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Abstract: In current times, reconstruction of remote sensing images using super-resolution is a
prominent topic of study. Remote sensing data have a complex spatial distribution. Compared with
natural pictures, remote sensing pictures often contain subtler and more complicated information.
Most super-resolution reconstruction algorithms cannot restore all the information contained in
remote sensing images when reconstructing them. The content of some areas in the reconstructed
images may be too smooth, and some areas may even have color changes, resulting in lower quality
reconstructed images. In response to the problems presenting in current reconstruction algorithms
about super-resolution, this article proposes the SRGAN-MSAM-DRC model (SRGAN model with
multi-scale attention mechanism and dense residual connection). This model roots in generative
adversarial networks and incorporates multi-scale attention mechanisms and dense residual con-
nections into the generator. Furthermore, residual blocks are incorporated into the discriminator.
We use some remote sensing image datasets of real-world data to evaluate this model, and the
results indicate the SRGAN-MSAM-DRC model has shown enhancements in three evaluation metrics
for reconstructed images about super-resolution. Compared to the basic SRGAN model, the SSIM
(structural similarity), PSNR (peak signal-to-noise ratio), and IE (image entropy) increase by 5.0%,
4.0%, and 4.1%, respectively. From the results, we know the quality of the reconstructed images of
remote sensing using the SRGAN-MSAM-DRC model is better than basic SRGAN model, and verifies
that the model has good applicability and performance in reconstruction of remote sensing images
using super-resolution.

Keywords: super-resolution reconstruction; SRGAN model; SRGAN-MSAM-DRC model

1. Introduction

Super-resolution technology is a key technology in the field of digital image processing
and computer vision [1]. It is widely used in medical imaging [2], digital photography [3],
video surveillance [4], remote sensing images [5], and other fields. At present, remote
sensing imaging technology has been applied to many industries such as forestry, agri-
culture, meteorology, and environmental protection [6]. High-resolution remote sensing
images can enable us to obtain more accurate information in environmental monitoring
and resource management, urban planning and land management, disaster and weather
forecasting, crop-growth identification, and other fields. It is conducive to promote so-
cial progress and development. In the shooting process of remote sensing images, the
quality of images may be limited by many reasons such as equipment quality, shooting
conditions, and atmospheric environment, resulting in blurred images [7]. The goal of
super-resolution (SR) reconstruction technology for remote sensing images is to enhance
the resolution of low-resolution (LR) images by reconstructing them into high-resolution
(HR) images. Traditional super-resolution reconstruction algorithms for remote sensing
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images include nearest neighbor interpolation [8], bicubic interpolation [9], adaptive image
interpolation [10–12], sparse coding techniques [13–16], etc.

However, the super-resolution reconstruction of remote sensing images based on deep
learning has become a research hotspot nowadays. Super-Resolution Convolutional Neural
Network (SRCNN) is a neural network model proposed by Dong et al. [17]. It directly
learns the end-to-end mapping between low-resolution and high-resolution images, and
uses local perception domain, nonlinear mapping, and minimizing mean square error
methods to reconstruct the images. The model is fully feedforward, and does not need
to solve any optimization problems regarding usage. It can quickly reconstruct high-
resolution images with higher accuracy than traditional super-resolution methods. Very
Deep super-resolution (VDSR), based on the deep residual network, is an improved method
that Kim et al. [18] introduced residual learning into Super Resolution reconstruction
models. By using the idea of residuals, the model learns the residuals between image
pairs and adds the residuals to the input image to obtain a high-resolution image. This
method is a very deep convolutional neural network, which has higher accuracy and better
image reconstruction effect than SRCNN. Enhanced Deep Super-Resolution (EDSR) is
an enhanced single-image super-resolution algorithm proposed by Lim et al. [19]. It is
based on an improved ResNet architecture and residual-scaling techniques. The algorithm
simplifies the network structure and uses multi-layer residual modules to learn high-level
features of the image, thus achieving high-quality super-resolution reconstruction. It is
an efficient deep residual network model which can effectively deal with super-resolution
problems and improve reconstruction quality while reducing parameters and increasing
speed. Super-Resolution Generative Adversarial Network (SRGAN) is an image super-
resolution reconstruction algorithm proposed by Ledig et al. [20]. It uses two convolutional
neural network models to learn how to improve the resolution of images. The generator
model is responsible for generating realistic target images from random noise, while the
discriminator model is responsible for determining whether the images are real or fake
images generated by the generator. This method can not only produce clear and natural
high-resolution images, but also make the generated detailed textures more realistic.

