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Abstract: Cloud removal is a vital preprocessing step in optical remote sensing images
(RSIs), directly enhancing image quality and providing a high-quality data foundation for
downstream tasks, such as water body extraction and land cover classification. Existing
methods attempt to combine spatial and frequency features for cloud removal, but they
rely on shallow feature concatenation or simplistic addition operations, which fail to
establish effective cross-domain synergistic mechanisms. These approaches lead to edge
blurring and noticeable color distortions. To address this issue, we propose a spatial—-
frequency collaborative enhancement Transformer network named SFCRFormer, which
significantly improves cloud removal performance. The core of SFCRFormer is the spatial—
frequency combined Transformer (SFCT) block, which implements cross-domain feature
reinforcement through a dual-branch spatial attention (DBSA) module and frequency self-
attention (FreSA) module to effectively capture global context information. The DBSA
module enhances the representation of spatial features by decoupling spatial-channel
dependencies via parallelized feature refinement paths, surpassing the performance of
traditional single-branch attention mechanisms in maintaining the overall structure of
the image. FreSA leverages fast Fourier transform to convert features into the frequency
domain, using frequency differences between object and cloud regions to achieve precise
cloud detection and fine-grained removal. In order to further enhance the features extracted
by DBSA and FreSA, we design the dual-domain feed-forward network (DDFEN), which
effectively improves the detail fidelity of the restored image by multi-scale convolution
for local refinement and frequency transformation for global structural optimization. A
composite loss function, incorporating Charbonnier loss and Structural Similarity Index
(SSIM) loss, is employed to optimize model training and balance pixel-level accuracy
with structural fidelity. Experimental evaluations on the public datasets demonstrate that
SFCRFormer outperforms state-of-the-art methods across various quantitative metrics,
including PSNR and SSIM, while delivering superior visual results.

Keywords: remote sensing images; cloud removal; spatial-frequency collaborative enhance-
ment; transformer; frequency self-attention

1. Introduction

Optical remote sensing imagery serves as a critical tool for Earth observation, under-
pinning numerous applications such as water resource management [1,2], environmental
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monitoring [3], disaster assessment [4], and urban planning [5]. However, the widespread
presence of clouds presents a significant challenge, with statistics from the International
Satellite Cloud Climatology Project (ISCCP) indicating that the annual global average cloud
coverage is approximately 66% [6]. This pervasive cloud cover significantly degrades the
quality and accuracy of information extracted from remote sensing data, impeding its use
in various downstream tasks [7-9]. Consequently, addressing the removal of clouds and re-
covering the surface information they obscure has become a crucial research challenge [10].

Traditional cloud removal methods rely on leveraging cloud-free regions within cloudy
images to reconstruct obscured areas, employing techniques such as interpolation, filtering,
and atmospheric scattering-based approaches [11]. For example, Xia et al. [12] developed a
variational interpolation method to address cloud occlusion in MODIS data, generating
cloud-free snow-covered area images. Zhang et al. [13] introduced a cokriging interpolation
technique that exploits the spatial correlation of adjacent pixels and multitemporal data to
restore cloud-obscured pixels in multispectral imagery. Shen et al. [14] proposed a locally
adaptive thin cloud removal method using homomorphic filtering, effectively identifying
cloud and non-cloud regions in the frequency domain. However, while homomorphic
filtering excels in low-frequency cloud removal, it struggles with high-frequency regions.
To address this, Yu et al. [15] proposed an improved homomorphic filtering method
based on statistical image characteristics, isolating low-frequency cloud information and
enhancing filtered images using rough set theory. Despite these advances, traditional
methods often suffer from limitations when dealing with complex lighting conditions,
high color saturation, or the recovery of high-frequency details, leading to potential image
distortion and information loss [16].

With the advent of machine learning, cloud removal has seen significant improvements
through the use of models capable of learning cloud characteristics and ground background
distributions. Hu et al. [17] proposed a multi-output support vector regression (MSVR)
model combined with support vector value contour transformation (SVVCT), enabling
the removal of thick cloud cover and prediction of surface information in cloud-obscured
areas. Similarly, Tahsin et al. [18] proposed a random forest-based optical cloud pixel
recovery (OCPR) method to repair cloud pixels in the spatiotemporal spectral continuum.
Wang et al. [19] exploited spatial adjacency and multispectral information, utilizing the
nonlinear fitting capabilities of random forests for effective cloud removal and informa-
tion reconstruction. However, machine learning-based methods often rely on manually
designed features, necessitating parameter tuning for specific datasets, which can limit
generalization and performance in scenarios with complex cloud coverage.

In recent years, deep learning has emerged as a transformative approach, enabling
more robust and automated solutions for cloud removal. Deep learning models exhibit
superior feature extraction and scene generalization abilities, adaptively learning from
extensive datasets and effectively capturing complex patterns within the data, thereby
significantly reducing the dependence on manually engineered features [20,21]. They dy-
namically optimize their parameters, enabling progressive improvements in performance
through continuous data-driven learning. Additionally, these models effectively capture
multiscale and multidirectional information in images, generating more realistic and de-
tailed cloud-free results. Cloud removal methods based on deep learning can be categorized
into three main approaches: CNN-based methods [22], GAN-based methods [23,24], and
Transformer-based methods [25].

CNN-based methods focus on learning complex mappings between cloud-covered
and ground-truth data, facilitating the precise identification of cloud-covered areas and
restoration of obscured details. For instance, Li et al. [26] proposed an end-to-end deep
residual symmetric connection network (RSC-Net) for removing thin clouds from Landsat 8
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images. Shao et al. [27] introduced a multi-scale feature-convolutional neural network (MF-
CNN) capable of detecting thin clouds, thick clouds, and non-cloud pixels simultaneously.
Despite their effectiveness, CNNs are constrained by their local receptive fields, which limit
their ability to capture wide-ranging contextual information, potentially leading to the loss
of fine details and degraded performance under complex cloud cover scenarios.

