
Citation: Luo, F.; Zhang, Y.; Zhao, X.

Understanding the Spatiotemporal

Dynamics and Influencing Factors of

the Rice–Crayfish Field in Jianghan

Plain, China. Remote Sens. 2024, 16,

1541. https://doi.org/10.3390/

rs16091541

Academic Editors: Konstantinos

X. Soulis, Thomas Alexandridis,

Emmanouil Psomiadis and

Dionissios Kalivas

Received: 13 March 2024

Revised: 22 April 2024

Accepted: 24 April 2024

Published: 26 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Understanding the Spatiotemporal Dynamics and Influencing
Factors of the Rice–Crayfish Field in Jianghan Plain, China
Fang Luo, Yiqing Zhang and Xiang Zhao *

School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China;
luof2000@whu.edu.cn (F.L.); sameenzhang@whu.edu.cn (Y.Z.)
* Correspondence: zhaoxiang@whu.edu.cn

Abstract: The rice–crayfish co-culture system, a representative of Agri-aqua food systems, has
emerged worldwide as an effective strategy for enhancing agricultural land use efficiency and
boosting sustainability, particularly in China and Southeast Asia. Despite its widespread adoption
in China’s Jianghan Plain, the exact spatiotemporal dynamics and factors influencing this practice
in this region are yet to be clarified. Therefore, understanding the spatiotemporal dynamics and
influencing factors of the rice–crayfish fields (RCFs) is crucial for promoting the rice–crayfish co-
culture system, and optimizing land use policies. In this study, we identified the spatial distribution
of RCF using Sentinel-2 images and land use spatiotemporal data to analyze its spatiotemporal
dynamics during the period of 2016–2020. Additionally, we used the Multiscale Geographically
Weighted Regression model to explore the key factors influencing RCF’s spatiotemporal changes. Our
findings reveal that (1). the RCF area in Jianghan Plain expanded from 1216.04 km2 to 2429.76 km2

between 2016 and 2020, marking a 99.81% increase. (2). RCF in Jianghan Plain evolved toward a
more contiguous and clustered spatial pattern, suggesting a clear industrial agglomeration in this
area. (3). The expansion of the RCFs was majorly influenced by its landscape and local agricultural
conditions. Significantly, the Aggregation and Landscape Shape Indexes positively impacted this
expansion, whereas proximity to rural areas and towns had a negative impact. This study provides
a solid foundation for promoting the rice–crayfish co-culture system and sustainably developing
related industries. To ensure the sustainable development of rice–crayfish co-culture industries in
Jianghan Plain, we recommend that local governments optimize the spatial layout of rural settlements,
improve transportation infrastructure, and enhance regional agricultural water sources and irrigation
system construction, all in line with the national strategy of rural revitalization and village planning.
Additionally, promoting the concentration and contiguity of RCF through land consolidation can
achieve efficient development of these industries.

Keywords: rice–crayfish field; rice–crayfish co-culture system; spatiotemporal dynamics; driving
mechanisms; multiscale geographically weighted regression; Jianghan Plain

1. Introduction

In recent decades, the rapidly growing global population has posed significant chal-
lenges to food supplies [1]. The escalating demand for food has intensified pressure on
cultivated land. Meanwhile, in many regions, inefficient economic output from farming
has led to excessive encroachment on, and depletion of, cultivated land due to urban-
ization [2,3]. In this context, rice–aquatic animal co-culture systems have emerged as a
potential solution. These systems, which can produce multiple types of food per unit area of
land, are increasingly recognized as significantly increasing farmland output efficiency [4,5].
As such, they are increasingly seen as an effective way to transition Agri-aquatic food sys-
tems towards sustainability [6,7]. Among these, the rice–crayfish co-culture system is an
emerging and rapidly growing agricultural production model in several Asian countries,
including China [8]. Currently, China’s Ministry of Agriculture recognizes the rice–crayfish
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co-culture model as a key practice for promoting green and ecological agriculture. It has
been incorporated into the country’s future agricultural development plan [9].

The rice–crayfish co-culture system represents an innovative ecological model for rice
cultivation, combining rice farming and crayfish aquaculture within the same ecosystem.
This system can effectively stimulate agricultural growth, boost farmers’ income, and
achieve a balance between agricultural production and environmental protection [10–12].
The system’s rapid development and promotion across southern China and Southeast Asia
in recent years can be attributed to its suitability for the climate, substantial profitability,
and systemic nutritional sustainability [13,14]. For instance, China’s Crayfish Industry
Development Report (2021) reveals that, in 2020, over 80% of China’s crayfish production
was achieved through the rice–crayfish co-culture system in Rice–Crayfish Fields (RCF).
Additionally, nine out of the top thirty crayfish production counties in China were located
within the Jianghan Plain region of Hubei Province.

Consequently, accurately capturing the spatiotemporal distribution of RCFs is criti-
cal for advancing the rice–crayfish co-culture agricultural production model and refining
associated industrial development policies. Currently, data on the spatial and temporal dis-
tribution of RCF are mainly obtained through field surveys or statistical sampling methods,
which estimate its cultivation area. However, these methods often fail to accurately portray
the spatial distribution and changes in RCF over a larger area and at a finer spatial scale.
Remote sensing technology, with its capacity for continuous spatiotemporal monitoring, ac-
curately depicts the spatial distribution of features and has become an indispensable tool for
acquiring land cover information [15], such as farmland, urban areas, and forests [16–18].

Several researchers have already investigated the extraction of information about the
spatial and temporal distribution of RCF. For example, Wei et al. utilized RCF phenology,
seasonal water body variations, and Landsat images to map the spatial distribution of RCF
with a 30 m spatial resolution in Qianjiang County of the Jianghan Plain region from 2013
to 2018 [19]. Xia et al. employed a decision tree model and Sentinel-2 imagery to map the
high-resolution spatial distribution of RCFs in Qianjiang County in 2019. Their study was
grounded in the typical phenological, spectral, and textural features of RCFs [20]. Chen
et al. used Landsat images and the Automated Water Extraction Index (AWEI) to extract
the spatiotemporal dynamic changes in RCFs in Jianli County in Jianghan Plain from 2010
to 2019 [21].

While the aforementioned studies have made advancements in mapping the spatial
distribution of RCF in Jianghan Plain, two significant challenges persist. Firstly, current
research has primarily focused on individual counties, which leaves a noticeable gap in the
study of the spatiotemporal dynamics of RCFs across the entire Jianghan Plain. As a result,
accurate depictions of the distribution of and quantitative data on RCFs in this region are
still lacking. This gap hinders the provision of a reliable basis for decision making regarding
the sustainable development of rice–crayfish co-culture industries and policy formulation
in the region. Secondly, existing extraction methods often depend on the phenological traits
of RCFs. However, ponds used for lotus root cultivation in the Jianghan Plain region of
China may exhibit similar characteristics to RCFs in terms of their phenology, spectra, and
texture. Consequently, relying solely on remote sensing images and RCFs’ phenological
feature information to extract RCF data could introduce significant uncertainties.

Moreover, understanding the factors that influence the spatiotemporal dynamics of
RCFs is vital for gaining a deeper insight into the spatiotemporal evolution of RCFs. Such
knowledge is indispensable for effective farmland management and for promoting the
sustainable development of the rice–crayfish co-culture-related industries. Various factors,
including topography, climate, transportation, demographics, and socioeconomics, all
influence the spatial and temporal evolution of RCF, which is a unique type of cultivated
land use [8,22]. For instance, Chen et al. found that the spatial expansion of RCFs is nega-
tively affected by labor force loss, while it is positively correlated with villagers’ per capita
income [21]. However, their study only analyzed the factors influencing the spatiotemporal
changes in RCFs in Jianli County on the Jianghan Plain, considering the proportion of
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migrant workers and villagers’ per capita income. In general, a comprehensive understand-
ing of the factors influencing the spatiotemporal dynamics of RCF in Jianghan Plain is
still lacking.