Currently, there exist numerous super-resolution reconstruction algorithms, yet chal-
lenges persist within the image reconstruction procedure. For remote sensing images
with rich textures and complex objects, it is often difficult to deal with complex scenes by
interpolation and simple reconstruction methods [21]. The convolutional neural network-
based super resolution algorithm may make the reconstructed image appear too smooth,
resulting that the original details in the image are lost. Deep recursive network has the
problem of gradient disappearing or explosion, and overfitting may occur during training,
resulting in poor generalization performance of test set. In the process of image fractals,
some detail information may be lost, it can lead to the lack of realism and detail in the
reconstructed image, and even lead to the change of image color. At the same time, we
note some immune based machine learning algorithms have good reference value for
image super-resolution reconstruction of remote sensing, such as Non-linear statistical
image watermark detector [22], Blurred Infrared Image Segmentation Using New Immune
Algorithm with Minimum Mean Distance Immune Field [23], Infrared image segmentation
using growing immune field and clone threshold [24], and Target extraction of banded
blurred infrared images by immune dynamical algorithm with two-dimensional minimum
distance immune field [25]. The immune algorithms and image processing methods in-
volved in these studies also provide some inspiration for our research on super-resolution
reconstruction of remote sensing images. To solve the problems presenting in current
reconstruction algorithms of super-resolution, this article proposes a new model based on
generative adversarial networks, namely the SRGAN-MSAM-DRC model (SRGAN model
with Multi-Scale Attention Mechanism and Dense Residual Connection). The experimental
results show that images reconstructed by the SRGAN-MSAM-DRC model have enhance-
ment in various evaluations compared to the basic SRGAN model. Here are the main
contributions of this article:
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(1) Introducing Pyramid Segmentation Attention (PSA) mechanism into the generator
model of SRGAN, which makes the model effectively extract multi-scale spatial
information at a finer level.

(2) Introducing dense residual connections in the generator model of SRGAN, which
makes the model better capture the complex features of input remote sensing images
and reconstruct images with more detailed features.

(3) Adding residual blocks to the discriminator model of SRGAN to deepen the network
depth and make the network more focused on extracting the details of the image.

2. Related Search

The researchers propose a new framework for generating models through adversarial
training. One is generative model, which generates images from acquired data. The other
is the discriminant model, which calculates the probability that the sample comes from
data trained by the model rather than generated by the generator. The researchers named
the network GAN [26].

The convergence of GAN has been rigorously demonstrated by researchers. Under the
condition that the generator and discriminator are large enough, in the iterative process,
if the discriminator model can reach the optimal value at the given generator model, the
generator model will be updated and the generator will converge. This proof has enabled
GANs to receive more attention, improvement, and wider application than many other
deep learning models [27].

SRGAN uses an adversarial combination of deep neural networks and GAN to learn
how to generate images. Its generator uses a combination of convolution layers, BN layers,
pixel convolution layers and activation functions. It generates the image by downsampling
and then upsampling. Similarly, its discriminator uses many convolutional layers, BN
layers, LeakyReLU activation functions, and Sigmoid activation functions to determine
whether the image is the original image or the image generated by the generator [20].

The SRGAN generator’s architecture is depicted in Figure 1. The generator uses a
residual structure, with two 3 × 3 convolution layers in each residual block. BN is used after
the convolutional layer to normalize the operation. The activation function is PreLU. The
input before residual block is then connected to the output after skip connection. Because
the input image and the reconstructed image are basically similar, the network only focuses
on learning the information difference between low-resolution image and high-resolution
image, making the network more focused on generation of high-frequency details. Finally,
two sub-pixel convolution layers are applied to increase image size, so that the generator
does not need to enlarge the size and add a lot of channels first. After learning the details
of high-resolution images, the sub-pixel convolution layer is applied to enlarge the size,
which can save the computational resources.
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The SRGAN discriminator’s structure is shown as Figure 2, consisting of eight con-
volutional layers and utilizing BN layers for input normalization. Accompanied by an
increase in the convolutional layers’ number, the network will deepen and the feature size
will gradually decrease. LeakyReLU function can also calculate gradients for parts with
input less than zero, instead of having a value of 0 like ReLU. As a result, the discriminator
in SRGAN opts for LeakyReLU as its activation function. After two fully connected layers,
it applies the Sigmoid activation function to compute the probability whether the input
image is genuine.
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The SRGAN generator is tasked with creating images that closely resemble real images,
while the task of discriminator is to distinguish an image from a real image or a generated
image. Two networks are in competition as they train the generator to produce increasingly
lifelike images. SRGAN adopts a loss function called Perceptual Loss. The loss between
the characteristic pattern extracted by the VGG-19 network at different levels is employed
to replace the Mean Squared Error loss of two images, which improves the richness of
detail textures in super-resolution images and enhances the visual effect of the human eye.
Increasing the number and depth of layers in the GAN model can improve its representation
and non-linear fitting capabilities, which can be achieved by adding more convolutional
layers, batch normalization, and residual connections in the generator and discriminator.

