of points in the azimuth direction and range direction
of the discrete grid, respectively. By discretizing the observed scene, the discrete model of
(1) can be expressed as

y f (tna , τnr ) = ∑Nt
nt=1 ∑Nτ

nτ=1 x(pnt , qnτ ) · ϕ[tna , τnr , pnt , qnτ ], (2)

where y f (tna , τnr ) represents the discrete sampling of the nr-th range cell of the origi-
nal echo signal y f (t, τ) at the na-th pulse; x(pnt , qnτ ) represents the discrete value of the
backscattering coefficient x(p, q) at the nt-th azimuth grid and the nτ-th range grid; and
ϕ[tna , τnr , pnt , qnτ ] represents the value of the discretized observation matrix, reflecting the
imaging geometric relationship between the radar and the observed scene:

ϕ[tna , τnr , pnt , qnτ ] = ωa

(
tna −

pnt

v

)
· exp

{
−j

4π

λ
R(pnt , qnτ , tna)

}
· s
(

τnr −
2R(pnt , qnτ , tna)

c

)
. (3)

Let Y f ∈ CM×Nr denote the 2-D fully sampled echo data matrix, where M is the total
number of pulses transmitted in the azimuth direction and Nr is the number of samples in
the range direction. Let X ∈ CNt×Nτ denote the 2-D backscattering coefficient matrix; then,
Equation (2) can be rewritten as

y f = Φx + n, (4)

where y f = vec
(

Y f

)
and x = vec(X) are the vectorized versions of Y f and X, respectively,

the vectorization operation vec(·) reshapes the matrix to vector in column order; n is the
additive noise vector; and Φ is the observation matrix of staggered SAR, defined as

Φ =



ϕ[t1, τ1, p1, q1] · · · ϕ[t1, τ1, pNt , qNτ ]
ϕ[t2, τ1, p1, q1] · · · ϕ[t2, τ1, pNt , qNτ ]

...
. . .

...
ϕ[tM, τ1, p1, q1] · · · ϕ[tM, τ1, pNt , qNτ ]

...
. . .

...
ϕ[tM−1, τNr , p1, q1] · · · ϕ[tM−1, τNr , pNt , qNτ ]

ϕ[tM, τNr , p1, q1] · · · ϕ[tM, τNr , pNt , qNτ ]


. (5)

It should be noted that, since the PRF of the staggered SAR is no longer constant,
the azimuth sampling time tm in Equation (5) takes values according to the periodically
varying linear PRI sequence, which can be expressed as

tm = t1 + f loor(m − 1, K) · ∑K−1
k=0 PRIk + ∑mod(m−1,K)

k=0 PRIk, m = 2, 3, . . . , M, (6)
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where t1 is the azimuth sampling time when the first pulse is transmitted; K is the number
of PRIs within one linear variation period; PRIk is the corresponding PRI sequence in this
period, with k = 0, 1, . . . , K − 1; f loor(·) denotes the floor function; and mod(·) denotes
the remainder function.

Owing to the particular variable PRF mode, the staggered SAR has the problem of
echo data loss, so it is necessary to construct the sparse SAR imaging model in the case
of under-sampling. Constructing the sparse imaging model of staggered SAR needs to
generate the blind area index matrix indicating the echo data loss, whose constituent
elements can be represented as

b(tna , τnr ) =

{
0, |τnr − tna | ≤ Tp

1, else
, (7)

where Tp is the pulse width.
Let B ∈ CM×Nr denote the 2-D blind area index matrix; then, the observation matrix-

based sparse imaging model of staggered SAR can be expressed as

Y = B ⊙ Y f = B ⊙ (HX) + N, (8)

where Y ∈ CM×Nr is the 2-D under-sampled echo data matrix; ⊙ is the Hadamard product
operator; H is the radar system observation matrix; and N is the 2-D noise matrix.

2.2. Sparse Reconstruction Model of Staggered SAR

In recent years, TV regularization has been widely applied in image processing. It can
not only effectively suppress noise, but also restore the edge characteristics of distributed
images well. Therefore, in order to maintain the continuity of the backscattering coefficient
of distributed targets in a specific observation scene, it can be realized by introducing the
TV norm [56]. Let the SAR image f be a two-dimensional matrix of size N × N. For a certain
two-dimensional observation scene, the discrete TV norm of image f can be defined as

TV(f) = ∑i,j

∥∥(∇f)i,j
∥∥

2 = ∑i,j

√∣∣ fi+1,j − fi,j
∣∣2 + ∣∣ fi,j+1 − fi,j

∣∣2, (9)

where ∇f represents the gradient of the image:(
∇f)i,j =

((
∇f)1

i,j,
(
∇f)2

i,j

)
. (10)

In Equation (10),
(
∇f)1

i,j and
(
∇f)2

i,j can be specifically represented as

(∇f)1
i,j =

{
fi+1,j − fi,j, i < N
0, i = N

, (11)

(∇f)2
i,j =

{
fi,j+1 − fi,j, i < N
0, i = N

, (12)

where fi,j represents the pixel value of image f at the i-th row and j-th column, with
i, j = 1, 2, . . . , N.

For the observation-matrix-based sparse imaging model represented by Equation (8),
by combining the Lq regularization term and TV regularization term into a compound
regularization term, the sparse reconstruction model of staggered SAR can be expressed as

X̂ = argmin
X

{
∥Y − B ⊙ (HX)∥2

2 + λ1∥X∥q + λ2TV(X)
}

, (13)
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where λ1 is the regularization parameter of the Lq-norm term and λ2 is the regulariza-
tion parameter of the TV-norm term. In this paper, we take the value of q to be 1/2.
Introducing the TV regularization term into the reconstruction model can enhance the
region-based features of the SAR image and reconstruct the distributed targets in the scene
more accurately.