Given the limitations identified in previous studies regarding the extraction of spa-
tiotemporal distribution data and the analysis of the evolutionary mechanisms of RCFs
in the Jianghan Plain region, this study has two primary objectives. The first is to use
Sentinel-2 imagery, the phenological characteristics of RCFs, and spatiotemporal land-use
data to accurately map the spatiotemporal distribution of RCFs in Jianghan Plain from
2016 to 2020. The second objective is to examine the factors influencing the spatiotemporal
evolution of RCFs in the Jianghan Plain. To achieve this, we plan to establish a comprehen-
sive framework that considers multiple dimensions such as socio-economic development
status, locational factors, agricultural development conditions, and landscape patterns.
This framework will encompass various potential factors influencing the spatiotemporal
dynamics of RCF in the Jianghan Plain. Following this, we will analyze the key factors
influencing the spatiotemporal dynamics in RCF in Jianghan Plain using the Multiscale
Geographically Weighted Regression (MGWR) model. The findings of our research aim
to provide a reliable foundation for informed decision making relevant to advancing the
rice–crayfish co-culture industries in the Jianghan Plain.

2. Materials and Methods
2.1. Study Area

The Jianghan Plain (29◦26′–31◦37′N, 111◦14′–114◦36′E) is situated in the south-central
region of Hubei Province, China (Figure 1) and is a significant part of the middle reaches of
the Yangtze River Plain. It was formed by the alluvial deposits of the Yangtze River and its
largest tributary, the Han River. The Plain stretches from Yichang in the west to Wuhan
in the east, encompassing 18 county-level administrative districts and 295 township-level
administrative units, covering a total area of approximately 31,000 square kilometers.

The region falls within the continental subtropical monsoon climate, characterized by
simultaneous rain and heat, with an annual precipitation exceeding 1000 mm and abundant
sunlight. Known as the ‘land of fish and rice’ in China, the Jianghan Plain, with its flat
terrain, fertile soil, and well-developed agricultural irrigation system, provides superior
conditions for agricultural production. It serves as an important production base for grain,
cotton, oil, and fishery products in China.

The Jianghan Plain is a pioneer region in China for promoting the rice–crayfish co-
culture agricultural production model. For this study, we divided the region into three areas
based on the timing and location of rice–crayfish co-culture promotion, water distribution,
and administrative differences: the core area in the south-central part, the area near the
Wuhan metropolitan area in the northeast, and the peripheral areas in the west and north.

The south-central core area, which includes Qianjiang, Xiantao, and most counties
of Jingzhou such as Jianli, Honghu, Shishou, Jiangling, and Gong’an, boasts densely
distributed lakes and rivers, abundant water resources, rich agricultural land resources,
and convenient transportation. These factors provide superior conditions for promoting the
rice–crayfish co-culture model, making this region the earliest to do so in Jianghan Plain.

The northeastern region, primarily consisting of Hanchuan and Yunmeng in Xiaogan
prefecture, as well as Caidian, a suburb of Wuhan, serves as a significant vegetable supply
base for the Wuhan metropolitan area due to its productive agriculture. However, it
also faces multiple challenges in protecting arable land due to rapid urbanization and
industrialization influenced by the Wuhan metropolitan area.

The peripheral regions, such as the western and northern parts of the Jianghan Plain,
experienced late adoption of the rice–crayfish co-culture model. These regions specifically
include Songzi and Zhijiang in the Yichang prefecture to the west and Tianmen and Shayang
in the northern part of the Jingzhou prefecture. Although this region has abundant lakes,
pits, and other water sources, their distribution is significantly less balanced compared to
the south-central core area.
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In recent years, local governments in Jianghan Plain have implemented numerous
policies to support the promotion of the rice–crayfish co-culture model. This has signifi-
cantly improved the economic efficiency of cultivated land in the region, increased farmers’
income, and effectively protected the cultivated land. Therefore, it is crucial to accurately
obtain information on the distribution of RCF and its spatiotemporal change characteristics
and evolution patterns on Jianghan Plain for optimizing agricultural and land use policies
in the region. Since Wuhan, located in the eastern part of the Jianghan Plain, is a focal area
for urbanization and industrial development in Hubei Province, the urban area of Wuhan is
excluded from the study region in this research. This study will analyze the spatiotemporal
distribution and evolution of RCF in 295 township-level administrative regions in Jianghan
Plain from 2016 to 2020.

2.2. Data Sources

In this study, we used the spatiotemporal land use data to map the spatial distribution
of RCF, leveraging Sentinel-2 images provided by the Google Earth Engine (GEE) platform



Remote Sens. 2024, 16, 1541 5 of 25

(https://earthengine.google.com/ accessed on 15 November 2022). Due to the limited
availability of winter 2016 imagery data in the study area, we specifically used data from
December 2016. More precisely, we obtained 42 Sentinel-2 images from 1 December 2016
to 28 February 2017, and 68 images from 1 January to 28 February 2021. These images,
which had less than 5% cloud cover, were used to extract the water body areas in the winter
months (January–February) of 2016 and 2020 in the Jianghan Plain. Additionally, we used
data such as night-light remote sensing images, population statistics, and road information
to analyze factors influencing the spatiotemporal evolution of RCF. Details of these data
sources are provided in Table 1.

Table 1. Data sources used in this study.

Datasets Type Resolution Year Sources

Sentinel-2 a Raster 10 m 2016, 2020 https://earthengine.google.com/ accessed on
15 November 2022

Land Use Raster 10 m 2016, 2020 Department of Natural Resources of Hubei Province

NPP VIIRS Raster 1 km 2016, 2020 https://payneinstitute.mines.edu/eog/ accessed on
11 April 2023

Population Raster 1 km 2016, 2020 https://landscan.ornl.gov/ accessed on 20 April 2023

Roads Vector -- 2016, 2020 https://www.openstreetmap.org/ accessed on
11 April 2023

Statistical Yearbooks CSV -- 2016, 2020 Local governments of Hubei Province
a This study primarily utilized the blue, green, NIR, SWIR1, and SWIR2 bands. Both SWIR bands were resampled
to a 10 m resolution.

The land use data for this study, as shown in Table 1, were sourced from the Land Use
Survey Database of the Department of Natural Resources of Hubei Province. We converted
the vector land use data into raster images with a 10 m spatial resolution to aid in the
extraction of RCF information. To evaluate the impact of macro socioeconomic factors
on the spatiotemporal evolution of RCFs, we also collected statistical yearbooks from the
prefectural and municipal statistical bureaus in the study area. As acquiring accurate
demographic and socioeconomic data at the township scale is challenging, we used remote
sensing and other methods to indirectly measure these variables at the township level.
Due to the strong correlation between human activities and nighttime light intensity [23],
NPP VIIRS nighttime lighting data were used as an indicator to measure township socio-
economic development status in this study. These NTL data were obtained from the Payne
Institute for Public Policy Research at the Colorado School of Mines (https://payneinstitute.
mines.edu/eog/ accessed on 11 April 2023). Global population distribution data, sourced
from the U.S. Department of Energy’s Oak Ridge National Laboratory (https://landscan.
ornl.gov/ accessed on 20 April 2023) at a 1 km resolution, were adjusted using the seventh
census data at the county level to accurately depict the population distribution in Hubei
Province. Lastly, we used road data from OpenStreetMap (https://www.openstreetmap.
org/ accessed on 11 April 2023) to examine the influence of factors such as roads on the
spatiotemporal changes in RCFs.

