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Abstract: Quantifying extreme weather events (EWEs) and understanding their impacts on
vegetation phenology is crucial for assessing ecosystem stability under climate change. This
study systematically investigated the ecosystem growing season length (GL) response to
four types of EWEs—extreme heat, extreme cold, extreme wetness (surplus precipitation),
and extreme drought (lack of precipitation). The EWE extremity thresholds were found
statistically using detrended long time series (2000–2022) ERA5 meteorological data through
z-score transformation. The analysis was based on a grassland ecosystem in the Mongolian
Plateau (MP) from 2000 to 2022. Using solar-induced chlorophyll fluorescence data and
event coincidence analysis, we evaluated the probability of GL anomalies coinciding with
EWEs and assessed the vegetation sensitivity to climate variability. The analysis showed
that 83.7% of negative and 87.4% of positive GL anomalies were associated with one or more
EWEs, with extreme wetness (27.0%) and extreme heat (25.4%) contributing the most. These
findings highlight the dominant role of EWEs in shaping phenological shifts. Negative GL
anomalies were more strongly linked to EWEs, particularly in arid and cold regions where
extreme drought and cold shortened the growing season. Conversely, extreme heat and
wetness had a greater influence in warmer and wetter areas, driving both the lengthening
and shortening of GL. Furthermore, background hydrothermal conditions modulated
the vegetation sensitivity, with warmer regions being more susceptible to heat stress and
drier regions more vulnerable to drought. These findings emphasize the importance of
regional weather variability and climate characteristics in shaping vegetation phenology
and provide new insights into how weather extremes impact ecosystem stability in semi-
arid and arid regions. Future research should explore extreme weather events and the role
of human activities to enhance predictions of vegetation–climate interactions in grassland
ecosystems of the MP.

Keywords: cold; extreme drought; event coincidence analysis; extreme heat; phenology;
solar-induced chlorophyll fluorescence; extreme wetness

1. Introduction
Amid ongoing global change and increased radiative forcing, the probability of

weather anomalies and extreme weather events (EWEs) shows a persistent upward trend
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everywhere in the world [1–3]. These changes not only alter global climate patterns but also
have profound impacts on plant growth cycles, ecosystem productivity, and key ecological
processes such as the carbon cycle [4–6]. However, defining extreme weather events such
as drought, heat or cold waves, and especially their co-occurrence remains a research
challenge due to the inherent climate variability, which is dependent on regional hydrome-
teorological and pedoclimatic properties that are difficult generalize across regions [7–9]. As
McPhillips et al. noted, over half of the studies on extreme events lack explicit definitions,
and substantial inconsistencies exist across disciplines in terms of terminology, thresholds,
and whether impacts are included [10]. They call for clearer and more consistent definitions
to support cross-disciplinary understanding. Building on this, Alvre et al. (2024) reviewed
over 2500 papers (2019–2023) and reached similar conclusions [11].

Vegetation phenology captures plant growth dynamics influenced by weather condi-
tions [12,13]. It is highly sensitive to long-term climatic variations and is thus considered
one of the best indicators of ecosystem dynamics [14]. Vegetation phenology can be as-
sessed through the SOS (start of season), EOS (end of season), and GL (growing season
length). Changes in vegetation phenology can significantly impact growth and reproduc-
tion patterns of species, which in turn influence material cycling and biodiversity within
ecosystems and their essential ecosystem services, such as water regulation and soil conser-
vation [15]. Vegetation phenology and growth are tightly linked through photosynthesis,
providing cellular structure buildings. During photosynthesis, light is re-emitted from the
chlorophyll molecules in leaves as a “side-effect”, which is called Sun-induced chlorophyll
fluorescence (SIF) [16,17]. The level of SIF indicates the plant’s health, energy produc-
tion power, and overall conditions within an ecosystem through climatic changes when
monitored over time [18,19]. Balde et al. (2024) and Martini et al. (2022) investigated the
effect of extreme heat events in Europe on evergreen broadleaved trees characterized with
a relatively invariant canopy structure using field-scale SIF, and both found an inverted
relationship between photosynthesis and fluorescence, showing a highly nonlinear pro-
tective mechanism of the plants from the adverse effects of high light intensity; they also
found that both SIF and growth variations and their relationships depend on the temporal
scale [20,21]. Against traditional measurements at small spatial and temporal scales, remote
sensing-observed SIF with satellites provides valuable data for large-scale analyses.