3. Sparse Reconstruction Method Based on L1/2&TV Regularization
3.1. Reconstruction Process of L1/2&TV Regularization

It can be seen from Equation (13) that the reconstruction model contains two regular-
ization terms, which are combined into a compound regularization term, so we need to
find a solution to the linear inverse problem that includes the compound regularization
term. For the 1-D linear inverse problem with compound regularizations:

x̂ = argmin
x

{∥∥∥y f − Φx
∥∥∥2

2
+ λ1∥x∥1/2 + λ2TV(x)

}
, (14)

the unconstrained linear inverse problem can be transformed into the following equivalent
constrained optimization problem according to the variable separation method [60]

x̂ = argmin
x,z1,z2

{∥∥∥y f − Φx
∥∥∥2

2
+ λ1∥z1∥1/2 + λ2TV(z2)

}
s.t. ∥x − z1∥2

2 = 0, ∥x − z2∥2
2 = 0,

(15)

where z1 and z2 are two auxiliary variables. According to the Lagrange multiplier method
theorem, the optimization problem represented by Equation (15) can be solved by minimiz-
ing the following equation:

Γ(x, z1, z2, ξ1, ξ2) =
∥∥∥y f − Φx

∥∥∥2

2
+ λ1∥z1∥1/2 + λ2TV(z2) + ξ1∥x − z1∥2

2 + ξ2∥x − z2∥2
2, (16)

where ξ1 and ξ2 are Lagrange multipliers.
In order to minimize Γ(x, z1, z2, ξ1, ξ2) in Equation (16), the alternating minimization

method is used for the three variables x, z1, and z2, respectively. The specific iterative
process is shown below.

x(k+1) = argmin
x

∥∥∥y f − Φx
∥∥∥2

2
+ ξ1

∥∥∥x − z1
(k)
∥∥∥2

2
+ ξ2

∥∥∥x − z2
(k)
∥∥∥2

2
, (17)

z1
(k+1) = argmin

z1

ξ1

∥∥∥z1 − x(k+1)
∥∥∥2

2
+ λ1∥z1∥1/2, (18)

z2
(k+1) = argmin

z2

ξ2

∥∥∥z2 − x(k+1)
∥∥∥2

2
+ λ2TV(z2). (19)

For the minimization problem represented by Equation (17), as the objective function
is a quadratic function, a linear equation with a solution can be generated:

x(k+1) =
[
ΦHΦ + (ξ1 + ξ2)I

]−1[
ΦHy f + ξ1z1

(k) + ξ2z2
(k)
]
, (20)

where I represents the identity matrix.
For the optimization problem represented by Equation (18), it is actually the L1/2

regularization problem [53]. The corresponding complex soft thresholding function can be
represented as

η(xi
(k+1), λ1

(k+1)/ξ1) =

 f (xi
(k+1)),

∣∣∣xi
(k+1)

∣∣∣ > 3√54
4 (λ1

(k+1)/ξ1)
2/3

0, otherwise
, (21)
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where f
(

xi
(k+1)

)
can be denoted as

f
(

xi
(k+1)

)
=

2
3

xi
(k+1)

1 + cos

2
3

π − 2
3

arccos

λ1
(k+1)

8ξ1


∣∣∣xi

(k+1)
∣∣∣

3

−3/2

. (22)

The specific solution steps for Equation (18) will be described in Section 3.3.
For the TV regularization problem represented by Equation (19), the solution can be

obtained by solving the dual problem of TV regularization by utilizing the Chambolle
algorithm [55]. After the parameter conversion operation, Equation (19) is equivalent to
the following equation

z2
(k+1) = argmin

z2

1
2

∥∥∥z2 − x(k+1)
∥∥∥2

2
+

λ2

2ξ2
TV(z2). (23)

For the convenience of expression, the TV-norm term regularization parameter λ2/2ξ2
of the dual problem is denoted as λTV .

For the optimization problem represented by Equation (23), its optimal solution can
be expressed as

z2
(k+1) = sign

(
x(k+1)

)(∣∣∣x(k+1)
∣∣∣− λTVdiv

(
dp(k+1)

))
, (24)

where sign(·) denotes the sign function and dp =
(
dp1, dp2) is the dual variable of z2,

which can be solved by the gradient projection descent method:

dpi,j
(k+1) =

dpi,j
(k) + δ(∇(divdp(k) −

∣∣∣x(k+1)
∣∣∣/λTV))i,j

max
{∣∣dpi,j

(k) + δ(∇(divdp(k) −
∣∣x(k+1)

∣∣/λTV))i,j
∣∣, 1
} , (25)

where ∇(·) denotes the gradient operator; div(·) = −∇∗(·) denotes the divergence opera-
tor; and δ denotes the iteration step size.