2.3. Methods
2.3.1. Extraction of RCF

The cultivation process of a typical RCF is divided into two main phenological stages
(Figure 2): (1) The Middle Rice Planting Period (June–October): This period begins with the
transplanting of rice seedlings throughout the field in June and ends with the harvesting of
the middle rice in October. During this period, crayfish are cultured in ditches around the
rice fields. (2) The Paddy Field Fallow Period (November–May): After the rice harvesting
season, the fields are left fallow and are irrigated to a depth of over 50 cm. This coincides
with the growth and development of crayfish.

https://earthengine.google.com/
https://earthengine.google.com/
https://payneinstitute.mines.edu/eog/
https://landscan.ornl.gov/
https://www.openstreetmap.org/
https://payneinstitute.mines.edu/eog/
https://payneinstitute.mines.edu/eog/
https://landscan.ornl.gov/
https://landscan.ornl.gov/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
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In the Jianghan Plain region, the RCF cultivation process also involves two seasons
of crayfish harvesting. The first season begins in mid-April and concludes in early June,
followed by the placement of juvenile crayfish for the second season of production. The
second catching period runs from the first half of August to the end of September. After
catching, parental crayfish are released to provide for subsequent reproduction of juvenile
crayfish. As a result, the RCF area is used for rice cultivation and crayfish harvesting from
June to October and for water distribution and crayfish development from November to
the following May.

However, it is important to note that ponds used for cultivating lotus roots in Jianghan
Plain exhibit phenological characteristics that are similar to those of RCFs. The lotus
planting period typically begins in late March to early April, with the harvest period
starting in September as the lotus leaves become yellow and withered. From late October
to the following March, the lotus root is in its dormant stage.

During the growing period of lotus, from May to September, the lotus ponds exhibit
a vegetated state, while from October to April, they are unvegetated. This is similar to
the RCF cultivation cycle, where the RCF area is used for rice cultivation and crayfish
harvesting from June to October, and for water distribution and crayfish development from
November to the following May. Therefore, relying solely on phenological features for
RCF information extraction may result in misidentifying lotus ponds as RCFs, which can
negatively impact the accuracy of RCF information extraction.

Since 2009, the Chinese Government has initiated nationwide land use surveys using
remote sensing images with a spatial resolution better than 1 m. To ensure accuracy,
numerous field investigations and validations have been conducted. Notably, these surveys
classify lotus ponds as water bodies and RCFs as paddy fields. More specifically, RCF refers
to those paddy field areas that exhibit water coverage features during January to February.
Conversely, in the Jianghan Plain area, the typical planting system involves growing rape
or wheat in the paddy fields during winter. This leads to regular paddy fields exhibiting
spectral characteristics of vegetation cover during winter, resulting in completely different
spectral characteristics compared to RCFs in the same season. This distinction allows for
successful differentiation of RCFs from regular paddy fields, which typically appear as
vegetation-covered areas with no water during this period.

To address the limitations of existing methods such as those proposed by Wei et al. [19]
and Chen et al. [21], which struggle to distinguish between RCFs and lotus ponds, we
employ land use data to enhance the RCF extraction process. This process includes two
primary steps: First, we gather the distribution data of paddy fields from the 2016 and 2020
land use data of the Jianghan Plain. Second, we use the Automated Water Extraction Index
for Shadow Areas (AWEIsh) to identify the paddy fields that present as water bodies during
winter. This technique allows us to determine the spatial distribution of RCF. Figure 3
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illustrates the extraction process. The AWEIsh employs a band combination technique for
water extraction, which minimizes the impact of non-water pixels and reduces uncertainties
caused by shadows. This method enhances the distinction between water bodies and dark
surface land cover types [24]. The calculation formula is presented in Equation (1).

AWEIsh = ρBlue + 2.5 × ρGreen − 1.5 × (ρNIR + ρSWIR1)− 0.25 × ρSWIR2 (1)

where ρBlue, ρGreen, ρNIR, ρSWIR1, and ρSWIR2 represent the object’s reflectance in the
Sentinel-2 Blue, Green, NIR, SWIR1, and SWIR2 bands, respectively. To accurately extract
information about water bodies, it is crucial to determine a reasonable AWEIsh threshold
to distinguish them from non-water bodies. In this study, the Otsu method was utilized to
identify the optimal threshold for extracting water body information using AWEIsh. This
method differentiates between the background and foreground in an image by setting a
binary threshold function that maximizes the inter-class variance, as detailed in [25].
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2.3.2. Landscape Pattern Analysis

We utilized landscape indices to quantify the landscape patterns of RCFs in Jianghan
Plain. Based on previous research and the specific insights provided by landscape pattern
indices [26–28], we selected the Patch Density Index (PD), Landscape Shape Index (LSI),
and Aggregation Index (AI). These indices, respectively, represent the patch shape, patch
density, and patch aggregation of RCFs in Jianghan Plain (Table 2).

Table 2. Landscape indices and their ecological significance.

Indicator Abbreviation Range Description

Patch Density PD ≥0 A measure of the number of patches per unit area,
indicating the degree of fragmentation in a landscape.

Landscape Shape Index LSI ≥1 A metric that quantifies the complexity of shape and
arrangement of patches within a landscape.

Aggregation Index AI (0, 100] A concise measure of the degree to which patches of the
same type are physically grouped together in a landscape.
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Among these indices, Patch Density can reflect the complexity of an RCF’s landscape
spatial structure; a higher value indicates a greater degree of landscape fragmentation [29].
Landscape Shape Index measures the complexity of RCF patch shapes, with a higher
value pointing to more complex forms [26]. Aggregation Index characterizes the spatial
connectivity of patches, with values ranging from 0 to 100. A higher Aggregation Index
value indicates a more concentrated spatial distribution and better connectivity of an RCF,
which can make these industries more susceptible to scale effects. The specific calculation
methods for these indices are detailed in reference [30]. We used FRAGSTATS 4.2 to
compute the Patch Density, Landscape Shape Index, and Aggregation Index of RCF in
Jianghan Plain for the years 2016 and 2020. This allowed us to analyze the spatiotemporal
characteristics of RCF landscape patterns.

2.3.3. Spatial Autocorrelation Analysis

We employed spatial autocorrelation analysis to investigate whether RCFs demon-
strate significant aggregation characteristics in their spatial distribution. Spatial auto-
correlation is frequently used in geographical research due to its unique advantages in
revealing spatial clustering of geographical variables and examining the variation in spatial
characteristics of geographical variables across regions [31].

In this study, we used townships as analytical units and applied global Moran’s I to
assess the correlation degree in the expansion areas of RCF. We also used the local Moran’s
I index to analyze the local spatial clustering of each spatial unit and its neighboring units
within the RCF expansion areas. The calculation method for the global Moran’s I index is
as follows [32]:

Moran′s I =
n∑n

i=1 ∑n
j=1 (xi − x)(xj − x)

∑n
i=1 ∑n

j=1 Wij∑n
i=1 (xi − x)

(2)

where xi and xj are the RCF area in the ith and jth township, respectively. n denotes the
number of spatial units (townships), x is the average area of RCF across all townships, and
Wij is the spatial weight matrix. The global Moran’s I index ranges from [26 to 28], where
a value greater than 0 indicates positive spatial correlation. The closer the value is to 1,
the stronger the correlation, and vice versa. The local Moran’s I index is calculated by the
following formula [32]:

Local Moran′s I = Zi∑n−1
j=1,j ̸=i WijZj (3)

Zi =
xi − x

α
(4)

where Zi and Zj represent the standardized values of the RCF area for units i and j,
respectively. n denotes the number of spatial units (townships) and Wij is the spatial weight
matrix. xi represents the RCF area in the ith township, x is the average area of RCF across
all townships, and α is the standard deviation of the RCF area across all units. The local
Moran’s I index effectively characterizes the autocorrelation features of RCF area within
neighboring units.