GAN-based methods achieve effective cloud removal by utilizing adversarial training,
consisting of a generator and a discriminator [28]. The generator learns to produce high-
quality cloud-free images, while the discriminator differentiates between real and generated
images. Singh et al. [29] proposed Cloud-GAN, which uses cycle-consistency loss to
generate high-quality cloud-free images from Sentinel-2 data without requiring paired
datasets. Wang et al. [30] proposed a conditional generative adversarial network (GAN)
framework for cloud removal tasks, which employs GANs with varying receptive fields to
address different cloud layers. However, GANs are often plagued by training instability
and issues like mode collapse, which can hinder their reliability in real-world applications.

Transformer-based methods leverage their strong sequence modeling and global
context capture capabilities for cloud removal. Christopoulos et al. [31] developed an
axial transformer that captures temporal evolution characteristics via axial attention.
Xia et al. [32] designed a cloud removal network with multi-head sparse attention and
gated feed-forward networks to enhance global feature extraction. While Transformer-
based methods show promise, they predominantly focus on spatial features, neglecting the
potential of frequency information.

As shown in [33], cloud-covered and cloud-free images exhibit significant differ-
ences in frequency. Cloud-free regions typically exhibit rich textures and correspond
to high-frequency components, whereas cloud regions are dominated by low-frequency
characteristics. Therefore, the model can use this difference to efficiently reconstruct the
cloud-covered area. However, the current attention mechanism used in the cloud removal
task mainly focuses on the channel and spatial dimensions and pays less attention to
the importance of frequency features [34]. This limits the model’s ability to capture and
utilize key frequency information in the image. Furthermore, the encoded feature maps
extract semantic information such as the structure and texture of the image. At this time,
combining frequency transformation can more accurately locate cloud distribution while
avoiding the redundancy associated with full-frequency operations on the original image.

Based on this, we propose a novel frequency self-attention (FreSA) module that
transforms features from the spatial domain to the frequency domain. By analyzing
spectral differences between ground objects and cloud regions, FreSA enhances critical
features while suppressing noise. Moreover, existing spatial-frequency methods often
combine features through addition or concatenation, failing to capture their interactions
effectively. To address this problem, we present a spatial-frequency combined Transformer
(SFCT) block to jointly extract and integrate spatial and frequency features, improving
cloud region identification and background reconstruction. In order to enhance the ability
to extract spatial features, we design a dual-branch spatial attention (DBSA) module to
capture the spatial information of the image and the relationship between feature channels
through two independent branches. Additionally, we introduce a dual-domain feed-
forward network (DDFFN) that effectively extracts and utilizes multi-scale features and
frequency information from the features. Building upon these innovations, we propose
the spatial-frequency combined Transformer network for cloud removal (SFCRFormer),
a network that integrates spatial and frequency information to enhance cloud removal
performance. The main contributions of this paper are as follows:

1. We present a novel SFCT block, which integrates dual-branch spatial attention (DBSA)
and frequency self-attention (FreSA). The DBSA module enhances spatial features by
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capturing both spatial and channel-wise relationships, effectively addressing struc-
tural distortion artifacts inherent in conventional single-branch attention architectures.
Meanwhile, the FreSA module operates in the frequency domain, leveraging spectral
differences to amplify the contrast between cloud regions and the background, thereby
achieving precise detection and comprehensive removal of cloud artifacts.

2. We propose the dual-domain feed-forward network (DDFEN) that achieves cloud
removal with detail fidelity by capturing pixel-level local textures via multi-scale
convolutions and extracting global structural details via frequency transform.

3. We design an innovative composite loss function, which integrates the robustness
of Charbonnier loss with the perceptual fidelity ensured by SSIM loss. This dual-
objective approach not only preserves pixel-level accuracy but also enhances global
structural coherence and perceptual quality.

4.  Extensive experimental validation on multiple benchmark datasets demonstrates
that the proposed SFCRFormer significantly outperforms existing state-of-the-art
methods in both quantitative metrics and qualitative visual assessments. Our method
consistently achieves higher PSNR and SSIM scores, while delivering more visually
convincing results, underscoring its robustness and generalization capability across
diverse cloud conditions.

2. Related Work
2.1. Deep Learning-Based Cloud Removal Methods

CNNs have been extensively utilized for cloud removal tasks, exploiting their robust
feature extraction capabilities to automatically identify and eliminate cloud cover, thus
restoring obscured ground information. He et al. [35] developed a lightweight cloud
removal network incorporating a deformable context feature pyramid module, enabling
adaptive multi-scale feature extraction based on cloud shape and size. Meraner et al. [36]
proposed a deep residual neural network architecture that integrates SAR data with optical
imagery, improving cloud removal performance through multimodal fusion.

GAN s have also gained prominence in cloud removal tasks due to their exceptional
capability in generating and restoring realistic cloud-free images, especially in areas heav-
ily obscured by thick clouds. Li et al. [37] introduced the CR-GAN-PM method, inte-
grating GANs with a physical cloud distortion model to decompose cloudy images into
cloud/background layers and reconstruct cloud-free results by a refined physical model.
Ran et al. [38] developed an end-to-end GAN-based approach incorporating an adaptive
padding convolutional activation encoder, which augments boundary feature recognition.