3.2. Imaging Operator and Echo Simulation Operator of Staggered SAR

In Section 2, a sparse imaging model of the staggered SAR is established, as shown
in Equation (8). However, it should be noted that, due to the presence of azimuth-range
coupling in the 2-D echo data domain, we cannot directly construct the observation matrix
H. Therefore, the recovery of the observation scene cannot be achieved by solving the
sparse reconstruction model in Equation (13). If we choose to vectorize the echo data matrix
to achieve azimuth-range decoupling, perform matrix-vector multiplication, and transform
the vector into the form of a matrix after 1-D sparse reconstruction, this will result in huge
computational and memory costs. Such a large amount of computation is unacceptable for
the large-scale scene. Inspired by [42], according to the idea of approximated observation,
an azimuth-range decouple-based sparse SAR imaging method has been proposed [44].
The coupling of the 2-D echo data can be removed by constructing the echo simulation
operator to replace the observation matrix, which can reduce the computational complexity
significantly [45,61]. This section will construct the imaging operator and echo simulation
operator of staggered SAR.

The chirp scaling algorithm (CSA) is a widely used SAR imaging algorithm [62].
Since CSA completes range cell migration correction (RCMC), azimuth compression, and
other operations through phase multiplication in the frequency domain, thus avoiding
interpolation operations, it has the characteristics of simplicity and high efficiency. In this
paper, the imaging operator is constructed based on CSA.

CSA can be summarized into the following three steps: (1) chirp scaling operation;
(2) bulk RCMC, range compression, and secondary range compression (SRC) operation;
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and (3) azimuth focusing and residual phase compensation operation. The process of CSA
can be expressed as:

∼
X = R

(
Y f

)
= IFFTt

(
IFFTτ

(
FFTτ

((
FtY f

)
⊙ Θ1

)
⊙ Θ2

)
⊙ Θ3

)
, (26)

where
∼
X is the reconstructed SAR image matrix; R(·) is the imaging operator of the

staggered SAR system; Y f is the fully sampled echo data matrix of the staggered mode, as
mentioned above; FFTτ is the fast Fourier transform (FFT) operator in the range direction;
IFFTτ and IFFTt are the inverse fast Fourier transform (IFFT) operators in the range and
azimuth directions, respectively; Ft is the nonuniform discrete Fourier transform (NUDFT)
matrix, which will be defined in the following text; and Θ1 ∈ CM×Nr , Θ2 ∈ CM×Nr , and
Θ3 ∈ CM×Nr are the chirp scaling operation matrix, the bulk RCMC, range compression
and SRC operation matrix, and the azimuth focusing and residual phase compensation
operation matrix, respectively.

It should be noted that, due to the nonuniform sampling in the azimuth direction
caused by the variable PRF mode, the conventional FFT operators can no longer be used in
the processing of the azimuth direction in a staggered SAR system. For contrast, we used the
NUDFT matrix represented by Ft in Equation (26) to transform the echo data from the time
domain to the range–Doppler domain so that the imaging operator R(·) of the staggered
SAR system is different from that of the constant PRF-mode SAR system. Specifically,
Ft = [α1,α2, · · · ,αM] consists of M column vectors, whose constituent elements are
defined as follows:

αm =
[
exp(− j2πtm ft

(1)
)

, exp(− j2πtm ft
(2)
)

, · · · , exp(− j2πtm ft
(Na)

)
]T , (27)

where tm is the m-th sampling time in the azimuth direction of the staggered SAR system,
given by Equation (6); ft

(n) = (n − 1)/(NaPRImean) represents the n-th value of the az-
imuth Doppler frequency, with n = 1, 2, . . . , Na; Na is the number of uniform frequency
grids in the azimuth Doppler domain; and PRImean is the average PRI value of the varying
PRI sequence.

By performing the imaging operator, i.e., the MF operation, on the fully sampled echo
data, we can obtain the equivalence relation shown below:

∼
X = R

(
Y f

)
= R(HX). (28)

However, owing to the presence of noise and sidelobes, the value of
∼
X is always

approximately equal to X; that is,
∼
X ≈ X.

For the equivalence relation expressed in Equation (28), if RH ≈ I, then we can use
R−1, the inverse process of the imaging operator of staggered SAR, to approximately
replace the observation matrix H. It can be seen from Equation (26) that the imaging
operator R(·) is reversible. Therefore, the approximate value of the fully sampled echo
data Y f can be obtained by performing the inverse operation of the imaging operator on
the real backscattering coefficient X of the observation scene. The process of inverse CSA
can be expressed as

∼
Y f = M(X) = It(IFFTτ(FFTτ(FFTt(X)⊙ Θ3

∗)⊙ Θ2
∗)⊙ Θ1

∗), (29)

where
∼
Y f is the approximate echo data matrix; M(·) is the echo simulation operator of

the staggered SAR system; FFTt is the FFT operator in the azimuth direction; It is the
nonuniform inverse discrete Fourier transform (NUIDFT) matrix, which will be defined
below; and Θ1

∗, Θ2
∗

, and Θ3
∗ are the conjugate transpositions of the above three operation

matrices in CSA, respectively.
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Similar to the imaging operator, during the construction of the echo simulation opera-
tor, we use the NUIDFT matrix represented by It in Equation (29) to transform the data from
the range–Doppler domain to the time domain. Therefore, the echo simulation operator
M(·) of the staggered SAR system is also different from that of a constant PRF mode SAR
system, such as the random down-sampling SAR system. It =

[
β1,β2, · · · ,βNa

]
consists

of Na column vectors, whose constituent elements are defined as follows:

βn =
1

Na

[
exp(j2πt1 ft

(n)
)

, exp(j2πt2 ft
(n)
)

, · · · , exp(j2πtM ft
(n)
)
]T . (30)

In the staggered SAR system, the imaging operator and echo simulation operator are
inverse processes of each other, and their relationship can be expressed as

M(X) = R−1(X) ≈ HX. (31)