2.3.4. Multi-Scale Geographically Weighted Regression

The investigation of influencing factors and the analysis of driving mechanisms in
the spatiotemporal evolution of geographical phenomena or processes has long been a
central research focus in the field of geography [33,34]. The Geographically Weighted
Regression (GWR) model, a method for handling spatial variables, is particularly useful in
reflecting the spatial heterogeneity caused by geographical environmental variations, also
known as spatial non-stationarity, in model parameters [22]. As such, GWR is extensively
used to tackle a range of geographical issues, including land use change, disease spread
analysis, and environmental management [35]. However, the GWR model’s limitation of
confining all variables to the same optimal bandwidth may lead to oversimplified spatial
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relationships and inaccurate estimates [36]. To address this, Fotheringham introduced
the Multi-scale Geographically Weighted Regression (MGWR) model [37]. This model
incorporates different bandwidths for various independent variables, thereby reflecting
their diverse effect scales. This adaptation makes spatial process simulation more accurate
and meaningful [38]. The expression for MGWR is as follows:

yi = ∑k
k=1 βbij(ui, vi)xij + εi i = 1, 2, . . . , n (5)

where yi is the dependent variable, k is the total number of independent variables, βbij

represents the regression coefficient for the jth independent variable at point i, bij is the
bandwidth used for the regression coefficient of the jth variable, (ui, vi) represents the
spatial coordinates of sample point i, xij is the jth explanatory variable at sample point i,
and εi is the random disturbance term.

In this study, to investigate the influencing factors, driving mechanisms, and spatial
heterogeneity of the spatiotemporal dynamics in RCF, we used the MGWR model to
quantify the relationships between the spatiotemporal dynamics in RCF and the explanatory
variables. We will conduct both modeling and parameter fitting using ArcGIS Pro 3.0. For
model evaluation, we will use the Akaike Information Criterion corrected (AICc), the
adjusted R-Square, and the residual Moran’s I. A well-fitted model will have low AICc and
residual Moran’s I values, along with a high adjusted R-Square value.

2.3.5. Potential Influencing Factors

The spatiotemporal change in RCF, a typical process in land use change, is influenced
by a combination of natural and socio-economic factors. Given the flat terrain, plentiful
arable land, and water resources in the Jianghan Plain region, natural conditions such
as topography, precipitation, temperature, sunlight, and soil present homogeneity in this
area. These conditions do not pose restrictions on the expansion of RCFs in Jianghan
Plain. Accordingly, based on existing studies [32,39,40] and considering the accessibility of
data required for large-scale regional analysis, we selected 16 potential influencing factors
(Table 3) from four dimensions: agricultural production conditions, locational conditions,
socio-economic development, and the landscape pattern of RCF [41].

Table 3. Potential influencing factors of the spatiotemporal change of RCF.

Type Factor Code Definition Unit

Agricultural
Factors

Distance to Rural
Settlements DRS The average distance from RCF to its nearest rural

village. m

Proportion of Cropland PC The proportion of cropland in each township unit. %
Per Capita Cropland Area PCCA The cropland area per person in a specific region. m2

Proportion of Water Area PWA The percentage of a region’s total area that is covered
by water. %

Location Factors

Distance to Water Sources DWS The average distance from an RCF to its nearest water
source. m

Road Network Density RND The total length of roads in a particular area relative
to the size of that area. km/km2

Distance to County Town DCT The distance from each township to its county town. km
Distance to Road DR The average distance from RCF to its nearest road. m

Socioeconomic
Factors

Gross Domestic Product GDP GDP of each township. Billion Yuan
Rural Population Density RPD The number of rural people per unit of land area. people/km2

Average Nighttime Light
Intensity ANLI The average brightness of nighttime lights in each

township. nW/(cm2·sr)

Proportion of
Construction Land PCL The proportion of construction land in each township. %

Patch Density PD Number of RCF patches per unit area. -

Landscape
Pattern of RCF

Landscape Shape Index LSI Reflects the complexity and regularity of RCF’s
landscape configuration. -

Aggregation Index AI Spatial aggregation degree of RCF in an area. -
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As indicated in Table 3, agricultural production conditions form the foundation of
agricultural development, and both a sufficient water supply and abundant arable land
resources are essential for the development of rice–crayfish co-culture system. To compre-
hensively assess the influence of agricultural production conditions factors on the spatial
distribution of RCF within the region, we selected four variables: Distance to Rural Set-
tlements (DRS), Proportion of Cropland (PC), Per Capita Cropland Area (PCCA), and
Proportion of Water Area (PWA). Distance to Rural Settlements measures the proximity of
the RCF to rural settlements, while Proportion of Cropland and Per Capita Cropland Area
account for the rational allocation and utilization of land resources. Proportion of Water
Area, on the other hand, pertains to the availability of water resources.

A favorable geographical location, accessible transportation, and proximity to water
sources can all enhance the expansion of an RCF. Thus, in terms of locational conditions,
we focus on factors such as Distance to Water Sources (DWS), Road Network Density
(RND), Distance to County Town (DCT), and Distance to Road (DR) to examine their
impact on the expansion of RCFs. Distance to Water Sources demonstrates the closeness
of an RCF to water sources, which is directly tied to the accessibility of water resources.
Road Network Density indicates the density of the regional transportation network, and
convenient transportation can facilitate the cultivation of RCFs, as well as the processing
and transport of products. Furthermore, examining Distance to County Town and Distance
to Road can provide a deeper understanding of how the distribution of RCF is influenced
by locational factors like county towns and roads.

The level of regional economic development, population size, and other socio-economic
conditions are also crucial factors influencing the expansion of RCFs. In this study, a range
of indicators reflecting these socio-economic conditions were selected. These include the
Gross Domestic Product (GDP), Rural Population Density (RPD), Average Nighttime Light
Intensity (ANLI), and Proportion of Construction Land (PCL).

In the process of land utilization, farmers are influenced by the surrounding land
use conditions [42]. As such, the landscape pattern and spatial distribution characteristics
of regional RCF also impact the neighboring arable land use. For example, the spatial
continuity and aggregated distribution of RCFs often lead to the clustering and economies
of scale in the crayfish–rice co-cultivation industries. This facilitates the innovation and
promotion of rice–crayfish co-cultivation agricultural production model, reduces costs,
and enhances the profitability of the industry. Therefore, in this study, we use landscape
pattern indices of RCFs such as Patch Density (PD), Landscape Shape Index (LSI), and
Aggregation Index (AI) to reflect the spatial distribution morphology, aggregation degree,
and connectivity of RCFs in an analysis unit.

3. Results
3.1. RCF Extraction Results in Jianghan Plain

We collected Sentinel-2 images for the winter (January–February) of 2016 and 2020
in the Jianghan Plain via the GEE platform. Specifically, we obtained 42 images from
1 December 2016 to 28 February 2017, and 68 images from 1 January to 28 February 2021.
All of these images had less than 5% cloud cover. Considering the limited availability of
winter 2016 imagery data for the study area, we specifically used the data from December
2016 as a supplement. The Median Value Composite (MedVC) was used due to its proven
effectiveness in reducing clouds, shadows, and noise, while also generating relatively clear
images with a high computational efficiency [43,44]. Using the ‘imageCollection.median()’
function in GEE [45], we procured composite images for the complete study area during the
winter months of 2016 and 2020. Based on this, we employed the RCF extraction method
outlined in Section 2.3.1 to map the distribution of RCF in Jianghan Plain for the years 2016
and 2020.

To assess the accuracy of the RCF extraction results for the Jianghan Plain, we obtained
validation samples through visual interpretation, using land use survey data supplied by
the Natural Resources Management Department of Hubei Province and high-resolution



Remote Sens. 2024, 16, 1541 11 of 25

historical images from Google Earth. As depicted in Figure 4, we randomly gathered both
RCF and non-RCF samples within the study area, with 150 samples for each category
in 2016 and 200 in 2020, summing up to 700 samples. These samples were uniformly
distributed across the study area. We built a confusion matrix based on these 700 samples
for accuracy evaluation. According to the results shown in Table 4, the overall accuracy of
our RCF extraction results from Jianghan Plain for 2016 and 2020 was 90.00% and 93.25%,
respectively, indicating that the accuracy was generally reliable and satisfactory.
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Table 4. Accuracy assessment of RCF extraction results in Jianghan Plain.