The Transformer architecture, known for its superior sequence modeling and global
context comprehension, has recently been adopted in cloud removal research [39]. Zhang
et al. [40] proposed a lightweight vision Transformer network for cloud detection, incorpo-
rating the dark channel prior to enhance cloud feature extraction. Ge et al. [41] combined
Transformers with CNNSs, facilitating the simultaneous extraction of local and global fea-
tures for more accurate cloud identification. Xia et al. [42] proposed a hybrid model that
merges Transformers and GANSs, which leverages CycleGAN to establish bidirectional
mappings between cloudy and cloud-free images and employs Transformer-based modules
for long-range dependency modeling. Wang et al. [43] introduced a two-stage cloud re-
moval network where the first stage employs a Swin Transformer for coarse cloud removal,
and the second stage utilizes a diffusion model in the latent space to refine details, thereby
enhancing the quality of the declouded images. Chi et al. [44] integrated prior information
into the Swin Transformer, adaptively extracting and aggregating multi-scale informa-
tion from each level of the Swin Transformer to reasonably estimate haze parameters and
generate dehazed images.
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2.2. Applications of Frequency Domain in Remote Sensing

The transformation of data from spatial to frequency facilitates the revelation of peri-
odic characteristics and texture patterns inherent in surface information, thereby improving
task-specific outcomes [45]. Hsu et al. [46] employed multi-level wavelet decomposition to
separate rain streaks into low-frequency structural and high-frequency detail sub-images
and effectively remove low- and high-frequency rain streaks at each level separately from
rain images. Guo et al. [47] proposed a cloud perception integrated fast Fourier convolu-
tional network (CP-FFCN) for single remote sensing image cloud removal. This method
uses fast Fourier convolution (FFC) to selectively learn the properties of clouds and fog
from the frequency domain to remove clouds and reconstruct underlying ground objects.

However, relying solely on frequency domain information may not be sufficient to
comprehensively capture all the detailed features of the image. Therefore, many studies
have adopted spatial-frequency fusion approaches to more effectively address complex
image processing tasks. Zhou et al. [48] proposed an end-to-end joint frequency-spatial
domain network (JFSDNet) for remote sensing image change detection. The method uses
frequency information to compensate for the loss of image details caused by downsampling,
thereby achieving more accurate change region detection. Jiang et al. [49] combined dual-
tree complex wavelet transform (DTCWT) and a CNN to improve the cloud removal
accuracy through two-stage frequency domain optimization.

Unlike most existing spatial-frequency fusion methods that rely on concatenation
or the direct addition of spatial and frequency features, the proposed SFCRFormer first
extracts spatial features through the DBSA module, and then transforms these spatial
features into the frequency domain via the FreSA module for further refinement. This
enables a more effective cross-domain synergy interaction between spatial and frequency
information, achieving more precise cloud detection and removal.

3. Method

This section introduces the proposed cloud removal network, SFCRFormer, an ad-
vanced architecture that combines spatial and frequency domain features to effectively
achieve cloud removal in remote sensing imagery. We first provide an overview of the
model’s overall architecture in Section 3.1, followed by detailed descriptions of the pro-
posed modules in Sections 3.2-3.4. Finally, the composite loss function is explained in
Section 3.5.

3.1. Overview

The SFCRFormer adopts a U-shaped encoder-decoder structure, as depicted in
Figure 1a. Given a cloudy optical image I € RF*W>3  the model first applies a 3 x 3

convolution to extract shallow features Fy € RE*W*C

, where H and W denote the image
dimensions, and C is the number of feature channels. These shallow features are then
processed by the encoder and decoder to extract deep features F; € RH*W*2C_ The deep
features F; are further refined through SFCT block to obtain features F,. The final output fea-
ture F, is processed through a 3 x 3 convolution to generate a residual image R € RHF*Wx3,
The residual R is then added to the input image I to produce the cloud-free image.

The encoder compresses the input through a series of SFCT blocks, progressively re-
ducing the resolution while capturing long-range dependencies. The decoder reconstructs
the feature maps by gradually restoring their resolution, starting from the bottleneck fea-
tures Fj, € R ¥ *§ *8C_ Pixel-unshuffle and pixel-shuffle operations are utilized for efficient
downsampling and upsampling, respectively. Skip connections between corresponding
encoder and decoder layers are incorporated to preserve fine-grained details.
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Unlike traditional Transformers, the SFCT block in SFCRFormer combines a spatial
Transformer with a frequency domain Transformer, as shown in Figure 1b. The input feature
F;, is processed sequentially: The spatial Transformer captures local and global depen-
dencies, while the frequency domain Transformer enhances texture and periodic patterns.
This design allows SEFCRFormer to effectively model both spatial and frequency features,
improving its ability to distinguish cloud regions from ground objects in complex scenes.

Input Output

»D

p RK Hxwxy |
Ve F_ - T T T T - N
3x3 Conv ! in !
| A | | \ 4 |
! FA 1w xac : LN ! LN :
I I
3x3 Conv SFCT Block : ] .
| DBSA ||| FreSA |
HxW xC lFO F"T HxW x2C | ES Ol |
| > o > |
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HxWxC 1P connection »©) HxWxC | e :
v . | [opFEN] | | | | [DDEEN] |
| DownSample ‘ | o |
| D F > [
v '____i/___,' L TR
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2 e
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(a)

Figure 1. The overall architecture of the proposed SFCRFormer. (a) The framework of SFCRFormer;
(b) Spatial-Frequency Combined Transformer (SFCT).