As mentioned above, by approximately replacing the observation matrix H with the
echo simulation operator M(·), the observation matrix-based model denoted in Equa-
tion (8) can be rewritten as the azimuth–range decouple-based sparse imaging model of
staggered SAR, represented as

Y ≈ B ⊙M(X) + N. (32)

3.3. Sparse Reconstruction Method of Staggered SAR

The iterative process in Section 3.1 (Equations (15)–(25)) is the step of solving Equation (14).
As introduced in the previous section, this iterative process needs to store the observation
matrix Φ and perform matrix–vector multiplication operations, which will bring huge
memory requirements and computational costs. Therefore, in this section, we need to
introduce the idea of approximated observation and use the azimuth–range decouple oper-
ators to approximately replace the multiplication of the observation matrix-backscattering
coefficient vector. Then, the azimuth–range decouple-based sparse reconstruction model of
staggered SAR can be expressed as

X̂ = argmin
X

{
∥Y − B ⊙M(X)∥2

2 + λ1∥X∥1/2 + λ2TV(X)
}

. (33)

This section combines L1/2 regularization, TV regularization, and azimuth–range
decouple operators effectively, and proposes a sparse SAR imaging method for low-
oversampled staggered mode via compound regularization. This method can improve the
reconstruction accuracy of distributed targets and maintain the continuity of the backscat-
tering coefficients of distributed targets in a certain area. Table 1 summarizes the iterative
procedures of the proposed method. In Table 1, σ represents the noise variance, X(k) denotes
the recovered image, and the expression of the divergence operator is

(divdp)i,j =


dp1

i,j, i = 1

dp1
i,j − dp1

i−1,j, 1 < i < N

−dp1
i−1,j, i = N

+


dp2

i,j, i = 1

dp2
i,j − dp2

i,j−1, 1 < i < N

−dp2
i,j−1, i = N

. (34)

There are several algorithms to achieve sparse reconstruction, such as iterative soft
thresholding (IST) [63–65] and complex approximated message passing (CAMP) [66,67].
In this paper, we chose CAMP as the sparse reconstruction algorithm to solve the L1/2
regularization problem, as shown in Table 1 (step 2–step 6), where ηR is the real part of
the complex soft thresholding function η; η I is the imaginary part of η; and ∂ηR/∂xR and
∂η I/∂xI are the partial derivatives of ηR and η I with respect to the real and imaginary parts
of the input elements, respectively.
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Table 1. Pseudocode of the proposed sparse SAR imaging method.

Input: Two-dimensional staggered-mode echo data Y; sparsity of the scene K; iteration step size δ; maximum
iteration steps kmax; error parameter ε; Lagrange multipliers ξ1, ξ2; image size N; noise variance σ.

Initialization: X(0) = 0; k = 0; dp = (0, 0); z1
(0) = 0; z2

(0) = 0.
Iteration: while k < kmax and Res > ε

1. X(k+1) = [R(M(I)) + (ξ1 + ξ2)I]
−1
[
R(B∗ ⊙ Y) + ξ1z1

(k) + ξ2z2
(k)
]

2. W(k) = X(k+1)

3. ∼
X
(k+1)

= W(k) + z1
(k)

4. λ1
(k+1) = ξ1

(∣∣∣∣∣∼X(k+1)
∣∣∣∣∣
K+1

)
5. W(k+1) = X(k+1) − z1

(k) + W(k) 1
2 ·
(〈

∂ηR

∂xR

(
∼
X
(k+1)

; λ1
(k+1)/ξ1

)〉
+

〈
∂η I

∂xI

(
∼
X
(k+1)

; λ1
(k+1)/ξ1

)〉)
6. z1

(k+1) = η

(
∼
X
(k+1)

, λ1
(k+1)/ξ1

)
7. λ2

(k+1) = λ2
(k) Nσ

∥z2
(k)−X(k+1)∥2

8. λTV = λ2
(k+1)

2ξ2

9. dpi,j
(k+1) =

dpi,j
(k)+δ(∇(divdp(k)−|X(k+1)|/λTV))i,j

max{|dpi,j
(k)+δ(∇(divdp(k)−|X(k+1)|/λTV))i,j |,1}

10. z2
(k+1) = sign

(
X(k+1)

)(∣∣∣X(k+1)
∣∣∣− λTVdiv

(
dp(k+1)

))
11. Res =

∥∥∥X(k+1) − X(k)
∥∥∥

2
/
∥∥∥X(k)

∥∥∥
2

12. k = k + 1
end while

Output: The recovered image X(k)

4. Experimental Results
4.1. Numerical Simulations

In this part, the numerical simulation experiments will be exploited to compare the
reconstruction performance of the matched filtering (MF) method, the BLU interpolation
method, and the L1/2&TV-regularization-based method. The numerical simulation experi-
ments were conducted under low oversampling conditions, and the major parameters are
shown in Table 2.

Table 2. Major parameters in numerical simulation experiments.

Parameters Value

Orbit height 760 km
Platform velocity 7473 m/s
Center frequency 10 GHz

Slant range 868–1097 km
Chirp bandwidth 20 MHz

Processed Doppler band 1440 Hz
Azimuth oversampling rate 1.1

Maximum PRI 1/1487 s
Minimal PRI 1/1714 s

Number of variable PRI 21

In the simulation experiments, the fast-changing PRI sequence design scheme is
adopted; that is, in the raw azimuth signal, two consecutive samples are never missed
for all slant ranges of interest [22]. The PRI sequence values corresponding to the simu-
lation parameters in Table 2 and the blind areas’ position of the sequence are shown in
Figure 1, respectively.
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Figure 1. PRI sequence values and blind areas’ position in the simulation experiments. (a) The
fast-changing PRI sequence values correspond to the parameters in Table 2, where the x-axis ‘m’ is
the sequence number; (b) The blind areas’ position of the fast-changing PRI sequence.