3. Methods

SRGAN is a powerful super-resolution generation model that can draw more informa-
tion from the images with low-resolution and generate images with high-quality. So, this
section improves the basic SRGAN by introducing multi-scale attention mechanism and
dense residual structure into the generator, and then adding residual structure into the dis-
criminator to propose a new model: SRGAN model with Multi Scale Attention Mechanism
and Dense Residual Connection (SRGAN-MSAM-DRC). And then we use public datasets
to test the model performance. The softwares used in this paper are PyCharm 2023.3.2 and
Anaconda3-2023.09. The hardware is RTX-4060 graphics card of ASUS brand in Taiwan
Province of China.

3.1. Model Building
3.1.1. Generator

The SRGAN model with Multi Scale Attention Mechanism and Dense Residual Con-
nection (SRGAN-MSAM-DRC model) removes the Batch Normalization layer from the
basic SRGAN generator and introduces the Pyramid Segmentation Attention (PSA) mecha-
nism and dense residual connection.
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In the image generation task, the BN layer ignores the absolute differences between
image pixels and only considers relative differences, which is actually unfavorable for
super-resolution model training. Additionally, the BN layer utilizes equivalent memory
capacity compared to the preceding convolutional layer. By eliminating this step, the
model’s computational complexity can be decreased. The pyramid attention mechanism
can focus on color information at different scales, so that the model can deal with the color
changes of the reconstructed image more effectively. It can help the model suppress the
noise in the image during the reconstruction process and improve the generator’s focusing
ability and reconstruction ability. This can better maintain the global consistency of the
reconstructed image, making the reconstructed image more visually natural and coherent.
The quality of reconstructed remote sensing images can be improved by introducing the
PSA module which contains the pyramid attention mechanism. The architecture of residual
blocks in the basic SRGAN model and PSA modules are shown in Figure 3.
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Using dense residual connections in the generator of SRGAN-MSAM-DRC can enrich
the information content of reconstructed images. Dense residual connection can effectively
transmit information and alleviate the problem of gradient disappearance. This can better
capture complex features in the image and improve the quality of the reconstructed image.
Each level in the dense residual connection is directly connected to the previous level, and
the network can better retain and transmit important details and structural information in
the image, which can improve the fidelity and accuracy of the image reconstruction and
reduce the color change of the image.

The connection of multiple PSA modules which use a dense residual connection is
shown in Figure 4. The attention dense residual connection is designed to extract the
texture details that need to be recovered from the input low-resolution images, which
play a key role in generating high-resolution images. The attention mechanism is used to
select different feature maps of low-resolution images and then connect these images with
different feature maps of high-resolution images by dense residual connection.
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SRGAN is used for image generation, and the use of PReLU activation function has
little impact on it. Moreover, the generator performs dimensionality enhancement on
the image without considering the information loss part. The model’s performance can
be enhanced, while its complexity is reduced by using ReLU. The SRGAN-MSAM-DRC
generator uses ReLU activation function on the basic SRGAN, removes the last layer of
Sigmoid function, introduces multi-scale attention mechanism, improves residual structure,
and forms the network architecture of SRGAN-MSAM-DRC generator; Figure 5 shows that.
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3.1.2. Discriminator