3.2. DBSA: Dual-Branch Spatial Attention

The DBSA module integrates spatial and channel attention mechanisms to adaptively
handle the variable shapes and positions of clouds. Its structure is shown in Figure 2a.
Given an input feature Fy;;,,; € RH XWXC, parallel 1 x 1 point-wise convolutions and 3 x 3
depth-wise convolutions are applied to generate two sets of query, key, and value matrices:

Qc, K¢, and V; and Qs, Ks, and V; . These operations are defined as follows:

Qc = WdQWcQFinput/ Ke = wacKFinput/ Ve = W;/WcVFinputr

1)

Qs = WL?WcQFinput/ Ks = WgchFinput/ Vs = W;/WcVFinput/
where WC(') and W’;) represent the weights of point-wise and depth-wise convolutions,
respectively. Compared with ordinary convolution, point-wise convolution and depth-wise
convolution can reduce computational complexity.
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In the channel branch, Q., K., and V, are reshaped into (HW) x C. The attention map
is calculated as follows:

T
ChannelAtt(Q,, K¢, V) = softmax ( chc > Ve, 2)

where & = 1/d scales the dot product for numerical stability.
For the spatial branch, Qs, K;, and V; are divided into non-overlapping windows of
size N, and similar operations yield the spatial attention:

. QskI
Spatial Att(Qs, Ks, Vs) = softmax e V. (3)

The outputs of both branches are summed element-wise to produce the final
DBSA output:

Fout = ChannelAtt(Q., K, V) + SpatialAtt(Qs, Ks, Vs). 4)
= % 0 % Oy HIV x(
=i 8 Transposed Channel-

Attention Map

>
Z .
> = g _>f;<7 g Softmax | > R
-0 A ‘_
(@]
input = urput
2 a1y, 2
= gl a8k HI x(
x8MESr® ) 4
] © A D>
A
>
= % > 5|pNxC
O S 8 Transposed Spatial-
Attention Map
>
= =] ]
»x 5>R S
=3 A 8
>
2 =l I
o= SR 3y NxC
Z8TIASr®

D

(a) Dual Branch Spatial Attention

Y
>
= = 5
—> = 5 —>Q8
Ix1 1x1 1x1 —Oo| TR
Conv || Conv || Conv 1 BT
3x3 3x3 3x3 =
DConv || DConv || DConv —, =] —
< 0 X E XS 0> >»P—>x 5
—O| |7 A A =0
FFT | | FFT N
v % — W]
=2 ) E = ﬂ
IFFT F>X 8> X2 = =
=S A o =
(@]
>
.z (= =
o Frequency —» x 8 >R —DE =
X — A =
N Attention Weight O A = =
1x1 — Wl
Conv
(b) Frequency Self-Attention (c) Dual Domain Feed-Forward Network

® Reshape &®  Matrix Multiplication @ Element-wise addition (9 Element-wise Multiplication =~ @ GELU Activation

Figure 2. The structure of our proposed DBSA, FreSA, and DDFFN.
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3.3. FreSA: Frequency Self-Attention

The FreSA module leverages the frequency domain to enhance the model’s ability
to capture fine details. Its structure is shown in Figure 2b. Given an input Y € REXWxC,
we apply 1 x 1 point-wise convolution and 3 x 3 depth-wise convolution operations to
produce Q, K, and V:

Q=wIwly, K=wiwky, v=w/wy. ()

The matrices Q and K are converted to the frequency domain through FFT. Subse-
quently, their multiplication is followed by IFFT to convert the features back to the spatial
domain to obtain the frequency attention weight A:

A=FHF(Q) F(K)). ©)

The final frequency attention is derived by weighting V with A and applying a
convolution:
FreAtt = Conv(A - V). (7)

3.4. DDFFN: Dual-Domain Feed-Forward Network

The DDFEN, as shown in Figure 2c, combines spatial and frequency domain branches
to comprehensively capture local and global features.

For the spatial branch, we perform convolution operations on the feature in two
parallel paths, one of which is activated by the GeLu nonlinear function. The features of
the two paths are multiplied to obtain the output of the spatial branch. The formula is

SpaFFN(X) = (WiW!X) © o (Win2x), (8)

where © denotes element-wise multiplication.

For the frequency branch, we convert the features into the frequency domain through
FFT to extract information at different frequencies. Moreover, we introduce a frequency
component matrix W to adaptively determine which frequency components are retained.

X} = FH(W(F(WWjX))),
X2 = F Y W(F(W2W2X))), ©)
FreFEN(X) = X} © (¢(X3)).

The combined output is
DDFEN(X) = Conv(SpaFFN(X) + FreFEN(X)). (10)

3.5. Loss Function

To balance pixel-level accuracy and perceptual quality, we design a composite loss
function, which includes Charbonnier loss L. [50] and SSIM loss Lgg;,,, [51]. The loss function
can be defined as

Ltatal =L+ )\Lssim' (11)

where A is a hyperparameter, and its value is determined through experimental analysis.
The L1 loss is more robust to outliers but exhibits slower training convergence and may

lead to detail loss, while the L2 loss is highly sensitive to noisy data or outliers, resulting

in blurry reconstructions. Charbonnier loss combines the advantages of L1 and L2 loss
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and effectively preserves image details while reducing noise interference during the cloud
removal process. It is defined as

N-—1
Le= ) /0w —GJ?>+€?, (12)

n=0

where O is the output of SFCRFormer, and G is the ground truth. € is the constant and is
set to 1073,

Cloud occlusion leads to the loss of texture and structural details of the ground surface.
SSIM loss evaluates the structural similarity of images on three aspects, brightness, contrast,
and structure, effectively guiding the model to recover clearer edges and finer details while
avoiding information loss caused by excessive smoothing. Furthermore, the SSIM loss
is more consistent with the evaluation standards of the human visual system, thereby
enhancing the visual perceptual quality of the reconstructed images. It is

1 N-1

Lssim = N nzzo(l - SSIM(OHI G)) (13)

4. Experiments

In this section, we introduce the datasets, evaluation metrics, and experimental settings
used in the experiments. Then, we present the experimental results on different datasets
and conduct ablation studies, while providing a detailed analysis of the findings.

4.1. Datasets

To verify the effectiveness of our proposed method, we conducted a series of experi-
ments on the RICE dataset and the T-Cloud dataset.