In order to verify the effectiveness of the proposed sparse SAR imaging method for the
low-oversampled staggered mode in suppressing the azimuth ambiguities and sidelobes,
we will conduct point target simulation experiments and present the quantitative results
in this section. In the first simulation experiment, a one-dimensional scene is constructed
along the azimuth direction, and one point target is set at the center of the scene. To
compare the imaging performance at different slant ranges, that is, different loss rates of
missing data, according to the diagram of the blind areas’ position shown in Figure 1b, we
selected three different slant ranges and set the range position of the point target to 956 km,
982 km, and 994 km, which means that the point target is located inside the blind areas,
at the boundary of the blind areas and outside the blind areas, respectively. It should be
explained that the inside, boundary, and outside of the blind areas respectively refer to
the loss of two samples, the loss of one sample, and the loss of no samples within one PRI
variation period. Figure 2 shows the imaging results of low oversampling staggered SAR
with different methods, where the MF method refers to the direct imaging processing of
nonuniformly sampled echo data using CSA.

It can be seen from Figure 2a that the imaging result of the MF method includes
multiple pairs of uniformly distributed weak azimuth ambiguities caused by nonuniform
sampling and a pair of strong azimuth ambiguities caused by a nonideal azimuth antenna
pattern (AAP), which are represented by the green rectangular dotted lines and the brown
circular dotted lines, respectively. In order to better evaluate the azimuth ambiguity
suppression ability of different methods, we select the integrated sidelobe ratio (ISLR) and
the azimuth ambiguity-to-signal ratio (AASR) [68] as quantitative evaluation indicators in
this paper, where ISLR only considers the ambiguity components caused by nonuniform
sampling and echo data loss. The AASR value can be defined as

AASR = 10log10

 1
NG

∑(p,q)∈M

∣∣∣X(p,q)

∣∣∣2
1

NA
∑(p,q)∈A

∣∣∣X(p,q)

∣∣∣2
, (35)

where A is the main imaging area, NA is the number of the pixel in A, M is the ambiguous
area, and NG is the number of the pixel in M.
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Figure 2. The 1-D imaging results with different methods. (a–c) are the imaging results of the point
target located inside the blind areas, respectively (slant range = 956 km); (d–f) are the imaging results
of the point target located at the boundary of the blind areas, respectively (slant range = 982 km);
(g–i) are the imaging results of the point target located outside the blind areas, respectively (slant
range = 994 km).

Table 3 lists the quantitative calculation results of three different imaging methods
when the point target is located inside the blind areas (slant range = 956 km).

Table 3. Quantitative calculation results of ambiguities suppression with different imaging methods.

Evaluation Indicators
Imaging Methods

MF BLU L1/2&TV

ISLR −7.26 dB −7.84 dB −17.12 dB
AASR −17.92 dB −18.13 dB −22.38 dB

In order to better illustrate the effectiveness of the proposed method, in the second
simulation experiment, the ISLR values of different imaging methods were calculated at dif-
ferent oversampling rates. Figure 3 demonstrates the oversampling rate–ISLR relationship
curves when the point target is separately located inside the blind areas, at the boundary of
the blind areas, and outside the blind areas. Similar to the calculation approach in Table 3,
the ambiguity components caused by nonideal AAP are not considered when calculating
ISLR here.
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Next, in order to verify the effectiveness of the proposed sparse SAR imaging method
in improving the reconstruction accuracy of distributed targets, distributed targets simula-
tion experiments will be carried out and the corresponding quantitative calculation results
will be provided. The distributed targets simulation experiments in this section were also
conducted under low oversampling conditions, with the simulation parameters shown
in Table 2. Similarly, in the third simulation experiment, a one-dimensional scene was
constructed along the azimuth direction, and one distributed target was set at the center of
the scene. The position of the distributed target in the range direction was set at the slant
range of 956 km, which ensured that this distributed target was located inside the blind
areas. Figure 4 shows the imaging results of the one-dimensional distributed target with
different methods.

Figure 4a shows the imaging result of the ideal case, where a constant PRF is used to
simulate the signal and the echo data are not lost. This constant PRF is selected as the mean
PRF value of the fast-changing PRI sequence. It can be seen that the simulation imagery
under uniform sampling conditions only contains azimuth ambiguities caused by nonideal
AAP, located on both sides of the distributed target. Figure 4b–d are the imaging results
of MF, BLU interpolation, and L1/2&TV regularization under the nonuniform sampling
condition, respectively. In order to better evaluate the reconstruction accuracy of different
methods for distributed targets, the normalized root-mean-square error (NRMSE) is chosen
as the quantitative evaluation indicator, which can be defined as

NRMSE =
∑M

m=1 ∑N
n=1
[
X(m, n)− X̂(m, n)]2

∑M
m=1 ∑N

n=1[X(m, n)]2
, (36)

where X is the true value of the reference image and X̂ is the actual value of the reconstructed
image. Table 4 lists the quantitative calculation results of the three different imaging
methods in Figure 4.

Table 4. Quantitative calculation results of NRMSE with different imaging methods.