In the SRGAN model, the discriminator plays an important role in extracting key fea-
tures from images to effectively differentiate real images from generated images. Therefore,
the discriminator acts as a classification network, and SRGAN-MSAM-DRC also adds resid-
ual thinking to the discriminator to improve its network performance. Adding residual
blocks into the discriminator can help the discriminator better capture important features
in the image. This can improve its ability to distinguish between the real image and the
generated image and help to train a stable generative adversarial network. By enhancing
the feature extraction capability of the discriminator, the discriminator can evaluate the
truth degree of the generated image more accurately, which helps the generator learn a
better generation strategy and generate higher quality and more realistic images. The
SRGAN-MSAM-DRC discriminator’s residual block architecture is depicted in Figure 6.
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The SRGAN-MSAM-DRC discriminator adds two residual blocks to deepen the net-
work depth. The output and input of each residual block were merged and became the
input of the next residual block, which could enhance the network’s emphasis on extracting
image details. LeakyReLU increases computational complexity and sacrifices the sparsity
brought by ReLU, as most reconstruction applications of super-resolution about images of
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remote sensing are combined with other tasks, such as remote sensing image target recog-
nition and classification, or geological hazard warning. Hence, it is essential to decrease
the count of model calculation parameters. As a result, the ReLU function in the discrimi-
nator is replaced by the LeakyReLU function. Figure 7 displays the SRGAN-MSAM-DRC
discriminator’s architecture.
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This improved model only involves adjustments to the structure, parameters, and
other aspects of the model, without changing the basic tasks and output goals of the model.
Therefore, the loss function of SRGAN-MSAM-DRC and SRGAN is perceptual loss. The
formulas are as follows:

perceptualloss = contentloss + beta × adversarial_loss (1)

Beta is the product factor of adversarial loss. The perceptual loss function is composed
of adversarial loss and content loss. The role of content loss is to ensure the generated
super-resolution image retains the semantic information of the original image. Through
comparing the feature representation between the original image and the generated image,
content loss makes the generator network more inclined to generate images with super-
resolution that are similar to the original image, which can improve the quality of the
generated image. The role of adversarial loss is to train the generator network to produce
more realistic high-resolution images. It encourages the image generated by the generator
to be visually difficult to distinguish from the real high-resolution image, thus improving
the realism of the generated image.

3.2. Description of Dataset

The datasets used in this article are sourced from the CCF BDCI Land Parcel Segmen-
tation Challenge and the UC Merced Land Use Dataset (UCMLU dataset). UCMLU dataset
is a 21 level remote sensing dataset; it is full of land-use imagery for study, all of them
extracted from urban areas in various regions. Each of these images has a pixel size of
256 × 256, and there are 21 sorts with 100 images per sort. These 21 sorts are: airplanes,
agriculture, buildings, beaches, baseball diamonds, shrubs, dense residences, highways,
ports, intersections, forests, golf courses, medium-sized residences, overpasses, parking
lots, mobile family parks, rivers, sparse residences, runways, chaparrals, and oil storage
tanks. Some examples of these categories are shown in Figure 8. The Chinese Computer
Federation (CCF) provides the CCF BDCI dataset, consisting of 140,000 remote sensing
images sized 256 × 256 pixels.
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The UCMLU dataset has 2100 images and they were used to generate HR-LR image
pairs by using BI degradation to train the super-resolution model. In total, 20% of the
images were used as the test set and the 80% as the training set. The CCF BDCI Land
Parcel Segmentation Challenge dataset is utilized for assessing the generalization ability of
models in subsequent testing phases. The value of parameter scaling_factor is set to 4, that
is, the spatial resolution of remote sensing image is increased by four times each time, the
resolution of original image is 256 × 256, and the resolution of the reconstructed image is
1024 × 1024 after two increases.

3.3. Evaluation Metrics

We usually use SSIM (Structural similarity) and PSNR (Peak signal-to-Noise Ratio)
to evaluate the quality of images. However, when these two metrics are used in the
reconstruction of the super-resolution model, they can easily lead to excessively smooth
details in the reconstructed image. So, increasing the image entropy index to further
comprehensively evaluate the reconstructed images’ quality can reflect the performance
of the reconstruction model about super-resolution better. In addition, we will also test
the hyperspectral remote sensing data set. Therefore, for the quality evaluation of the
reconstructed hyperspectral remote sensing images, we will add the Mean Spectral Angle
(MSA) to detect whether the spectra of the hyperspectral remote sensing images have
changed before and after reconstruction.