4.1.1. RICE Dataset

The RICE dataset [52] contains two subdatasets, namely, RICE1 and RICE2. RICEL1 is
a thin cloud dataset from Google Earth, including 500 pairs of cloud images and ground
truth. RICE2 is a thick cloud dataset from Landsat 8 OLI/TIRS, including 736 pairs of cloud
images, ground truth, and cloud mask. The size of the images in both datasets is 512 x 512.
To facilitate model training and evaluation, we partitioned the datasets as follows: 80% of
the images are used for training, and the remaining 20% of the images are used for testing.
For RICE1, 400 images are used for training and 100 for testing. For RICE2, 589 images are
used for training and 147 for testing.

4.1.2. T-Cloud Dataset

T-Cloud [53] is a large-scale thin cloud dataset collected by the Landsat 8 satellite,
including 2939 pairs of images with clouds and ground truth. The interval between the
acquisition of cloud images and cloud-free images is 16 days. The size of the images in the
dataset is 256 x 256. Similar to the RICE dataset, we use 80% of the images for training and
the remaining 20% for testing. That is, 2351 images are used for training and 588 images
are used for testing.

4.2. Evaluation Metrics

To evaluate the quality of the restored images, we apply a variety of metrics to
quantitatively analyze the experimental results, including peak signal-to-noise ratio (PSNR),
Structural Similarity Index Measure (5SIM), mean absolute error (MAE), and root mean
squared error (RMSE). The PSNR is an important metric for assessing image reconstruction
quality, quantifying the fidelity of the restored image. The SSIM takes into account the
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luminance, contrast, and structural information of images, evaluating image quality by
comparing local structural features between two images, which can more accurately reflect
perceived image quality. The MAE assesses image quality by calculating the mean of
absolute differences between the pixel values of the reconstructed and ground truth. The
RMSE calculates the average of the square roots of the differences between the pixel values
of the reconstructed and ground truth. The RMSE is more sensitive to larger errors and is
suitable for evaluating significant deviations. Their definitions are as follows:

PSNR(x,y) = 2010g10(lwséw) (14)
~ (2pxpy + Cp) (200 + Co)
SSIM(x,y) = BTt (15)
= RNLAR .
MAE = =5 ;ngx(w) — (@)l (16)
RMSE = ! iﬁ(x(i ) — (i j))? (17)
T\ HxW A A J) =y

where x and y represent the two images to be evaluated. H and W are the height and width
of the images. x(7,j) and y(i, j) represent the pixel value of the image at position (i, f). ux
and p, are the means of images x and y. 0y and 0y, are the standard deviations of images x
and y. C1 and C; are constants.

4.3. Experimental Settings

We implemented the proposed method using the Pytorch framework on an NVIDIA
A40 GPU. Our approach uses a four-level encoder—decoder architecture, with the number
of SFCT blocks set to [2, 3, 3, 4] at each level, respectively. The number of attention heads in
the DBSA is configured as [1, 2, 4, 8]. The channel expansion factor 7y in DDFEN is set to
0.66. We use the Adam optimizer to optimize the parameters and set the initial learning
rate to 2 x 107%. The parameters 1, B2 and € are set to 0.9, 0.999 and 1 X 1078, respectively.
We trained for 250 epochs with a patch size of 256 x 256 and a batch size of 2.

4.4. Experimental Results

To verify the effectiveness of the proposed method, in this section, we compare it with
five other state-of-the-art methods, including SpA GAN [54], AMGAN [55], CVAE [53],
Restormer [56], and TCME [57]. SpA GAN and AMGAN are both GAN-based cloud
removal models. Specifically, SpA GAN introduces the spatial attention mechanism into
GAN to remove thin clouds from images. AMGAN uses an attentive recurrent network
in GAN to extract the distribution of clouds and achieves cloud removal through an
attentive residual network. CVAE generates multiple reasonable cloud-free images for each
input image through a conditional variational autoencoder. It further refines the output
through uncertainty analysis, synthesizing more accurate and clearer images from the
multiple predictions generated. Restormer and TCME are both Transformer-based models.
TCME enhances the self-attention mechanism in Transformers by incorporating a Top-K
sparse selection mechanism, which retains the most informative self-attention values to
improve cloud removal performance. Restormer is an image restoration method that has
achieved excellent performance in multiple image restoration tasks and is also the baseline
of this paper.
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4.4.1. Results on RICE1 Dataset

Table 1 presents the quantitative performance of various state-of-the-art methods
on the RICE1 dataset. The best results are highlighted in bold, while the second-best
results are underlined. As evidenced by the table, the proposed SFCRFormer consistently
outperforms all other methods across the four evaluation metrics, achieving remarkable
scores of 37.3512 for PSNR, 0.9699 for SSIM, 0.01662 for MAE, and 0.02064 for RMSE. These
results reflect an enhancement of at least 2.2%, 0.98%, 6.9%, and 9.1% over the second-best
method, Restormer, in each respective metric. The superior performance of SFCRFormer
demonstrates its ability to effectively remove thin clouds while maintaining intricate
image details, thus delivering significantly higher image quality. By effectively integrating
spatial and frequency domain features, SFCRFormer achieves precise reconstruction and
contributes to its robustness across diverse scenes.

Table 1. Quantitative results compared with the state-of-the-art methods on the RICE1 dataset, where
1 indicates higher scores are better, and | indicates lower scores are preferred.

Method PSNR (1) SSIM (1) MAE (}) RMSE (])
SpA GAN 29.5965 0.9165 0.03970 0.05013
AMGAN 25.2576 0.7632 0.06761 0.08374
CVAE 32.1995 0.9485 0.02874 0.03624
Restormer 36.5432 0.9605 0.01786 0.02273
TCME 36.5279 0.9590 0.01806 0.02292
SFCRFormer 37.3512 0.9699 0.01662 0.02064

The underline indicates the second-best result and the bold indicates the best result.