Evaluation Indicator
Imaging Methods

MF BLU L1/2&TV

NRMSE 0.6862 0.6185 0.2923
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Figure 4. The imaging results of a one-dimensional distributed target with different methods, where
the distributed target is located inside the blind areas (slant range = 956 km). (a) The ideal case;
(b) Using the MF method; (c) Using the BLU interpolation method; and (d) Using the L1/2&TV-
regularization-based method.

In order to further demonstrate the effectiveness of the proposed method, in the fourth
simulation experiment, white additive noise with different SNRs is added to the simulated
data and the distributed target is placed inside the blind areas and at the boundary of the
blind areas, respectively. We compared the reconstruction performance of the L1/2&TV-
regularization-based method with BLU interpolation method under low oversampling
conditions. For different SNRs, 200 Monte Carlo experiments were conducted, and the
results are shown in Figure 5.

In the fifth simulation experiment, the SNR was set to 10 dB. The NRMSE values of
the BLU interpolation method and L1/2&TV-regularization-based method under different
oversampling rates were calculated. To make the conclusions of the simulation experiment
more reliable, 200 Monte Carlo experiments were equally used during this simulation
process, and the results are shown in Figure 6. Figure 6 demonstrates the oversampling
rate–NRMSE relationship curves when the distributed target is separately located inside
the blind areas and at the boundary of the blind areas.
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regularization under different SNRs. (a) Inside the blind areas (slant range = 956 km); (b) At the
boundary of the blind areas (slant range = 982 km).
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Figure 6. The oversampling rate–NRMSE relationship curves. (a) Using the BLU interpolation
method; (b) Using the L1/2&TV-regularization-based method.

4.2. Real Data Experiments

In this part, the real data experiments will be carried out to verify the effectiveness of
the proposed L1/2&TV-regularization-based method. Gaofen-3 single channel strip-map
mode data are chosen as the real spaceborne SAR data. The major system parameters are
shown in Table 5. As the original echo data were acquired under the condition of constant
PRF, the staggered SAR echo data need to be generated from the uniformly sampled raw
data. In order to obtain low-oversampling variable PRF-mode echo data, resampling
operations and data loss processing operations in the blind areas were performed on
the uniformly sampled raw data according to the parameters in Table 2. In order to
explore the improvement effect of the proposed method on the reconstruction performance
of distributed targets, two actual scenarios containing sea–land boundary targets were
selected as the experimental research objects.
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Table 5. Major system parameters of Gaofen-3 single-channel strip-map mode.

Parameters Value

Platform velocity 7538.340124 m/s
Wavelength 0.055517 m

Sampling rate 66.67 MHz
Chirp bandwidth 60 MHz

Pulse duration 45 µs
Pulse repetition frequency 1149.45 Hz

Figure 7 shows the imaging results of different methods in the first sea–land boundary
scenario. Figure 7a is the imaging result of the original echo data under the constant PRF
condition, with only azimuth ambiguities caused by the nonideal AAP present in the
imagery. Figure 7b is the imaging result of the direct MF operation on the missing echo
data of the variable PRF mode. It can be seen that there were azimuth ambiguities caused
by nonuniform sampling and echo data loss in the image. Figure 7c,d are the imaging
results of BLU interpolation and L1/2&TV regularization under nonuniform sampling
conditions, respectively.
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Figure 7. The imaging results of different methods in the first actual scenario. (a) Original echo data
imaging processing under constant PRF condition; (b) Direct imaging on staggered-mode SAR data
(MF); (c) Using the BLU interpolation method; (d) Using the L1/2&TV-regularization-based method.
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Figure 8 compares the imaging results of the BLU interpolation method and the
L1/2&TV regularization-based method, providing the one-dimensional profiles of the
strong point target indicated by the blue arrows in Figure 7c,d along the azimuth direction.
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In order to verify the effectiveness of the proposed method in improving the accuracy
of distributed target reconstruction, three different regions in the first scenario were selected
as the research objects, represented by red rectangular frames and named Region 1, Region
2, and Region 3, as shown in Figure 7. The islands where Region 1 and Region 2 are located
are represented by green rectangular dashed frames, as shown in Figure 7b,d. The island
areas contained in the dashed frames are enlarged and displayed, and the results are shown
in Figure 9.
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Figure 9. The reconstruction results of the island areas represented by the green rectangular dashed
frames in Figure 7. (a) MF; (b) L1/2&TV regularization.

Figure 10 shows the imaging results of different methods in the second sea–land
boundary scenario. Similarly, two different regions in the second scenario are selected
as the research objects, represented by red rectangular frames and named Region 4 and
Region 5.
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Figure 10. The imaging results of different methods in the second scenario. (a) Original echo data
imaging processing under constant PRF condition; (b) Direct imaging on staggered mode SAR data
(MF); (c) Using the BLU interpolation method; (d) Using the L1/2&TV regularization-based method.

Next, quantitative calculations were conducted on the continuity of the reconstruction
results for Region 1, Region 2, Region 3, Region 4, and Region 5. This paper selects
the equivalent number of looks (ENL) as the indicator to measure the coherent speckle
suppression effect of SAR images. ENL is an indicator that measures the continuity of a
uniform region, and the larger the value of ENL, the better the smoothing effect of the
image. The definition of ENL is as follows:

ENL =
µI

2

σI2 , (37)

where µI represents the average value of the SAR image intensity and σI
2 represents the

variance of the SAR image intensity. The ENL values of Region 1, Region 2, Region 3,
Region 4, and Region 5 were calculated, and the results are shown in Table 6.
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Table 6. ENL values of Region 1 to Region 5 with different imaging methods.