Year
Overall

Accuracy (%)
User’s Accuracy (%) Producer’s Accuracy (%)

RCF Non-RCF RCF Non-RCF

2016 90.00 95.45 85.71 84.00 96.00
2020 93.25 94.82 91.79 91.50 95.00

Table 5 presents a comparison between our study’s findings, data from the Statistical
Yearbooks, and existing research results. The RCF area in Jianghan Plain, as extracted
in this study for 2016, measures 1216.04 km2, while the data in the Statistical Yearbook
represent 1534.91 km2. This results in a discrepancy of 20.77% between these two datasets.
When considering the RCF extraction results for 2020, the discrepancy lowers to only 3.32%.
This discrepancy can be explained by the inherent characteristics of the different data
collection methods used. The remote sensing technology we used guarantees consistency
and objectivity in data collection, while the reference data, obtained through statistical
surveys and sampling methods, could be subject to biases, sampling errors, or variations
in data collection. As a result, the observed 20.77% difference between the datasets could
likely be due to these factors. Despite the discrepancies between our study’s results derived
from remote sensing interpretation and the statistical data, both show a consistent trend
in the RCF area changes in the Jianghan Plain, confirming the reliability of our research
findings to some extent. Notably, the study by Chen et al. highlights a significant and
extensive expansion of the RCFs in Jianli County from 2010 to 2019, recording the RCF
area in Jianli as being 724.45 km2 in 2019 [21]. This aligns well with our results, thereby
confirming the reliability of our study’s findings.
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Table 5. Comparison of RCF area results with Statistical Yearbook Data and existing research findings.

Comparative Items This Study (km2) Reference (km2) Source

The total area of RCF in
Jianghan Plain in 2016 1216.04 1534.91 The County Statistical

Yearbooks of China
The total area of RCF in
Jianghan Plain in 2020 2429.76 2513.21 The County Statistical

Yearbooks of China
The total area of RCF in Jianli

County 714.51 (2020) 724.45 (2019) Chen et al. [21]

Figure 5 demonstrates the spatial distribution of RCFs in Jianghan Plain in 2016 and
2020. It can be observed from Figure 5 that by 2020, RCFs had a broad distribution across
almost all counties of the Jianghan Plain, indicating a significant expansion trend in recent
years. For instance, in 2016, RCF was primarily concentrated in specific areas of Qianjiang
County, as well as in parts of counties under the Jingzhou Prefecture City, including Jianli,
Honghu, Shishou, and Gong’an. However, by 2020, the RCFs had significantly expanded
throughout the entire Jianghan Plain, particularly in the central and southern regions,
which are characterized by abundant water resources from lakes and rivers and fertile
agricultural land. Yet, Figure 5 also reveals that RCFs are still sporadically distributed in
the western and northern regions of the Jianghan Plain, in areas such as Songzi, Zhijiang,
Dangyang, Shayang, and Tianmen.
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3.2. Spatiotemporal Dynamics of RCF in Jianghan Plain
3.2.1. Quantity and Spatial Distribution of RCF in Jianghan Plain

According to our results on RCF distribution, the area of RCFs in Jianghan Plain grew
from 1216.04 km2 in 2016 to 2429.76 km2 in 2020, a 99.81% increase. The proportion of RCF
area to the total paddy field area in Jianghan Plain also rose from 12.10% to 23.32%.

Figure 6 shows that, as of 2020, Jianli had the largest RCF area at 714.51 km2, account-
ing for 29.41% of the total RCF area in Jianghan Plain. This was followed by Qianjiang
(401.22 km2), Gong’an (293.05 km2), Honghu (176.9 km2), and Shishou (170.67 km2). Re-
garding RCF area dynamics from 2016 to 2020, significant growth occurred in regions like
Jianli, Qianjiang, Gong’an, Honghu, Shishou, and Jiangling. In Jianli, the RCF area surged
from 381.33 km2 in 2016 to 714.51 km2, a 0.87-fold increase. In Qianjiang, the RCF area
increased from 211.31 km2 in 2016 to 449.66 km2 in 2020, a 1.20-fold increase. Nevertheless,
RCF areas shrank in Hanchuan and Zhijiang, with Hanchuan experiencing the largest
decrease, from 92.74 km2 in 2016 to 50.32 km2, a reduction of 42.42 km2.
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Figure 7 depicts the hot spots and cold spots of RCF loss and expansion in Jianghan
Plain from 2016 to 2020, highlighting significant spatial heterogeneity. The central and
southern regions, including Jianli, Qianjiang, Gong’an, Honghu, Shishou, and Jiangling,
saw the most prominent RCF expansion. In contrast, areas like Hanchuan, Yunmeng,
Caidian, and Xiantao in the northeastern part experienced reductions, particularly in
Hanchuan. Notably, the central and southern regions, including Qianjiang, Jianli, and
Honghu, were both expansion hotspots and areas of significant reduction. Overall, the
spatial pattern of the RCFs is characterized by expansion from the central and southern core
areas, such as Jianli, Qianjiang, Shishou, Gong’an, moving outward. For example, in Songzi
county in the west, RCF initially expanded in the eastern part adjacent to Gong’an County.
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3.2.2. RCF Landscape Pattern in Jianghan Plain

We utilized three landscape metrics—Patch Density Landscape Shape Index, and
Aggregation Index—to analyze the patch size, shape, and distribution characteristics of the
RCFs in Jianghan Plain. From 2016 to 2020, the landscape pattern of the RCFs in the region
underwent significant dynamic changes, including patch fragmentation and increased
shape complexity. Nonetheless, the pattern generally demonstrated characteristics of
relative concentration and high connectivity. Figure 8 illustrates the evolution of the RCF
landscape pattern in Jianghan Plain from 2016 to 2020.



Remote Sens. 2024, 16, 1541 14 of 25
Remote Sens. 2024, 16, x FOR PEER REVIEW 15 of 26 
 

 

 
Figure 8. Spatial distribution and statistical probability density of landscape indices for RCFs in 
Jianghan Plain: (a) PD in 2016, (b) LSI in 2016, (c) AI in 2016, (d) PD in 2020, (e) LSI in 2020, (f) AI in 
2020, (g) PD, (h) LSI and (i) AI. 

As shown in Figure 8, between 2016 and 2020, the Patch Density and Landscape 
Shape Index of RCF in Jianghan Plain generally increased, while the Aggregation Index 
remained high. This suggests that the RCF patches in the Jianghan Plain became more 
fragmented and complex in shape but remained relatively concentrated in their spatial 
distribution, indicating a high level of cohesion and connectivity. This trend is primarily 
due to the rapid spatial expansion of RCFs in this region. 

The landscape pattern of the RCFs in the Jianghan Plain also demonstrates significant 
spatial heterogeneity. For example, in central and southern regions like Qianjiang, Jianli, 
Shashi, Gong’an, Jiangling, and Xiantao, where the rice–crayfish co-culture model was im-
plemented earlier, the RCFs display higher Patch Density and Landscape Shape Index 
values and elevated Aggregation Index values, indicating more fragmented patches with 
irregular shapes but good connectivity. In contrast, in the western regions like Dangyang, 
Zhijiang, and Songzi, and northeastern areas of Yunmeng and Yingcheng, where the rice–
crayfish co-culture was implemented later, these areas show higher Patch Density and 
Landscape Shape Index values but lower Aggregation Index values, suggesting frag-
mented and irregular-shaped RCF patches with poorer connectivity. In eastern regions, 
such as Hanchuan, Caidian, and Honghu, where the rice–crayfish co-culture was imple-
mented relatively later, RCF exhibits lower Patch Density and Landscape Shape Index 
values but higher Aggregation Index values, indicating larger, more regular-shaped RCF 
patches with better connectivity. 

Figure 8. Spatial distribution and statistical probability density of landscape indices for RCFs in
Jianghan Plain: (a) PD in 2016, (b) LSI in 2016, (c) AI in 2016, (d) PD in 2020, (e) LSI in 2020, (f) AI in
2020, (g) PD, (h) LSI and (i) AI.