The Mongolian Plateau (MP) is one of the world’s largest plateaus and exhibits a pre-
dominantly semi-arid to arid climate regime [22,23]. Situated at the periphery of the East
Asian monsoon weather system, this region demonstrates pronounced seasonality with
prolonged cold winters and brief hot summers, coupled with marked precipitation vari-
ability [24,25]. These climatic features make the MP ecosystems highly sensitive to climate
change, gradually becoming one of the most climate-sensitive regions in the world [26,27].
The MP has witnessed a marked escalation in both the occurrence and the severity of EWEs
over recent decades, triggering substantial impacts on its fragile ecosystems [28–31]. EWEs
such as extreme heat or cold wave, heavy precipitation, and various droughts have posed
serious challenges to the stability of the ecosystems, accelerating soil erosion, vegetation
cover loss, and soil moisture depletion, and potentially disrupting the normal phenological
cycles of vegetation [32–34]. Previous research on MP vegetation phenology predominantly
explored EWEs impacts on SOS and EOS, while their effects on GL remain understudied.
Increasing evidence suggests that GL is directly related to the ecosystem carbon seques-
tration capacity, with a longer GL promoting plant growth and photosynthesis, thereby
enhancing carbon fixation and storage [33,35–38]. Additionally, variations in GL are closely
linked to water use efficiency, with a longer growing season facilitating more efficient soil
water utilization and improving plant drought resistance [39–41]. In the context of climate
change, alterations in GL duration, whether prolonged or shortened, could lead to changes
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in ecosystem carbon sink function, thereby impacting the global carbon cycling and the
climate system [42,43]. Therefore, investigating the response of GL, alongside SOS and
EOS, to EWEs is crucial for understanding the relationship between plant growth cycles
and climate change, and for providing scientific guidance in addressing climate change.

Event coincidence analysis (ECA) is a key methodology for evaluating vegetation
responses to extreme climate impacts [7]. Unlike traditional statistical methods such as
linear regression, which focus on examining the overall relationship between two variables,
ECA specifically investigates the probability of concurrent occurrences of multiple events.
This makes ECA particularly suited for exploring the direct response of GL to EWEs.

This study proposes a novel method for quantifying EWEs of heat, drought, cold, and
wetness, and employs SIF data to evaluate ecosystem GL responses on short-term weather
dynamics and long-term climate change. The study area is the MP with grasslands as
the dominant ecosystem; however, the methodological framework is generalizable. The
key objectives included (1) characterizing spatiotemporal patterns of grassland phenology;
(2) quantifying coincidence probabilities between GL anomalies and EWEs using ECA; and
(3) determining GL sensitivity gradients to EWE intensity variations.

2. Materials and Methods
2.1. Study Area

The MP is located in the central hinterland of Asia with a significant geographical
extent on the Asian continent (Figure 1). Encompassing Mongolia and China’s Inner
Mongolia Autonomous Region, the MP extends between latitudes 37◦46′ and 53◦08′N, and
longitudes 87◦40′ and 122◦15′E, with a total land area of approximately 3.5 million square
kilometers.
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Figure 1. Mean elevation (a), land cover (b), temperature (c) and precipitation (d) of the Mongolian
Plateau. The Mongolia–Inner Mongolia border is depicted by the line. Land cover classification
derived from MODIS product (MCD12Q1 V006). Temperature and precipitation are based on 2001–
2020 and refer to the growing season (GS) from April to September.

The MP is a typical plateau region, characterized by prominent mountain ranges in the
west and north, where elevations are relatively high, whereas the eastern and southern parts
are comparatively flat (Figure 1a). The dominant vegetation type is grassland, with overall
vegetation coverage being relatively low due to the region’s arid climate. The northeastern
plateau supports savanna ecosystems, contrasting with sparse grasslands dominating
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southwestern areas (Figure 1b). A marked north–south thermal gradient governs the
region, with elevated southern temperatures and cooler northern zones (Figure 1c), shaped
by topographic complexity and seasonal dynamics. The continental climate combines
aridity, thermal limitations, and pronounced seasonality. Precipitation patterns show an
east–south distribution (Figure 1d), with western–northern zones receiving minimal rainfall;
over 60% of annual precipitation falls during summer months.