Figure 3 presents the visual comparison of different methods on the RICE1 dataset. To
facilitate a clearer evaluation, specific regions of the images are magnified to emphasize the
cloud removal effects achieved by each approach. The columns in the figure are organized
as follows: The first column displays the original cloudy remote sensing images, the second
to sixth columns show the results of the comparison methods (SpA GAN, AMGAN, CVAE,
Restormer, and TCME), the seventh column depicts the results generated by our proposed
SFCRFormer, and the final column provides the ground truth.

From the visual results, it is evident that the two GAN-based methods (SpA GAN and
AMGAN) produce blurry images with prominent artifacts and noticeable color distortions.
Although CVAE achieves a moderate improvement in image clarity, it still suffers from
color distortion and falls significantly short of the quality presented in the ground truth.
Transformer-based methods demonstrate a substantial enhancement in both image sharp-
ness and the preservation of spatial details compared to the aforementioned approaches.
Among these, Restormer and TCME exhibit superior performance; however, they still
struggle to accurately recover fine-grained structural details in cloud-covered areas.

In contrast, our proposed SFCRFormer achieves the most visually compelling re-
sults. It not only restores the contour edges of ground objects with remarkable clarity but
also reconstructs more accurate detailed features. These results highlight the efficacy of
the spatial-frequency domain fusion in SFCRFormer, which effectively balances global
structural restoration and local detail preservation.
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Figure 3. Visualization results of different methods on the RICE1 dataset. (a) Cloudy images;
(b) results of the SpA GAN; (c) results of the AMGAN; (d) results of the CVAE; (e) results of the
Restormer; (f) results of the TCME; (g) results of ours; (h) ground truth. The enlarged area is indicated
by an orange box, and the enlarged result is shown below the original image.

4.4.2. Results on RICE2 Dataset

Table 2 shows the results of various methods on the RICE2 dataset, with the best
results highlighted in bold and the second-best results underlined. Compared to the
RICE1 dataset, the RICE2 dataset exhibits significantly higher cloud coverage and density,
substantially increasing the complexity of cloud-free image reconstruction. Nevertheless,
the experimental results demonstrate that our proposed SFCRFormer achieves superior
performance relative to other methods, underscoring its effectiveness and robustness even
under more challenging conditions.

Table 2. Quantitative results compared with the state-of-the-art methods on the RICE2 dataset, where
1 indicates higher scores are better, and | indicates lower scores are preferred.

Method PSNR (1) SSIM (1) MAE (}) RMSE (]
SpA GAN 30.0268 0.8244 0.03751 0.04508
AMGAN 27.1915 0.8057 0.05312 0.06705
CVAE 32.3241 0.8566 0.02763 0.03698
Restormer 36.2070 0.9155 0.01884 0.02554
TCME 36.8512 0.9179 0.01871 0.02530
SFCRFormer 37.7584 0.9264 0.01709 0.02339

The underline indicates the second-best result and the bold indicates the best result.

Figure 4 is the visualization results and their local magnified images of all methods
on the RICE2 dataset. Due to the denser cloud coverage in the RICE2 dataset, the details
of ground objects are severely occluded, which increases the difficulty of removing cloud
layers in the model. As shown in the third and fourth rows of Figure 4, SpA GAN is
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vulnerable to cloud shadow regions, leading to the generation of numerous dark patches.
Similarly, AMGAN, which also employs GAN as its backbone architecture, encounters
comparable issues. Specifically, AMGAN struggles to effectively reconstruct cloud-covered
regions, and there may even be cloud residues. Although CVAE leverages multiple predic-
tions to generate relatively accurate results, it suffers from significant artifacts during the
reconstruction process, resulting in blurred images. Depending on the powerful modeling
capabilities of transformers, Restormer and TCME have achieved notable improvements in
spatial detail recovery compared to previous approaches. However, from the results in the
second and sixth rows of Figure 4, it indicates that both methods exhibit some degree of

color distortion and also generate details that do not match the actual surface information.

Figure 4. Visualization results of different methods on the RICE2 dataset. (a) Cloudy images;
(b) results of the SpA GAN; (c) results of the AMGAN; (d) results of the CVAE; (e) results of the
Restormer; (f) results of the TCME; (g) results of ours; (h) ground truth. The enlarged area is indicated
by an orange box, and the enlarged result is shown below the original image.

In contrast, our proposed SFCRFormer effectively leverages contextual information
and suppresses noise interference, generating cloud-free images with fewer artifacts, richer
details, and higher color fidelity.

4.4.3. Results on T-Cloud Dataset

Table 3 shows the results of all methods on the T-Cloud thin cloud dataset. Consistent
with the findings of the RICE dataset, the proposed SFCRFormer exhibits marked superi-
ority across all evaluated metrics compared to other state-of-the-art methods. The PSNR
and SSIM metric results indicate that the SFCRFormer maintains excellent performance in
enhancing image restoration quality and preserving the structural integrity of the original
cloud-free scenes.
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Table 3. Quantitative results compared with the state-of-the-art methods on the T-Cloud dataset,
where 1 indicates higher scores are better, and | indicates lower scores are preferred.

Method PSNR (1) SSIM (1) MAE (}) RMSE (})
SpA GAN 25.8115 0.8204 0.05473 0.06836
AMGAN 24.8218 0.8091 0.06342 0.07933
CVAE 27.3892 0.8605 0.04456 0.05618
Restormer 30.9301 0.9026 0.02929 0.03837
TCME 31.7727 0.9104 0.02622 0.03451
SFCRFormer 32.2261 0.9190 0.02477 0.03283

The underline indicates the second-best result and the bold indicates the best result.