As shown in Figure 8, between 2016 and 2020, the Patch Density and Landscape Shape
Index of RCF in Jianghan Plain generally increased, while the Aggregation Index remained
high. This suggests that the RCF patches in the Jianghan Plain became more fragmented
and complex in shape but remained relatively concentrated in their spatial distribution,
indicating a high level of cohesion and connectivity. This trend is primarily due to the rapid
spatial expansion of RCFs in this region.

The landscape pattern of the RCFs in the Jianghan Plain also demonstrates significant
spatial heterogeneity. For example, in central and southern regions like Qianjiang, Jianli,
Shashi, Gong’an, Jiangling, and Xiantao, where the rice–crayfish co-culture model was
implemented earlier, the RCFs display higher Patch Density and Landscape Shape Index
values and elevated Aggregation Index values, indicating more fragmented patches with
irregular shapes but good connectivity. In contrast, in the western regions like Dangyang,
Zhijiang, and Songzi, and northeastern areas of Yunmeng and Yingcheng, where the
rice–crayfish co-culture was implemented later, these areas show higher Patch Density and
Landscape Shape Index values but lower Aggregation Index values, suggesting fragmented
and irregular-shaped RCF patches with poorer connectivity. In eastern regions, such as
Hanchuan, Caidian, and Honghu, where the rice–crayfish co-culture was implemented
relatively later, RCF exhibits lower Patch Density and Landscape Shape Index values but
higher Aggregation Index values, indicating larger, more regular-shaped RCF patches with
better connectivity.
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3.3. Factors Influencing the Spatiotemporal Evolution of RCF in Jianghan Plain
3.3.1. Model Construction

County- and township-level governments are the primary policy makers for economic
and industrial development at the local scale in China. To better support the development
of the crayfish-rice co-culture related industries and aid government decision-making in
Jianghan Plain, we analyzed the factors influencing the spatiotemporal evolution of RCF
across 295 township units, with the township as the basic unit of analysis. We used the
change in RCF area as the dependent variable, and the 15 potential influencing factors listed
in Table 3 as independent variables. These independent variable values were derived using
remote sensing and GIS technology. This analysis provided insights into the spatiotemporal
influencing factors of RCF in Jianghan Plain.

Initially, we examined the spatial autocorrelation using the Global Moran’s I index.
The calculations showed that the Moran’s I values for RCF distribution in Jianghan Plain
in 2016 and 2020 were 0.456 and 0.551, respectively. The z-scores were both higher than
2.58, and p-values were less than 0.01, indicating that they both passed the significance test
at a 99% confidence level. This suggests a significant clustering effect and positive spatial
autocorrelation in RCF spatial distribution across the Jianghan Plain, indicating that areas
with similar RCF distributions tend to cluster together.

To investigate the spatial variation and significance of RCFs between individual
township units and their neighbors, we used Local Moran’s I to characterize the local
spatial correlation of RCF. LISA cluster maps were also employed to visually illustrate
the local spatial clustering patterns of RCF [46,47]. In this context, ‘High–High’ suggests
high values surrounded by high values, ‘Low–Low’ represents low values surrounded by
low values, ‘Low–High’ signifies low values surrounded by high values, and ‘High-Low’
indicates high values surrounded by low values [48].

Figure 9 illustrates the local spatial autocorrelation characteristics of RCF in Jianghan
Plain for the years 2016 and 2020. From 2016 to 2020, the spatial distribution pattern
of the RCFs in Jianghan Plain remained consistent, exhibiting two distinct clustering
features: High-High and Low–Low, with an increasing trend in the spatial clustering
distribution. The High–High clustering areas are primarily located in the central and
southern regions of the Jianghan Plain, where the rice–crayfish co-culture model was
initially promoted. Areas such as Qianjiang and Jianli are particularly prominent. The
number of townships exhibiting High–High clustering increased from 20 (6.78%) in 2016
to 30 (10.17%) in 2020. Conversely, the Low–Low cluster areas are mainly dispersed in
the western and northeastern regions on the outskirts of Jianghan Plain. The number of
townships with a notable Low–Low cluster that gradually increased from 2016 to 2020,
predominantly concentrated in locations such as Zhijiang, Tianmen, and Hanchuan.

The spatial autocorrelation analysis results indicate that the spatiotemporal evolu-
tion of the RCFs across the 295 townships in Jianghan Plain exhibits significant spatial
autocorrelation. This provides a foundation for interpreting the spatiotemporal patterns
using the GWR and MGWR models. The multicollinearity test results also reveal no global
multicollinearity among all the explanatory variables. To optimize the model’s fitting effect,
we selected the explanatory variables that passed the significance test of the OLS model
for GWR and MGWR analysis. These variables include Distance to Rural Settlements,
Distance to Water Sources, Distance to County Towns, Distance to Roads, Proportion of
Construction Land, Population Density, Landscape Shape Index, and Aggregation Index,
totaling eight explanatory variables. We employed the OLS, GWR, and MGWR methods
to analyze the potential influencing factors of the spatiotemporal evolution of RCF. The
results are presented in Table 6.
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Table 6. Model evaluation results.

Model AICc Adjusted R-Square Moran’s I of Residual

OLS 1812.500 0.583 0.329 (p < 0.01)
GWR 466.798 0.815 0.139 (p < 0.01)

MGWR 380.718 0.865 0.030 (p > 0.05)

As presented in Table 6, the regression results derived from different models suggest
the superior quality of the MGWR model over the GWR and OLS models. This superiority
is evident in the AICc, adjusted R-Square, and residual Moran’s I metrics obtained from
each of these models. Specifically, with regard to the adjusted R-Square metric, the MGWR
model achieves a score of 0.865, marking a substantial improvement in comparison to the
GWR model and surpassing the OLS model by a significant margin. Additionally, the
MGWR model significantly reduces the spatial autocorrelation of residuals when compared
to both the OLS and GWR models, as indicated by Moran’s I.

As illustrated in Figure 10, the local R-Square results, derived from the MGWR model,
capture 53.80% to 93.35% of the total variance across the Jianghan Plain. The local R-Square
exhibits an increase from the northeast to the southwest. This trend suggests a higher
overall model fit for township units in the central and southern regions, while a lower fit
is observed in the northeastern areas. The observed lower fit in the northeastern region
could potentially be attributed to its proximity to the Wuhan metropolitan area. The
spatiotemporal dynamics of the RCFs in this region might have been significantly shaped
by factors like population density, industrial expansion, and land use patterns inherent to
the Wuhan metropolitan area.
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3.3.2. Scale Analysis of Influencing Factors

The MGWR model allows each variable to have an optimal bandwidth, effectively
reflecting the spatial scale variations in the impact of different factors on the distribution
characteristics of the RCFs in Jianghan Plain. A larger bandwidth indicates a smaller spatial
difference among the variables, with relatively stable coefficients across space. While
spatial heterogeneity exists, it is not significant. Conversely, a smaller bandwidth suggests
a smaller scale of the variable and greater spatial heterogeneity.

Table 7 reveals that each variable has a bandwidth of 55 in the GWR model, while in
the MGWR model, each variable’s optimal bandwidth differs. Notably, the bandwidths of
Distance to County Town and Distance to Road are both 295, equating to the total number
of townships. These are considered global variables, and their regression coefficients are
relatively spatially stable.

Table 7. Comparing the bandwidths between GWR and MGWR.

Explanatory Variable Bandwidth in GWR
Model

Bandwidth in MGWR
Model

Intercept 55 30
Distance to Rural Settlements (DRS) 55 89

Distance to Water Sources (DWS) 55 30
Distance to County Town (DCT) 55 295

Distance to Road (DR) 55 295
Proportion of Construction Land (PCL) 55 218

Patch Density (PD) 55 50
Landscape Shape Index (LSI) 55 30

Aggregation Index (AI) 55 30

The bandwidth of Proportion of Construction Land is 218, indicating minimal spatial
variations in its regression coefficients. Distance to Rural Settlements, Distance to Water
Sources, Patch Density, Landscape Shape Index, and Aggregation Index have smaller
bandwidths, suggesting that the spatial distribution of RCFs in Jianghan Plain is sensitive
to these influencing factors. Moreover, the regression coefficients of these five factors
are spatially non-stationary, suggesting that they may display different trends in various
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geographical locations. This finding underscores the significance of spatial heterogeneity
and geographical factors.