2.2. Datasets
2.2.1. Climate Datasets

This study utilized the ERA5 reanalysis temperature and precipitation dataset (Eu-
ropean Centre for Medium-Range Weather Forecasts) to assess vegetation responses to
EWEs. Selected for its robust quality control and temporal consistency, ERA5 supports
the long-term analysis of ecosystem–climate interactions. Extreme temperature thresholds
were derived from daily maximum/minimum values rather than averages, as temperature
extremes exert stronger controls on vegetation physiology instead of mean conditions [4].
Cumulative precipitation during the growing season (April–September) was analyzed
to capture hydrological impacts on vegetation dynamics. All weather variables were
temporally aligned with the vegetation growing period.

2.2.2. SIF Vegetation Index Data

The SIF(CSIF) dataset used in this study was derived using a neural network model
developed previously [44] and covered the period 2000–2022. This dataset has a temporal
resolution of 4 days and a spatial resolution of 0.05◦ (ca. 4 km over the MP). To ensure
spatial consistency with the meteorological data, the SIF data were resampled to a 0.1◦

resolution. The data were obtained from the National Tibetan Plateau Data Center of China
(http://data.tpdc.ac.cn (accessed on 1 September 2023)).

2.2.3. Land Cover Classification

This study employed MODIS MCD12Q1 V006 (500 m resolution) land cover data,
adhering to the International Geosphere-Biosphere Programme (IGBP) classification sys-
tem. Vegetation was classified into three ecosystem types: forests (30–60% tree cover),
dense herbaceous grassland (>60% herbaceous cover <2 m), and sparse herbaceous grass-
land (10–60% herbaceous cover <2 m). Non-vegetated areas (e.g., urban, water) were
excluded. To ensure spatial consistency with the meteorological data, land cover layers
were resampled to a 0.1◦ resolution via mode filtering. A 15-year land cover stability thresh-
old (unchanged classification in ≥15 of the 20 years) was applied to minimize temporal
variability impacts, enhancing reliability in assessing the vegetation–climate interactions.

2.3. Methods
2.3.1. Extraction of Grassland Phenology

This study utilized the PhenoFit R package [45] to extract phenological metrics from
the SIF time series data. PhenoFit employs a weighted curve-fitting approach to reconstruct
time series and offers multiple phenological extraction methods. The derivative approach
(DER) was selected to identify the SOS (start of season) and EOS (end of season). Initially,
quality control was performed on the input SIF time series to remove outliers (spike
values) and missing values. To further reduce noise, the weighted Whittaker smoothing
method [46] was applied as a preliminary curve-fitting step. PhenoFit effectively handles
the irregular sampling characteristics of SIF data, making it suitable for datasets with
varying temporal resolutions.

Subsequently, the first-order DER was used to compute the rate of change in the
vegetation index, with the SOS and EOS identified as the time points corresponding to the

http://data.tpdc.ac.cn
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maximum positive and negative rates of change, respectively. The GL (growing season
length) was then derived as the difference between the EOS and SOS. The DER method
effectively captures vegetation growth dynamics and has been widely applied in pheno-
logical studies across diverse ecosystems [47]. Compared to traditional threshold-based
methods, the derivative approach provides a more accurate representation of SIF change
inflection points, thereby avoiding biases associated with arbitrary threshold selection.

2.3.2. Identification of Extreme Weather Events

This study examined four categories of extreme weather events: extreme heat, extreme
cold, extreme wetness, and extreme drought. Primary metrics were established using
monthly peak temperatures, monthly temperature minima, and cumulative monthly pre-
cipitation as diagnostic indicators. To address the relatively short duration of the ERA5 time
series (2000–2022), which may limit the statistical robustness of extreme value estimation,
we applied a 3 × 3 moving spatial window to increase the effective sample size for each
grid cell. This method utilizes the spatial autocorrelation of climatic variables to improve
the stability of threshold determination, especially in semi-arid and arid regions where
spatial homogeneity is relatively high. Similar spatial aggregation approaches have been
successfully applied in previous studies dealing with short time series of extreme weather
events. To eliminate long-term trends from the time series of monthly climate variables
during the growing season (April–September), we applied an ordinary least squares (OLS)
regression to each pixel independently. This involved fitting a linear model of the climate
variable (e.g., monthly maximum/minimum temperature or cumulative precipitation) as
a function of the year. The residuals, obtained by subtracting the fitted values from the
original data, were then used for standardizing anomalies. This detrending step allowed
us to isolate interannual fluctuations from long-term changes, enabling a more robust
detection of extreme climate events. Annual weather signatures were subsequently derived
by aggregating monthly indicator values across the vegetative period. The detection of
extremity thresholds employed a z-score transformation methodology. This standardized
anomaly approach calculates deviations from climatic norms through the following for-
mula: (observed value—multiannual mean)/standard deviation, enabling the quantitative
evaluation of event severity. The identification framework commenced with detrending
of monthly climatic variables, progressed through the temporal aggregation of growing
season parameters, and ultimately implemented statistical standardization for extremity
classification. The formula is as follows:

λ =
Xi − mean(X)

std(X)
(1)

λ represents the standardized anomaly, Xi corresponds to the annual parameter value,
mean(X) denotes the multiannual mean, and std(X) quantifies the interannual standard
deviation. Extreme weather events are classified when temperature or precipitation anoma-
lies exceed ±1 std(X) thresholds: values λ ≥ +1 std(X) indicate extreme heat or pluviosity
(positive deviations), whereas λ ≤ −1 std(X) signifies extreme cold or aridity (negative
deviations). The vegetation phenology analysis also adopts analogous thresholds, where
standardized vegetation index anomalies below −1 std(X) are categorized as phenological
shortening events, while those exceeding +1 std(X) denote lengthening events. This frame-
work facilitates the quantitative evaluation of geographically distinct vegetation responses
to divergent extreme climate regimes, revealing region-specific mechanistic linkages be-
tween climatic stressors and altered phenological dynamics. The systematic detection of
phenological shifts under extreme conditions supports spatially explicit impact assessments
of vegetation–climate interactions.
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2.3.3. Event Coincidence Analysis

This study applied ECA to statistically evaluate the synchronization probability be-
tween extreme climatic events and vegetation phenological anomalies. The coincidence
rate (CR, unitless) was calculated as the ratio of temporally concurrent event pairs (EWEs
and GL anomalies) to the total EWEs recorded during the 2001–2021 observation period.

CR =
Fre

(
λveg∀twhenλclimate

)
Fre(∀twhenλclimate)

(2)

where λveg corresponds to vegetation phenological anomalies and λclimate to extreme
weather events. The CR, ranging 0–1, quantifies vegetation–climate linkages, with elevated
CR values reflecting stronger vegetation responses to weather extremes.

We investigated synchronous occurrences between the four EWEs (heat, cold, wet-
ness, and drought) and vegetation GL anomalies. To distinguish statistically meaningful
associations from random alignments, significance testing was conducted through tem-
poral randomization. This significance test followed a permutation-based framework,
as widely used in ECA applications [7], involving the preservation of the original GL
anomaly chronology while shuffling EWEs timings, followed by recalculating CR values
for 100 randomized permutations to establish baseline coincidence probabilities. Sta-
tistical significance was determined by comparing the original CR distribution against
randomized counterparts via a t-test (p < 0.05). This rigorous validation confirmed that
observed vegetation–climate event linkages exceeded chance-level fluctuations, ensuring
the robustness of the detected relationships.

2.3.4. Sensitivity Analysis

In this study, absolute values of λveg were applied to eliminate directional discrepan-
cies among EWE types (e.g., opposing signs between extreme heat and cold anomalies).
This normalization ensured the consistent measurement of their absolute impacts on vege-
tation phenology.

For each pixel across the study period (2001–2021), λveg (in standard deviations) was
scaled against the λclimate anomaly (in standard deviations) for each event type. The ratio
was defined as follows:

γ =
λveg

|λclimate|
(3)

The ratio γ between these variables functions as a vegetation sensitivity indicator to cli-
matic extremes. A positive γ value signals enhanced vegetation growth during an extreme
climate event relative to baseline conditions, whereas a negative value reflects growth sup-
pression. This metric offers a direct quantitative measure of vegetation–climate interaction
intensity, clarifying the proportional response of ecosystems to climatic extremes.