Figure 5 provides the visual result between SFCRFormer and the comparative methods.
GAN-based methods (SpA GAN and AMGAN) manifest significant distortions in the
generated images and, in some cases, fail to effectively remove cloud layers from the
imagery. Similarly, CVAE demonstrates inadequate performance in cloud removal tasks,
producing blurry images that do not accurately reconstruct the details of the underlying
terrestrial scenes. Despite the high restoration accuracy exhibited by Restormer and TCME,
the magnified regions in the figures indicate that our proposed SFCRFormer generates more
precise edge details and produces significantly fewer artifacts. Furthermore, in handling
complex scenarios, our method attains higher image fidelity and reliability.

' '
- R

=
=

Figure 5. Visualization results of different methods on the T-Cloud dataset. (a) Cloudy images;
(b) results of the SpA GAN; (c) results of the AMGAN; (d) results of the CVAE; (e) results of the
Restormer; (f) results of the TCME; (g) results of ours; (h) ground truth. The enlarged area is indicated
by an orange box, and the enlarged result is shown below the original image.

4.5. Ablation Study

In order to verify the effectiveness of the proposed DBSA module, FreSA module and
DDFFN module, we conducted systematic ablation experiments and used Restormer as a
baseline model for comparison.
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4.5.1. Numerical Evaluations

The results in Table 4 demonstrate the importance of each proposed module in SFCR-
Former. From the first three rows, it is evident that the removal of either the DBSA or
FreSA modules results in a noticeable degradation in model performance. Specifically, the
performance drop is more pronounced when the FreSA module is omitted, compared to the
DBSA module. To further validate the effectiveness of frequency processing, we replaced
the FreSA module with standard attention mechanisms (Std.Att.). As evidenced by the
results presented in the last two rows, this substitution led to a significant performance
degradation. This indicates that the FFT operation is the fundamental reason for its effec-
tiveness, rather than simply employing attention mechanisms. This underscores the critical
role of frequency information in cloud removal tasks and highlights the superiority of the
FreSA module in capturing and processing frequency features.

Furthermore, the results of the fourth and last rows in the Table 4 show that the
incorporation of the DDFFN module significantly improves the model’s ability to integrate
spatial and frequency information. By leveraging the dual-domain fusion capability, the
proposed SFCRFormer achieves optimal results across all evaluation metrics, consistently
outperforming the baseline and other configurations. This demonstrates the effectiveness
of the DDFFN module in enhancing feature representations and improving quantitative
performance metrics.

Table 4. Quantitative results of different modules in SFCRFormer, where 1 indicates higher scores are
better, | indicates lower scores are preferred and bold indicates the best results.

Dataset

Module

PSNR (1) SSIM (1) MAE () RMSE (})

Baseline DBSA FreSA Std. Att. DDFFN

v X X X X 36.5432 0.9605 0.01786 0.02273

v v X X X 36.8385 0.9674 0.01752 0.02174

RICE1 v X v X X 36.9646 0.9682 0.01737 0.02128
v v v X X 36.9834 0.9685 0.01723 0.02131

v v X v v 36.8753 0.9689 0.01701 0.02095

v v v X v 37.3512 0.9699 0.01662 0.02064

v X X X X 36.2070 0.9155 0.01884 0.02554

v v X X X 36.7490 0.9216 0.01894 0.02541

RICE2 v X v X X 36.8821 0.9238 0.01773 0.02445
v v v X X 37.2963 0.9242 0.01766 0.02419

v v X v v 37.2762 0.9223 0.01767 0.02381

v v v X v 37.7584 0.9264 0.01709 0.02339

v X X X X 30.9301 0.9026 0.02929 0.03837

v v X X X 31.6029 0.9126 0.02687 0.03521

T-Cloud v X v X X 31.9512 0.9140 0.02598 0.03473
v v v X X 31.9875 0.9152 0.02542 0.03432

v v X v v 32.0129 0.9154 0.02570 0.03391

v v v X v 32.2261 0.9190 0.02477 0.03283

v’ indicates the module is included and x indicates the module is excluded.

4.5.2. Visualization Analysis

To evaluate the effectiveness of the FreSA module, we generated feature heatmaps
before and after processing by the FreSA module, which are shown in Figure 6. As observed
in the second column, without the FreSA module’s processing, the contours and edges of
objects within the feature map exhibit notable blurriness. However, the results in the third
column show that, after processing by FreSA, the edge details of the objects in the feature
map are significantly enhanced. These experimental results demonstrate that the FreSA
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module transforms features from the spatial domain to the frequency domain through
FFT and effectively leverages both high- and low-frequency components to improve the

model’s ability to capture the details of the objects.

(a) (b) (©) (d)

Figure 6. Heatmaps obtained before and after the FreSA module. (a) Cloudy images; (b) heatmaps
obtained before the FreSA module; (c) heatmaps obtained after the FreSA module; (d) ground truth.

To further evaluate the contributions of the proposed modules in SFCRFormer, we con-
ducted visual results analysis on three datasets: RICE1, RICE2, and T-Cloud. Figures 7-9
showcase the qualitative results of the module ablation experiments, where specific re-
gions are enlarged to highlight the cloud removal effectiveness and the restoration of
image details.

The results on the thin cloud dataset (Figures 7 and 9) demonstrate that baseline
models generate images with blurred edges. In contrast, our proposed method improves
the recovery of spatial details, particularly in terms of edge clarity. This comparison
highlights the efficacy of our proposed module in addressing cloud removal and fine-
grained detail restoration. Furthermore, from Figure 8, which visualizes the thick cloud
dataset, it is evident that the baseline model struggles to effectively remove cloud cover,
leaving residual cloud artifacts and producing inaccurate patches. When replacing the
FreSA module with standard attention mechanisms, the generated cloud-free images exhibit
degraded quality and edge blurriness. The proposed SFCRFormer exhibits remarkable
performance in eliminating cloud layers and generating high-quality, cloud-free images.
By effectively integrating spatial and frequency features, SFCRFormer achieves superior
visual results, significantly enhancing image clarity and detail preservation.
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Figure 7. Visualization results of module ablation experiment on the RICE1 dataset. (a) Cloudy
images; (b) results of the baseline; (c) results of the DBSA; (d) results of the FreSA; (e) results of the
DBSA + FreSA; (f) results of the DBSA + Std.Att. + DDFEN; (g) results of ours; (h) ground truth. The
enlarged area is indicated by an orange box, and the enlarged result is shown below the original image.