3.3.3. Spatial Heterogeneity of Influencing Factors

The statistical results from the MGWR model (Figure 11) reveal notable variations in
the influence of different factors across various township units. This speaks to the significant
and diverse trends in the magnitude of these influences. The absolute mean values of the
regression coefficients showed that Aggregation Index was the most influential factor on
the spatiotemporal evolution of RCF. Landscape Shape Index, Distance to Water Sources,
and Patch Density also had significant impacts. However, Distance to Rural Settlements,
Distance to County Town, Distance to Road, and Proportion of Construction Land had
relatively smaller impacts. In summary, the landscape pattern of RCF considerably affects
its expansion across the Jianghan Plain. We delved deeper into the spatial heterogeneity
of these influences on the distribution of RCF across the Jianghan Plain. We visualized
the regression results for each influential factor, which yielded the spatial distribution of
coefficients (see Figure 12).
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Among the landscape pattern indices, Aggregation Index and Landscape Shape Index
exert the most significant influence on the expansion of RCFs in Jianghan Plain. They exhibit
a clear positive effect, except in areas close to Wuhan’s urban region, such as Hanchuan
(see Figure 12a,b). Conversely, Patch Density negatively impacts the expansion of RCF
in Jianghan Plain. Overall, the patterns indicated by the Aggregation Index, Landscape
Shape Index, and Patch Density indices are consistent. This suggests that across most of
the Jianghan Plain, RCFs tend to expand more readily in areas with higher aggregation,
more complex shapes, and lower landscape fragmentation.

Distance to Water Sources, Distance to County Town, and Distance to Road are key
locational factors that influence the spatiotemporal variation of RCF in the Jianghan Plain
(see Figure 12d–f). Specifically, Distance to Water Sources has a marked positive effect in
core regions where the rice–crayfish co-culture model promotion was early, such as the
southeast, and in the northeastern city of Hanchuan. However, along the north–south
axis of Shishou–Shayang, it has a significant negative impact. Distance to County Town
generally negatively influences the expansion of RCF, and this effect gradually intensifies
from south to north. The impact of Distance to Road on the spatiotemporal evolution of
RCF in Jianghan Plain is generally positive, although it gradually diminishes from southeast
to northwest.
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In the context of agricultural production conditions, Distance to Rural Settlements
notably negatively impacts the expansion of RCF in Jianghan Plain, and this impact varies
across different regions (see Figure 12g). For example, in western areas such as Dangyang,
Zhijiang, and Songzi, the negative effect of Distance to Rural Settlements on RCF expansion
is more pronounced. Spatially, the influence of Distance to Rural Settlements on RCF
expansion gradually weakens from west to east.

Among socio-economic conditions, Proportion of Construction Land displays a strong
positive correlation with the expansion of RCF in Jianghan Plain (see Figure 12h). This
influence is approximately centered around the north–south axis of Shishou–Shayang and
gradually diminishes towards both sides of the aforementioned areas.

4. Discussion
4.1. Expansion of RCF in Jianghan Plain

During the period from 2016 to 2020, RCFs in the Jianghan Plain exhibited a significant
expansion trend, with the cultivation area doubling. This finding aligns with the results of Si
et al. [11]. Overall, our findings are generally consistent with existing datasets and research.
Notably, five counties—Qianjiang, Jianli, Honghu, Shishou, and Gong’an—located in the
central-south core area of the Jianghan Plain, accounted for nearly 80% of the total RCF
increase in the region. However, a noticeable loss of RCFs in this region is observed
(Figure 7). This phenomenon could be attributed to human activities such as urbanization
and industrialization encroaching on RCFs. Alternatively, it could be a result of initiatives
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by local governments and farmers to optimize the spatial pattern of RCFs through land
consolidation and other engineering measures. Specifically, over the past five years, there
has been a significant increase in the spatial clustering of RCFs in the region, along with a
pronounced agglomeration effect and trend in the RCCS industry. This suggests that the
land management strategies and industrial reforms implemented by the local government
in this region have been markedly successful in promoting RCFs.

RCFs in the northeastern region, particularly in Hanchuan, have been experiencing a
clear decreasing trend. This is largely due to the rapid economic and industrial development
in this area, driven by the Wuhan metropolitan area. The expansion of urban areas and
industrial growth have led to the loss of arable land. This is evident in increased landscape
fragmentation, heightened shape complexity, and diminished connectivity between patches
of RCF in this region. These areas need to bolster cropland protection and strictly regulate
the transition of cropland to limit construction activities. Moreover, they should ensure
that there is no net loss of cropland to ultimately promote sustainable development.

Conversely, the western and northern peripheral regions are areas where RCCS has
been actively promoted in recent years. The RCFs in these regions have shown character-
istics of multi-point sporadic distribution, as evidenced by increased landscape fragmen-
tation, heightened shape complexity, and reduced connectivity between patches. While
promoting RCCS in these regions, it is crucial to stress the implementation of intensive land
use practices to minimize land fragmentation and enhance land connectivity.

4.2. Factors Influencing the Spatiotemporal Dynamics of RCF in Jianghan Plain

Based on the analysis presented in Section 3.3, the expansion of RCFs in the Jianghan
Plain is influenced by a mixture of factors such as the RCF landscape pattern, geographical
conditions, agricultural production circumstances, and socio-economic aspects. Among these,
the RCF landscape pattern and location conditions play a particularly significant role in the
expansion of RCFs, incorporating elements like the Aggregation Index, Landscape Shape
Index, Patch Density, and Distance to Water Sources. Conversely, the impact of Distance to
Rural Settlements and Proportion of Construction Land is relatively less significant.

Our study underscores the crucial role of the RCF landscape pattern in its expansion.
For example, Patch Density has a negative effect on RCF expansion, while the Aggregation
Index generally exhibits a strong positive influence. This implies that areas with larger and
more contiguous RCF patches are more prone to RCF expansion. This can be attributed
to the fact that a concentrated distribution of RCF can generate economies of scale and
agglomeration effects, thereby reducing the cost of industrial development, enhancing RCF
output efficiency, and fostering further expansion of the rice–crayfish co-culture related
industries. Furthermore, the Landscape Shape Index significantly positively impacts RCF
expansion. This is because the more complex the patch is, the more patches it interacts
with, thereby better facilitating the promotion of rice–crayfish co-culture related industries
and the expansion of RCFs.

When it comes to geographical conditions, Distance to Water Sources plays an integral
role in RCF expansion and exhibits significant spatial heterogeneity. Along the north–south
axis of Shishou–Shayang, paddy fields closest to water sources are prioritized for the
introduction of the rice–crayfish co-culture model due to their higher water requirements.
In the southeast core area, where the rice–crayfish co-culture model was initiated earlier,
patches in close proximity to water sources have already been converted to RCFs. As a
result, the newly expanded RCFs tend to be located in paddy field areas that are relatively
distant from water sources.

In the context of agricultural production conditions, Distance to Rural Settlements
negatively impacts the expansion of RCF, indicating that being closer to residential areas is
advantageous for RCF expansion. This is because RCF cultivation requires substantial labor
input and being in proximity to residential areas eases daily field care and management
for farmers.
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With regard to socio-economic conditions, the Proportion of Construction Land has
a positive impact on the expansion of RCFs. This can be understood in three ways. First,
it can be viewed as a result of China’s farmland protection policy. In areas with a larger
proportion of construction land, the economy is typically more advanced, which leads
to increased pressure to protect arable land. In such circumstances, implementing co-
culture systems like the rice–crayfish model can effectively increase the value of cultivable
land, thereby alleviating the pressure on arable land protection. Second, regions with
high Proportion of Construction Land often correspond with more developed economic
conditions, implying a relatively higher demand for crayfish consumption. Third, these
regions often provide the necessary financial support, labor resources, and infrastructure
required for the expansion of the RCFs. Consequently, in these regions, farmers are more
motivated to adopt the rice–crayfish co-culture model to satisfy market demands and
achieve better economic returns.