SSIM is a metric employed to describe the similarity of two images. It fully considers
the human visual perception. Besides, it focuses on the subjective perception about the
observer towards the image. It measures the quality of an image through three aspects:
contrast, structure, and image brightness [28]. The formulas are as follows:

SSIM(x, y) =

(
2µxµy + c1

)
(2σxν + c2)(

µ2
x + µ2

y + c1

)(
σ2

x + σ2
y + c2

) (2)

A high SSIM value indicates good reconstruction quality of the image or video. While
SSIM still cannot fully simulate the human eye’s perception of the image or video, especially
when there is distortion in the image or video, SSIM is not a perfect indicator for image
reconstruction about super-resolution.
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The PSNR is the comparison of the mean square error both the peak signal in an image
or video and that in the reconstructed image. The PSNR is smaller reconstructed image,
and the original image will have a larger difference, and the reconstructed image’s quality
is lower. The formula is as follows:

PSNR = log10

(
MAX2

MSE

)
× 10 (3)

IE (image entropy) can be employed to measure the complexity or information content
of an image. Meanwhile, the images’ quality can also be evaluated by using it [29]. Its
expression is as follows:

IE = −
255

∑
i=0

pilogpi (4)

Pi represents the proportion of pixels in the image with a grayscale value of i (value
range of 0 ≤ i ≤ 255), and it is also the probability of a certain grayscale appearing in
the image block. The value of it is lager, the pixel value distribution of the image is
more random or uncertain, and the information content or complexity of the image is
higher. Instead, its value is smaller, the image’s pixel value distribution is more regular or
deterministic, and the information content or complexity of the image is lower.

MSA is an index used to measure the mean Angle difference between two sets of
spectral vectors. In remote sensing image processing, it is usually used to evaluate the
spectral similarity between different images. By calculating the MSA, the spectral similarity
between the reconstructed image and the original image can be evaluated to verify whether
the spectral information is retained during the reconstruction process [30]. A smaller MSA
indicates that the spectrum between the reconstructed image and original image is more
similar. The formulas are as follows:

Mean Spectral Angle =
1
N

N

∑
i=1

arccos
(

ai · bi

∥ ai ∥∥ bi ∥

)
(5)

3.4. Model Training

Train SRResNet first and use the saved training model weights for SRGAN training
initialization. Figure 9 illustrates the model training progress.
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Set folder paths for the training sets and testing sets in the preprocessing section, and
set the parameter min_size to check the resolution of every image in both training sets and
testing sets. When the size of image is less than min_size, the image path is not written to
the JSON file list. Each folder will form an image list file that will store the image paths of
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training and testing. Only when the dataset list file is accurately generated, can it be used
for efficient parallel loading of images by subsequent Pytorch data loaders.

Before training the SRResNet model, we set batch size parameter to 128 and GPU
number as 1. The rate of initial learning is defined as 1 × 10−4 with an upscaling factor of
4. As the training progresses, the MSE function gradually converges and reaches the con-
vergence state at epoch 140. Save the trained SRResNet model and use the idea of transfer
learning to directly initialize the generator using the previously trained SRResNet model
when training the SRGAN model. In SRGAN training, the hyperparameter amplification
ratio of the model is still 4 times, and the rate of initial learning is 1 × 10−4. When the
model is halfway through training, the learning rate decreases. The SRGAN generator’s
loss function is made up of two parts, they are weighted content loss and adversarial
loss, known as perceptual loss. The loss function of discriminator, known as adversarial
loss, is computed by binary cross entropy. Compared with SRResNet loss curve, SRGAN
is very unstable, and as the discrimination loss decreases, the generation loss increases,
indicating a fierce confrontation between discriminator and generator. At the beginning of
training, the generator’s output is very unreal, so the fake images can be easily identified
by the discriminator, resulting in a sharp decrease in the discriminator’s loss. However, the
generator’s loss increases due to its unreal output, leading to a sharp decrease in adversarial
loss to close to 0, and the generator’s content loss and generation loss increase to their
maximum value. As the generator in the training process produces increasingly realistic
images, the discrimination task becomes more challenging for the discriminator, leading
to a rapid escalation in the adversary loss of the discriminator. Meanwhile, the loss of the
generator will gradually decrease as its output becomes more realistic, and during this
process, the model gradually converges. In late training, the epoch oscillates from 50 to
100, and the training is unstable because the performance of discriminator and generator is
approaching saturation, making GAN training more difficult. In summary, the SRResnet
model at epoch = 140 and the SRGAN model at epoch = 50 will be saved as the basic model
for subsequent experimental testing.