3. Results
3.1. Spatial Distribution and Interannual Variation of Vegetation Phenology in the
Mongolian Plateau

The spatial patterns of vegetation phenology (SOS, EOS, GL) across the MP during
2001–2020 revealed pronounced regional heterogeneity (Figure 2). The SOS exhibited
marked latitudinal contrasts: mid-April onset in southwestern areas versus late April–early
May in the northeast, with central and southwestern regions delayed to late May–June
(Figure 2a). The EOS displayed a southwest–northwest decreasing gradient, with a mean
value of day 260 in southern Inner Mongolia versus day 220 in western arid areas (Figure 2b).
Its distribution followed hydrothermal gradients, linearly increasing from day 230 (−1 ◦C)
to day 250 (19 ◦C). For GL, the northeastern humid regions exhibited a longer growing
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season, with an average duration of 110 days. In contrast, the drier southwestern regions
had a significantly shorter growing season, averaging only 50–70 days. In other areas, GL
generally ranged between 80 and 100 days (Figure 2c).
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Figure 2. Spatial distribution of vegetation phenology (unit of days) on the Mongolian Plateau and
its variation along climatic gradients. Start (SOS; a) and end of the growing season (EOS, b) and
growing season length (GL, c) are presented in two panels: left is multi-year (2001–2020) mean, right
is annual variations along regional growing season (GS) temperature and precipitation gradients.

A further analysis of the interannual trends in vegetation phenology revealed signifi-
cant regional variations across the MP (Figure 3). During the period 2001–2020, the SOS
exhibited a distinct spatial pattern. In the central and northern regions of the plateau, the
SOS generally showed an increasing trend, indicating a delayed onset of vegetation growth.
In contrast, the eastern and southeastern regions exhibited a decreasing trend, suggesting
an earlier start of the growing season (Figure 3a). For EOS, changes were relatively minor
across most of the study area (Figure 3b). Apart from certain central regions, where the
EOS increased at a rate exceeding 0.5 days per year, 70.2% of the study area experienced
only marginal changes, with EOS trends falling within the range of −0.5 to 0.5 days per
year. The GL trend map revealed that 26.2% of the study area experienced a significant
increase in growing season length (>0.5 days per year), predominantly concentrated in the
southeastern region, indicating a notable extension of the phenological growing season
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(Figure 3c). Conversely, 17.8% of the study area showed a decreasing GL trend exceed-
ing −0.5 days per year, primarily occurring in the arid regions of the MP, suggesting a
shortening of the growing season in these areas.
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3.2. Coincidence Analysis of GL and EWEs

We quantified CR between GL anomalies and four EWEs (extreme heat, cold, wet,
drought), assessing divergent responses of positive versus negative GL anomalies to cli-
matic extremes (Figure 4). Across the MP, negative GL anomalies exhibited a strong
association with all EWEs, with 94% of pixels displaying CR > 0.2, and 8.2% of pixels show-
ing an extremely high coincidence rate (CR > 0.8). These high-coincidence regions were
predominantly in the arid and low-precipitation areas in the southeastern MP (Figure 4a).
For positive GL anomalies, 95.5% of the study area exhibited a CR > 0.2, and 9% of vege-
tated areas had a CR exceeding 0.8 with EWEs. However, the spatial distribution of high CR
values differed from that of negative anomalies, with high-coincidence regions primarily
occurring in relatively humid areas in the western and eastern MP (Figure 4b). Overall, in
response to extreme climate events, negative GL anomalies exhibited higher coincidence
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rates than positive GL anomalies, indicating that reductions in growing season length were
more strongly associated with weather extremes than growing season extensions.
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Figure 4. Spatial patterns of coincidence rates between growing season length anomalies (negative, a,
and positive, b) and extreme weather events across the Mongolian Plateau. Bars in sub-plots show
corresponding %-wise contribution of each CR class.

We further examined the CR values between GL anomalies and individual extreme
weather event types, providing a more detailed spatial assessment of their relationships
(Figure 5). Across the MP, the dominant extreme weather event type influencing negative
GL anomalies varied by region (Figure 5a). In the humid, high-vegetation coverage areas
of the northeast, negative GL anomalies were primarily associated with extreme wet condi-
tions. In contrast, in the southern and western regions, where long-term low precipitation
is prevalent, extreme drought was the dominant driver of negative GL anomalies. In
parts of the northwestern and northern MP, extreme low temperatures played a leading
role, whereas in the central MP, extreme high temperatures emerged as the primary cli-
matic factor influencing negative GL anomalies. For positive GL anomalies, the dominant
extreme weather event types also exhibited regional variations (Figure 5b). Moreover,
spatial patterns of extreme weather impacts diverged between positive and negative GL
anomalies, indicating that EWEs may modulate opposite to GL, depending on regional
climatic conditions.
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respectively. Colour legend of CR values is shown in the lower left corner of each plot.