4.3. Policy Implications

The growth of RCFs in the Jianghan Plain, as well as the factors influencing it, exhibits
significant spatial diversity. Consequently, we suggest that local governments in the region
formulate differentiated regulation policies to promote rice–crayfish co-culture related
industries in the Jianghan Plain. These policies should take into account local agricultural
conditions, location, socio-economic growth, and the landscape pattern of the RCFs. Below
are some specific recommendations:

Firstly, the impact of the RCF landscape pattern on its expansion suggests that in
Jianghan Plain, RCF growth is more likely in areas with larger and more contiguous RCF
patches. For future promotion of the rice–crayfish co-culture model, the continuity of RCFs
should be taken into consideration. Local governments can promote the spatial clustering
of RCF through land consolidation and other engineering projects. They can also enhance
the infrastructure for crayfish farming and processing to drive the scale and aggregation
development of the rice–crayfish co-culture related industries.

Secondly, the availability of water is a crucial factor that restricts the expansion of RCFs.
As depicted in Figure 12g, the factor “Distance to Water Sources” exhibits a significant
negative relationship with the expansion of RCFs in most areas of the Jianghan Plain.
This underscores the vital role of water sources in the expansion of RCFs. Consequently,
local governments should increase investment in agricultural water conservation, ensure
the efficiency and optimization of irrigation systems in farmland, and provide ample
water resources to support the advancement of the rice–crayfish co-culture agricultural
production model.

Thirdly, the expansion of RCFs is also impacted by the ‘Distance to Rural Settlements’.
Local governments, particularly those in Songzi, Dangyang, and Zhijiang counties in the
western part of the Jianghan Plain, should optimize the spatial layout of rural settlements
and enhance rural infrastructure through rural planning and land consolidation projects.
This will facilitate the daily management and care of RCFs by farmers.

Lastly, we recommend that local governments prioritize the promotion of RCF-related
industries in regions abundant in labor and with a solid economic development foundation.
As depicted in Figure 12h, the Proportion of Construction Land positively affects RCF
expansion. A higher proportion of construction land indicates superior infrastructure,
more developed markets, and a concentration of human resources. These elements can
provide the necessary labor, capital, technology, and consumer markets for the expansion of
RCF and the development of related industries. Therefore, directing focus to such regions
could lead to a more efficient use of resources and increase the likelihood of successful
RCF expansion.

The rapid expansion of the rice–crayfish co-culture model in the Jianghan Plain area
over the past five years is indeed noteworthy due to its significant economic and ecological
benefits, providing a sustainable and profitable approach to farming. The implications of
our findings in this study are profound for land resource management and the sustainable
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development of rice–crayfish co-culture industries in Jianghan Plain. The spatial hetero-
geneity in the growth of RCFs and influencing factors demands tailored regulatory policies,
which must consider the unique agricultural circumstance, location, socio-economic growth,
water resources, and the RCF landscape patterns of different regions.

The expansion of RCFs is not just about increasing production; it is also about creating
a sustainable model that bolsters economic development, environmental conservation,
and social progress. This is particularly significant in a country like China, which places
a special emphasis on the protection of cultivated land. The expansion of RCF can also
help protect and sustainably utilize China’s limited cultivated land resources, thereby
alleviating concerns about a potential food crisis. These findings offer a roadmap to achieve
this balance, offering an actionable guide for local governments in the Jianghan Plain
and potentially serving as a reference for other regions worldwide considering similar
agricultural models.

4.4. Limitations and Future Works

This study has some limitations that should be acknowledged. Firstly, our research
methodology depends on land-use survey data. However, China’s first nationwide high-
precision land survey was not conducted until 2009, which may impact the general applica-
bility of our research method. Consequently, our future aim is to refine the RCF extraction
method and investigate more universally applicable methods. Secondly, as an RCF is a
kind of agricultural co-culture system, its spatiotemporal evolution is strongly affected
by macroeconomic and social factors like agricultural product prices and government
land-use policies. The influence these aspects have on RCFs, and how they exert their
impact, requires further investigation. For example, while current crayfish prices are on
a steady rise, the effect of future price fluctuations on RCF expansion remains an open
question. Thus, we hope that future research can comprehensively explore the potential
factors and mechanisms influencing RCF expansion. This will not only deepen our un-
derstanding of the factors driving RCF expansion but also provide valuable insights for
relevant decision-making.

5. Conclusions

In recent years, the RCFs in the Jianghan Plain region of China have rapidly expanded,
spurred by local government policies and active participation from farmers. However,
the current lack of data on the spatiotemporal distribution of RCFs in the area, as well as
the insufficient comprehension of the influencing factors and spatiotemporal evolution
mechanisms, stand as obstacles to the sustainable development of rice–crayfish co-culture
related industries in the region.

In this study, we used Sentinel-2 imagery and land use survey data to extract informa-
tion on RCF distribution in Jianghan Plain from 2016 to 2020. Based on this, we applied
spatial autocorrelation and MGWR models with townships as the research units, to explore
the spatial heterogeneity of the spatiotemporal variation and influencing factors of RCFs in
Jianghan Plain. The findings of our research indicate the following:

(1) From 2016 to 2020, the overall trend of RCFs in Jianghan Plain demonstrated a
significant expansion, with the RCF area expanding by 99.81% (rising from 1216.04 km2

in 2016 to 2429.76 km2 in 2020). The expansion of RCFs primarily exhibited a pattern of
spreading outwards from the central-southern core area of the Jianghan Plain.

(2) RCFs in the Jianghan Plain exhibit significant spatial aggregation features, with
High–High clusters predominantly found in the Qianjiang and Jianli areas located in the
central-southern part of the Plain. Conversely, Low–Low clusters are primarily situated on
the western and northern peripheries of the Jianghan Plain.

(3) The spatiotemporal dynamics of the RCFs in the Jianghan Plain during 2016 and
2020 were influenced by factors such as RCF landscape patterns, agricultural production
conditions, locational factors, and socio-economic conditions, with each influencing factor
exhibiting distinct spatial heterogeneity. Among these, the RCF landscape pattern played
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the most significant role in the expansion of RCFs. The analysis of factors affecting the
spatiotemporal evolution of RCF suggests that RCF expansion is more likely to take place
in paddy field areas with larger and more contiguous existing RCF patches, favorable water
source conditions, and closer proximity to roads and rural settlements.

Agri-aqua-food systems have proven to be an effective strategy for promoting sustain-
able agricultural development, enhancing land productivity, and are significantly important
in increasing farmers’ income and protecting arable land. In order to promote the sus-
tainable development of Agri-aqua food systems, specifically the rice–crayfish co-culture
system in Jianghan Plain, the following recommendations are proposed: (1). Local govern-
ments, supported by the national rural revitalization strategy and village planning, should
optimize the spatial layout of rural settlements and improve infrastructure, including
enhancing agricultural irrigation systems and rural road networks. These measures would
create a conducive environment and provide the necessary infrastructure for the successful
promotion and growth of rice–crayfish co-culture related industries in the Jianghan Plain.
(2). The concentration and contiguity of RCF should be promoted through engineering
measures like land consolidation. It is also essential to establish agricultural facilities
pertinent to the rice–crayfish co-culture industries, including the processing, storage, and
transportation of rice and crayfish products. These measures would result in the clustering
and efficient development of rice–crayfish co-culture related industries. (3). Local gov-
ernments should also optimize the spatial layout of urban development zones, ecological
protection zones, and farmland protection zones. This would help to mitigate the conflicts
between urbanization, ecological protection, and cultivated land protection, and better
protect cultivated land, thereby providing a guarantee for the growth of farmers’ income
and the sustainable development of agriculture in the region.
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