4. Results
4.1. Results and Discussion of Ablation Experiments

Three different types of remote sensing images are selected from the UCMLU dataset
as samples randomly. The original SRGAN model [26], the SRGAN-MSAM model (SRGAN
model with Multi Scale Attention Mechanism), and the SRGAN MSAM-DRC model are
utilized for super-resolution reconstruction experiments. The reconstructed results of
images are held up in Figures 10–12. The yellow boxes in the fourth section, “Results”, all
indicate the position of the partial reconstructed effect in the complete reconstructed image.
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Figures 10–12, respectively, show the comparison of partial reconstruction effects for
tennis court, beach, and baseball diamond. In the enlarged image of the tennis court in
Figure 10, we can see that the texture of the trees is relatively smooth. After reconstruction
using the basic SRGAN model, the texture sense of the trees begins to enhance, but the
overall color of the image is biased. The texture details of the trees reconstructed using
the SRGAN-MSAM model are clearer, and the color deviation is reduced compared with
the image reconstructed using the SRGAN model. After the reconstruction of the SRGAN-
MSAM-DRC model, the tree texture is more similar to the reality, and the color of the image
basically does not change, resulting in the best effect. In the enlarged image of the beach
in Figure 11, the boat and the waves on the water are blurred in the original image. After
SRGAN model reconstruction, the color of the water surface has changed significantly,
but the red seat on the white assault boat is more obvious. Compared with the image
reconstructed using the SRGAN model, the color of the image reconstructed using the
SRGAN-MSAM model is improved, but the wave part of the water surface is still a little
fuzzy. After the reconstruction of the SRGAN-MSAM-DRC model, the image is closer
to the original image in terms of color, and the red seat in the yellow blade boat and the
white blade boat are clearer and the texture of the wave part is clearer, and the overall
reconstruction quality is the highest. In the enlarged image of the baseball diamond in
Figure 12, the two small paths and the potholes between them shown in the original image
have a strong sense of blurriness. The smoothness of the image after reconstruction using
the SRGAN model has been improved, but the degree of potholes between the small paths
and paths is not as obvious as the images reconstructed using the SRGAN-MSAM model
and the SRGAN-MSAM-DRC model. The reconstructed images of the SRGAN-MSAM-
DRC model are more distinct and have higher clarity in the display of the potholes.

Compared to the SRGAN model, the images reconstructed using the SRGAN-MSAM
model and the SRGAN-MSAM-DRC model both contain more texture information from the
enlarged area of the effect comparison image. Compared with the SRGAN-MSAM model,
the reconstructed images of the SRGAN-MSAM-DRC model have richer texture details and
higher clarity, resulting in better reconstruction results for details. Remote sensing images
display high intra-class diversity, high inter-class similarity, high information content, and
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small targets, necessitating greater detail than typical image reconstruction tasks about
super-resolution. From the reconstructed images, we know that the SRGAN-MSAM-DRC
model not only improves clarity, but also contains rich details. Therefore, we know that
the SRGAN-MSAM-DRC model has a better performance than the basic SRGAN model in
super-resolution reconstruction.

To provide additional evidence of the SRGAN-MSAM-DRC model’s effectiveness,
three-evaluation metrics mentioned in Section 3.3 of this article are employed to evaluate
reconstructed renderings of different models. Table 1 presented the evaluation criteria for
analyzing image reconstruction effects from various models. The bold data in all tables in
the fourth section, “Results”, indicates that the data is the best of all data for the indicator.

Table 1. The comparison about evaluation indicators for reconstruction renderings of different
models.

Model PSNR SSIM IE

SRGAN [20] 29.844 0.918 6.565

SRGAN + MSAM 28.866 0.925 6.634

SRGAN-MSAM-DRC 31.056 0.964 6.840

The comparison charts of evaluation indicators for different models are shown in
Figures 13–15.
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From Figures 13–15, we can see that compared with the basic SRGAN model, the
SRGAN-MSAM-DRC model has increased PSNR, SSIM, and IE by 4.0%, 5.0%, and 4.1%,
respectively. According to the evaluation criteria for reconstructed image quality and
effectiveness, the SRGAN-MSAM-DRC model outperforms the basic SRGAN model in
improving the resolution about images of remote sensing. While improving the PNSR and
SSIM indicators, the reconstructed images do not show significant distortion or deformation,
and the reconstructed texture effect is good, with better performance.

4.2. Results and Discussion of Comparative Experiments

Above experimental results have verified that SRGAN-MSAM-DRC can reconstruct
high-quality images of remote sensing. On purpose of validating the superior reconstruc-
tion performance of the SRGAN-MSAM-DRC model over other models, we designed
the following comparative experiments. Figures 16–18 show the reconstruction results
based on the Bicubic model [31], the SRGAN model whose discriminator uses DenseNet
network [32], the SRGAN model based on improved convolutional blocks [33], and the
SRGAN-MSAM-DRC model.
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Figure 16. The comparison about airplane reconstruction effects.