Region 1 Region 2 Region 3 Region 4 Region 5

BLU 0.9652 0.9677 0.9839 0.9277 0.9303
L1/2&TV 6.4498 6.4546 7.2608 6.4152 6.4265

5. Discussion

In this section, we will discuss the experimental results of the previous section in
detail. Firstly, the point target simulation experimental results will be discussed. As
shown in Figure 2a, the 1-D imaging result of the MF method for the point target lo-
cated inside the blind areas contains multiple pairs of weak azimuth ambiguities and
one pair of strong azimuth ambiguities. Figure 2b presents the imaging result of the
BLU interpolation method under the same conditions. Comparing Figure 2a with Fig-
ure 2b, it can be found that, under low-oversampling conditions, the results of the BLU
interpolation method and the MF method were almost the same, and the azimuth am-
biguities could not be suppressed. It can be seen from Figure 3 that, when the azimuth
oversampling rate increases, the ISLR values of the three imaging methods all decreased.
Moreover, when the oversampling rate is greater than 1.5, that is, in the case of high
oversampling, the BLU interpolation method performs better in suppressing azimuth ambi-
guities caused by nonuniform sampling, but it is not suitable for lower oversampling rates
(from 1.1 to 1.5), as shown in Figure 3b. It should be explained that the recovery accuracy
of the BLU interpolation algorithm proposed in [22] depends largely on the PRF of the
radar system [26]. The accuracy of the interpolation decreases when the PRF is close to the
Nyquist frequency and improves as the oversampling rate increases [27,29]. Therefore, the
imaging results in Figure 2 and the quantitative calculation results in Table 3 and Figure 3
are consistent with the theoretical analysis. For the point target, the L1/2&TV regularization
actually degenerated into the L1/2 regularization. Figure 2c presents the imaging result
of the L1/2-regularization-based method when the point target is located inside the blind
areas. Combined with the quantitative results in Table 3, it indicates that the proposed
method can effectively suppress the azimuth ambiguities caused by nonuniform sampling
and echo data loss in the low-oversampled staggered mode, reducing the ISLR value by
about 10 dB. In addition, the AASR values in Table 3 also show that the proposed method
had a certain suppression effect on the strong azimuth ambiguities caused by the nonideal
AAP. By comparing the results of Figure 2 vertically and combining them with Figure 3, we
can find that the values of ISLR were different when the point target was located inside the
blind areas, at the boundary of the blind areas, and outside the blind areas, respectively.
This is because they lose different samples within one PRI variation period. It is obvious
that the ambiguity of the point target was the lowest when it was located outside the blind
areas. Comparing Figure 3c with Figure 3a, it can be found that the oversampling rate–ISLR
relationship curve of the L1/2-regularization-based method was much lower than that of
the MF method under various conditions. Comparing Figure 3c with Figure 3b, although
the results of the L1/2-regularization-based method and the BLU interpolation method were
similar under high-oversampling conditions, the former performed significantly better than
the latter under low-oversampling conditions. Therefore, the proposed sparse SAR imaging
method can effectively solve the problem of azimuth ambiguities caused by nonuniform
sampling and echo data loss in the low-oversampled staggered mode.

Secondly, the results of the distributed-targets simulation experiments will be dis-
cussed. Figure 4b,c show the imaging results of the MF method and BLU interpolation
method for the low-oversampled staggered mode, respectively. It can be seen from Fig-
ure 4b that, compared with the point target, for the distributed target, the azimuth ambigui-
ties caused by nonuniform sampling were more dispersed. Although the BLU interpolation
method could maintain the scattering characteristics of the distributed target, it could not
effectively suppress the azimuth ambiguities under low-oversampling conditions, resulting
in almost the same imaging results as the MF method, as shown in Figure 4c. Figure 4d
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shows the imaging result of the L1/2&TV regularization-based method proposed in this
paper. It can be seen that the proposed method can effectively suppress the azimuth am-
biguities caused by nonuniform sampling without recovering the missing echo data and
reduce the reconstruction error of the distributed target. Furthermore, the quantitative
calculation results in Table 4 indicate that, under the low-oversampling condition (over-
sampling rate 1.1), the proposed method can significantly reduce the NRMSE value, while
the NRMSE value of the BLU interpolation method is not significantly different from that
of the MF method. Combined with the imaging results in Figure 4, it can be concluded
that the proposed method can reconstruct distributed targets more accurately. This can be
explained by the TV norm characteristic [55,56], which can maintain the continuity of the
backscattering coefficient of distributed targets. From Figure 5, it can be seen that, in the
presence of noise, the proposed L1/2&TV-regularization-based method can obtain lower
NRMSE values than the BLU interpolation method, verifying the accuracy of this method
for distributed target reconstruction under low-oversampling conditions. In addition, by
comparing Figure 5a,b, it can be seen that, when the distributed target is located at the
boundary of the blind areas, the NRMSE values of both methods are lower than those
when the target is located inside the blind areas. This indicates that the reconstruction
accuracy is related to the number of samples lost within one PRI variation period, and
the higher the data loss rate, the lower the reconstruction accuracy. From Figure 6, it can
be seen that both the BLU interpolation method and the L1/2&TV-regularization-based
method had reduced NRMSE values as the oversampling rate increased, regardless of
whether the distributed target was located inside or at the boundary of the blind areas. This
illustrates that the reconstruction accuracy was improved, and the larger the oversampling
rate, the better the effect. When the oversampling rate was greater than 1.5, that is, in the
case of high oversampling, the NRMSE values of the BLU interpolation method signifi-
cantly decreased, being even lower than those of the L1/2&TV-regularization-based method.
However, when the oversampling rate was less than 1.2, the reconstruction accuracy of
the L1/2&TV-regularization-based method was superior to that of the BLU interpolation
method, further verifying that the proposed method could improve the reconstruction
accuracy of distributed targets under low-oversampling conditions. Figure 6 also illustrates
the impact of the data loss rate on the accuracy of distributed target reconstruction, which
was more evident in low-oversampling cases. The above discussion of the distributed target
simulation experimental results prove that the proposed sparse SAR imaging method can
improve the reconstruction accuracy of distributed targets and enhance the region-based
features of SAR images in the low-oversampled staggered mode.