(a) (b) (¢) (d) (e) () (€] (h)

Figure 8. Visualization results of module ablation experiment on the RICE2 dataset. (a) Cloudy
images; (b) results of the baseline; (c) results of the DBSA; (d) results of the FreSA; (e) results of the
DBSA + FreSA; (f) results of the DBSA + Std.Att. + DDFEN; (g) results of ours; (h) ground truth. The
enlarged area is indicated by an orange box, and the enlarged result is shown below the original image.

4.6. Effects of Different Loss Functions

To systematically evaluate the effectiveness of the loss function, we conduct both
ablation studies analyzing the impact of individual loss components on model performance
and parameter sensitivity experiments investigating the optimal configurations of key
parameters, ensuring the optimal performance of the overall model.

To evaluate the impact of the proposed composite loss function, we conducted an
ablation study by training the network using only the L, loss. The quantitative results,
presented in Table 5, show that training solely with L. leads to reduced accuracy across all
metrics. This suggests that incorporating SSIM loss significantly enhances the quality of
restored images. Specifically, the proposed composite loss function outperforms the L.-only
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configuration on all datasets, demonstrating the complementary benefits of considering
both pixel-level and structural similarities.

=
e

(d)

B
-

Figure 9. Visualization results of module ablation experiment on the T-Cloud dataset. (a) Cloudy
images; (b) results of the baseline; (c) results of the DBSA; (d) results of the FreSA; (e) results of the
DBSA + FreSA; (f) results of the DBSA + Std.Att. + DDFEN; (g) results of ours; (h) ground truth. The
enlarged area is indicated by an orange box, and the enlarged result is shown below the original image.

Table 5. Quantitative results of different loss functions. where 1 indicates higher scores are better, |
indicates lower scores are preferred and bold indicates the best results.

Loss
Dataset PSNR (}) SSIM(1) MAE(]) RMSE (})
Lc ssim

RICEL v x 36.8561 0.9673 001776  0.02207
v v 37.3512 0.9699 0.01662  0.02064
RICE v % 36.2071 0.9155 001882  0.02553
v v 37.7584 0.9264 0.01709  0.02339
T.Cloud v x 30.9301 0.9026 002926  0.03835
ou v v 32.2261 0.9190 0.02477  0.03283

v indicates the module is included and x indicates the module is excluded.

Figure 10 provide qualitative comparisons of the ablation experiments for each loss
function on the RICE1, RICE2, and T-Cloud datasets, respectively. From these visual results,
it is clear that networks trained with only L. tend to generate artifacts such as patches and
striping noise, as shown in the magnified regions. These artifacts do not correspond to the
true surface information and severely degrade the visual perception of the restored images.
In contrast, the inclusion of SSIM loss significantly reduces these artifacts and stripe noise,
resulting in images that are closer to the ground truth in terms of detail and structure.

Additionally, we fine-tuned the weighting parameter A in the loss function to balance
the contributions of L, and Lg;,,. Experiments were conducted on three datasets with A
values set to 0.1, 0.3, 0.5, and 1.0. The results, illustrated in Figure 11, indicate that the
model achieves optimal performance when A = 0.5. This configuration effectively balances
pixel-level accuracy with structural similarity, maximizing the model’s overall performance.
As such, A was set to 0.5 for all experiments.
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Figure 10. Visualization results of loss function ablation experiment on the different datasets.
(a) Cloudy images; (b) results with L loss; (c) results with the combined loss (L¢ 4 Lggjy,,); (d) ground
truth. The orange boxes highlight the magnified regions.
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Figure 11. Performance of the model under different A values in the loss function. (a) RICE1 dataset;
(b) RICE2 dataset; (c) T-Cloud dataset.

5. Conclusions

In this paper, we propose a novel cloud removal framework, SFCRFormer, which
leverages a cascaded transformer architecture combining spatial and frequency domains to
address the challenges of cloud removal in complex scenarios. In the spatial transformer,
the DBSA module enhances the extraction of spatial features by simultaneously capturing
spatial information and the interrelationships between feature channels through indepen-
dent branches. In the frequency transformer, the FreSA module introduces frequency
information, enabling precise discrimination between cloud-contaminated regions and
background areas. The synergistic integration of these modules effectively resolves the
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confusion between cloud-covered areas and similarly textured ground objects, significantly
improving reconstruction accuracy in complex scenes.

Additionally, we introduce the DDFFN, which enhances the extraction of multi-scale
cloud and detail features, further improving the network’s ability to restore fine-grained
textures. To optimize the model’s performance, we adopt a composite loss function that
balances pixel-level accuracy with structural similarity, ensuring both numerical robustness
and visual quality in the reconstructed images.

Comprehensive experiments conducted on the RICE and T-Cloud datasets demon-
strate the superiority of SFCRFormer. The proposed method achieves state-of-the-art
performance, outperforming existing approaches across various quantitative evaluation
metrics such as PSNR, SSIM, MAE, and RMSE, while generating visually realistic results
that closely approximate the ground truth.

In future work, we plan to extend the application of SFCRFormer to SAR and optical
image fusion for cloud removal tasks. By fully exploiting the complementary information
provided by these two modalities, we aim to achieve more precise and robust cloud
removal results, further broadening the applicability of our framework in diverse remote
sensing scenarios.
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