Figures 16–18 show the comparison of partial reconstruction effects for airplane,
intersection, and chaparral. In the enlarged image of the airplane in Figure 16, we can
see that the image reconstructed using the SRGAN-MSAM-DRC model has significantly
higher clarity in the rectangular yellow road markings than the other three models, with
higher brightness in the wing section and darker lawn color. In the enlarged image of
the intersection in Figure 17, we can see that the image reconstructed using the SRGAN-
MSAM-DRC model has a more obvious reconstruction effect on the trellis. The various
parts on the trellis are more distinct, and the grain details on the trees are more detailed,
which is more realistic. In the enlarged Chaparral image in Figure 18, we can see that the
image reconstructed using the SRGAN-MSAM-DRC model is more realistic in restoring
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the colors of the shrubs compared to the other three models, and the overall smoothness is
not high, but has a richer texture.
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From the perspective of local magnification in the effect comparison image, the
SRGAN-MSAM-DRC model’s reconstructed effect image is superior to the Bicubic model,
SRGAN+DenseNet model, and SRGAN+Conv model in terms of clarity, color, and texture
details. In order to further verify whether the SRGAN-MSAM-DRC model performs better,
the performance of each model is compared by using the evaluation indicators of the three
super-resolution reconstruction effect maps proposed in Section 3.3 of this article. Table 2
shows the detailed evaluation indicators for different model reconstruction renderings.

Table 2. The comparison of evaluation indicators for reconstruction renderings of different models.

Model PSNR SSIM IE

Bicubic [31] 28.168 0.905 6.274

SRGAN+DenseNet [32] 29.494 0.953 6.470

SRGAN+Conv [33] 30.099 0.935 6.542

SRGAN-MSAM-DRC 31.056 0.964 6.840

The comparison charts of evaluation indicators for different models are shown in
Figures 19–21.
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According Figures 19–21, the SRGAN-MSAM-DRC model demonstrates the highest re-
construction performance in all evaluation metrics, highlighting that the enhanced SRGAN
method introduced in this study is capable of producing high-quality super-resolution
remote sensing images.
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4.3. Performance Evaluation

To further confirm the advantages of the SRGAN-MSAM-DRC model in reconstruction
of remote sensing images using super-resolution, this chapter further validates the efficiency
of reconstructing images of remote sensing and the generalization ability of different models.
The experimental results are shown in Table 3, Figure 22, and Table 4.

Table 3. Efficiency of reconstructing images of remote sensing by using different models.

Model The Time to Reconstruct an Image (Seconds per Image)

SRGAN [20] 0.335

SRGAN+DenseNet [32] 0.395

SRGAN+Conv [33] 0.375

SRGAN+MSAM 0.298

SRGAN-MSAM-DRC 0.267

The efficiency comparison of different models in reconstructing remote sensing images
is shown in Figure 22.
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Table 4. The performance of different models in terms of their generalization ability, and the test
dataset is CCF BDCI Land Parcel Segmentation Challenge.

Model PSNR SSIM IE

SRGAN [20] 34.524 0.906 5.144

SRGAN+DenseNet [32] 35.582 0.961 4.780

SRGAN+Conv [33] 31.416 0.894 5.116

SRGAN+MSAM 31.375 0.893 5.170

SRGAN-MSAM-DRC 37.770 0.968 5.141

The comparison charts of evaluation indicators for different models are shown in
Figures 23–25.
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From Figure 22, we can see that the SRGAN-MSAM-DRC model has the highest
efficiency in reconstructing images, indicating that the SRGAN-MSAM-DRC model is
capable of performing inference operations faster. From Figures 23–25, we can see that the
SRGAN-MSAM-DRC model still performs well on the new test set, with PSNR and SSIM
values ranking first. The PSNR and SSIM are 6.1% and 0.7% higher than the second rank,
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respectively. Although the IE value ranks third, the difference from the highest value is only
0.5%, indicating that the SRGAN-MSAM-DRC model has stronger generalization ability.

In order to verify whether the model proposed in the paper also has a good per-
formance on the reconstruction of hyperspectral remote sensing images, we conducted
supplementary experiments here.