Thirdly, the results of real data experiments will be discussed. The effectiveness of the
proposed method in suppressing azimuth ambiguities is discussed first. Figure 7c presents
the imaging result of the BLU interpolation method for the first sea–land boundary scenario.
It can be seen that azimuth ambiguities caused by nonuniform sampling still existed in the
image, proving its limitations under low-oversampling conditions. Figure 7d is the imaging
result of the L1/2&TV regularization-based method. It can be seen that, due to the azimuth–
range decouple operators, the azimuth ambiguities and false targets in the image were
effectively suppressed. Figure 8 further illustrates the conclusion. From the comparison
results in Figure 8, it can be seen that the BLU interpolation method could not effectively
suppress azimuth ambiguities, so it was not suitable for the low-oversampled staggered
mode. Compared with the BLU interpolation method, the L1/2&TV regularization-based
method could significantly improve the suppression effect of azimuth ambiguities caused
by nonuniform sampling and echo data loss. Next, the effectiveness of the proposed method
in improving the accuracy of the distributed target reconstruction is discussed. It can be
seen from Figure 9 that there were lots of coherent speckles in the image reconstructed by
MF, and the continuity of the island areas could not be satisfied, as shown in Figure 9a. The
reconstructed image result using the proposed method was more uniform and continuous,
and the coherent speckles and noise in the image were effectively suppressed, as shown
in Figure 9b. This proves that the proposed method could maintain the continuity of the
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backscattering coefficient of distributed targets and improve the reconstruction accuracy of
distributed targets for the low-oversampled staggered mode. The numerical calculation
results in Table 6 are discussed at the end. As multi-look processing is not performed on
real data and the BLU interpolation method actually utilizes matched filtering for imaging
processing, the ENL values of the reconstruction result are approximately equal to 1, as
shown in the first row of Table 6. In contrast, the L1/2&TV-regularization-based method can
effectively improve the ENL values of the reconstruction result, as shown in the second row
of Table 6, further demonstrating that the proposed method can enhance the region-based
features of SAR images.

Finally, the comparison of simulation and real data experimental results will be dis-
cussed. For the point target simulation, we designed two experiments, as stated above.
Both point target simulation experiments verified the effectiveness of the proposed method
for suppressing azimuth ambiguities in low-oversampled staggered SAR. However, it
should be noted that the point target simulation experiments only considered the L1/2
regularization term in compound regularization. Similarly, the distributed targets simula-
tion verified the effectiveness of the proposed method for improving the reconstruction
accuracy of distributed targets in low-oversampled staggered SAR. But these experiments
mainly considered the TV regularization term in compound regularization. Therefore, it is
necessary to select appropriate scenarios in real data experiments and verify the effects of
L1/2 regularization and TV regularization simultaneously, as shown in Figures 7 and 10.
Since the selected scenarios included both strong point targets and distributed targets,
such as island areas, compound regularization can be effectively verified. Comparing
Figure 8 with Figure 2, it can be concluded that L1/2&TV regularization can indeed sup-
press the azimuth ambiguities caused by nonuniform sampling and echo data loss in the
low-oversampled staggered mode. In addition, the ISLR indicators of the azimuth profiles
of different imaging methods shown in Figure 8 were quantitatively calculated. The result
was that the ISLR value of L1/2&TV regularization was 12 dB lower than that of BLU
interpolation, which was consistent with the calculation results in Table 3. Comparing
Table 6 with Table 4, it can be found that two different evaluation indicators (NRMSE and
ENL) both demonstrated that L1/2&TV regularization had more significant advantages in
distributed target reconstruction. In summary, the comparison between simulation and
real data experiments fully demonstrates the effectiveness of compound regularization in
both azimuth ambiguity suppression and accurate reconstruction of distributed targets.

It should be pointed out that, if we want to better suppress the azimuth ambiguities
caused by nonideal AAP, the group sparsity property [69] should be considered when
constructing the imaging model, and the nonuniform sampling problem should be solved
during the group sparse reconstruction process [70]. This is also work we will carry out in
the future.

6. Conclusions

This paper proposes a sparse SAR imaging method for the low-oversampled staggered
mode via compound regularization. By incorporating the blind area index matrix to repre-
sent echo data loss within the sparse imaging model and integrating the L1/2 regularization
term into the sparse reconstruction model, our method effectively mitigates azimuth ambi-
guities in staggered SAR systems without the need to recover missing data. Furthermore,
by applying both the imaging and echo simulation operators specific to staggered SAR
systems for azimuth-range decoupling and introducing the TV regularization term into the
sparse reconstruction model, our method significantly enhances the reconstruction accuracy
of distributed targets. The method’s effectiveness is substantiated through experimental
results derived from both simulated data and real spaceborne SAR data.
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