In this experiment, images from two hyperspectral datasets, “Pavia University” and
“Indian Pines”, were used for super-resolution reconstruction. To verify whether the
spectra of the images before and after the reconstruction of the two hyperspectral datasets
have changed, Mean Spectral Angle (MSA) was added to the three evaluation indexes
mentioned in Section 3.3 of this paper to evaluate the performance of the super-resolution
model proposed in the paper. The results are as follows:

From Figures 26 and 27, we can see that the hyperspectral remote sensing image
reconstructed using the SRGAN model is obviously different from the original image
in terms of color, and in the selected region, the image reconstructed using the SRGAN-
MSAM-DRC model is superior to other models in terms of clarity and color, and is most
similar to the original image. Therefore, SRGAN-MSAM-DRC still has a good performance
in super-resolution reconstruction of hyperspectral remote sensing images.
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In order to further verify the performance of the SRGAN-MSAM-DRC model, we
used four evaluation indexes, PSNR, SSIM, IE and MSA, to evaluate the image quality after
reconstruction of different models, and the results are shown in Table 5.
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Table 5. Performance of different models in hyperspectral remote sensing image reconstruction. The
test data sets are “Indian Pines” and “Pavia University “.

Model PSNR SSIM IE MSA

SRGAN [20] 26.982 0.863 6.411 1.206

SRGAN+DenseNet [32] 27.957 0.935 6.171 1.205

SRGAN+Conv [33] 26.792 0.895 6.287 1.207

SRGAN+MSAM 27.410 0.880 6.310 1.206

SRGAN-MSAM-DRC 28.049 0.917 6.510 1.203

Table 5 shows the specific results of evaluation indicators of different models in
hyperspectral remote sensing image reconstruction. As can be seen from Table 5, the
PSNR and IE values of the SRGAN-MSAM-DRC model are the best among all models,
and the SSIM value ranks second. In terms of MSA, the value of the SRGAN-MSAM-DRC
model is only 1.203, which is also the best among all models. It is further shown that
the SRGAN-MSAM-DRC model also has a good effect on reconstruction of hyperspectral
remote sensing image by using the SRGAN-MSAM-DRC model. Compared with the
original image, the reconstructed image has higher spectral similarity and little difference.

In general, the SRGAN-MSAM-DRC model proposed in this paper shows good per-
formance both in traditional remote sensing image reconstruction and in hyperspectral
remote sensing image reconstruction. Therefore, we believe that this model has certain
advantages in the field of remote sensing image super-resolution reconstruction.

5. Conclusions

This study focuses on the applicability and performance of the improved SRGAN
model in the reconstruction of remote sensing images using super-resolution. Through
detailed experiments and analysis, the aim is to explore its effectiveness in practical ap-
plications. Firstly, we improved the SRGAN model by introducing multi-scale attention
mechanisms and improving the model structure, aiming to enhance its performance. In
the performance evaluation of the SRGAN-MSAM-DRC model, we used objective evalua-
tion metrics such as PSNR, SSIM, and image entropy, and extensively tested them on the
UCMLU dataset. From the results, we can conclude the performance of SRGAN-MSAM-
DRC model is more outstanding than basic SRGAN model, proving that the proposed
SRGAN-MSAM-DRC model can indeed reconstruct high-quality images of remote sensing.
For the purpose of confirming the performance of the SRGAN-MSAM-DRC model, we
also tested the Bicubic model, and the SRGAN model whose discriminator uses DenseNet
network, and the SRGAN model with improved convolutional blocks, all under identi-
cal conditions. The results show the SRGAN-MSAM-DRC model performance is more
outstanding than other models in various evaluation indicators. By comparing the recon-
struction results and evaluation indicators of various models, we can conclude that the
SRGAN-MSAM-DRC model exhibits good applicability and performance improvement in
the reconstruction of remote sensing images using super-resolution.

Although the SRGAN-MSAM-DRC model has achieved certain results in super-
resolution reconstruction algorithms, it can be improved. To begin with, there is a shortage
of high-precision remote sensing image data, particularly the challenge of acquiring remote
sensing images for specific areas. Therefore, future research can conduct more extensive
training and testing on remote sensing images of different terrains to further optimize
models and parameters. Secondly, reconstruction of remote sensing images using super-
resolution mentioned in this article is trained on true color images, and is not involved
in single band remote sensing data. Future work can further improve super-resolution
reconstruction methods by preprocessing, training, and testing remote sensing images of
different single band and band combinations. These improvements will help drive more
significant research in this field.
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