Our analysis revealed that EWEs predominantly drive GL anomalies across the MP
(Figure 6), accounting for 83.7% of negative and 87.4% of positive anomalies. For negative
GL anomalies, contributions from extreme drought, wetness, heat, and cold were 18.5, 27,
20.5, and 17.7%, respectively. Their corresponding CR values ranked as follows: extreme
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wetness (0.39) > heat (0.38) > drought (0.37) > cold (0.36). Positive GL anomalies exhibited
distinct EWE contributions: drought (15.1%), wetness (27.7%), heat (25.4%), and cold
(19.2%), with CR values decreasing from wetness (0.42) to heat (0.38), drought (0.36), and
cold (0.35).
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3.3. Dependence of the Coincidence Rate on Regional Background Hydrothermal Conditions

In this section, we examine spatial patterns of CRs for four EWEs (Figure 7), revealing
distinct thermal dependencies. Extreme heat displayed a rising CR with higher growing
season temperatures, peaking (CR = 0.31) at 21 ◦C, while extreme cold events exhibited
declining CR trends despite fluctuations, inversely correlated with thermal gradients. A
similar pattern was found for extreme drought and extreme wet conditions. As precip-
itation levels increased, areas with higher annual average rainfall during the growing
season exhibited a progressive decline in the CR of extreme drought. A distinct stepwise
downward gradient was observed, with CR values remaining low in regions where annual
growing season precipitation exceeded 200 mm. For extreme wet conditions, a reverse trend
was evident. As precipitation levels increased, regions became increasingly influenced
by extreme wet events, leading to a gradual rise in CR values. A clear gradient shift was
observed, with regions experiencing more than 250 mm of annual precipitation during the
growing season, showing higher susceptibility to extreme wet conditions. In these areas,
CR values consistently exceeded 0.2, indicating a greater influence of extreme wet events
on vegetation phenology.

Similarly, we analyzed the dependence patterns of the coincidence rate (CR) for the
four types of extreme weather events on background hydrothermal conditions in relation
to positive GL anomalies (Figure 8). Notably, whether under a precipitation gradient or a
temperature gradient, the CR of extreme weather events exhibited distinct trend variations
in response to background hydrothermal conditions. However, these trends followed an
opposite pattern compared to those observed in negative GL anomalies. Specifically, under
the temperature gradient, extreme high-temperature events exhibited higher CR values
in regions with lower annual average temperatures during the growing season, reaching
a maximum of 0.3. In contrast, for extreme low-temperature events, CR values showed
strong fluctuations, similar to the pattern observed in negative GL anomalies. Along with
precipitation gradients, extreme drought CRs increased with higher annual precipitation
but remained lower in arid zones. Extreme wet conditions exhibited a reverse trend, with
CRs peaking in drier regions and declining in humid zones.
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In summary, the analysis reveals the distribution characteristics of CR values of GL
anomalies caused by extreme weather based on local background hydrothermal conditions
in the MP. The study found that when extreme high temperature or extreme wetness events
occur in areas with a higher annual mean temperature or higher precipitation during the
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growing season, the possibility of GL shortening is higher. Similarly, when extreme drought
events occur in areas with less precipitation, the possibility of GL shortening is higher. On
the contrary, in areas with a lower annual mean temperature or less precipitation during the
growing season, the possibility of GL lengthening is higher when extreme high temperature
or extreme wetness occurs.

3.4. Sensitivity of GL to Extreme Climate Events During the Growing Season

Vegetation GL sensitivity to EWEs displayed marked spatial heterogeneity across the
MP (Figure 9). Extreme cold events induced GL suppression (negative sensitivity) in 56.4%
of pixels, with the strongest reductions clustered in northwestern regions. Conversely,
extreme heat triggered a widespread GL enhancement (positive sensitivity), spatially mir-
roring cold-event impacts. Extreme wetness promoted GL in 42.5% of pixels, particularly
in the northeast, whereas drought caused GL shortening in 43.2% of areas, highlighting
water limitations on phenological duration. These results demonstrate region-specific vege-
tation responses to EWEs, with opposing event types (e.g., heat vs. cold, wet vs. drought)
generating contrasting GL anomalies within shared geographic contexts.
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The subsequent analysis demonstrates that the vegetation type-specific sensitivity to
EWEs aligns with regional hydrothermal gradient-driven CR variations (Figure 10). For
extreme low-temperature events, when growing season temperatures are below 12 ◦C,
extreme cold conditions have an abnormal suppressive effect on the vegetation growing
season length (GL), leading to GL shortening. However, as temperature increases, the
influence of extreme low-temperature events shifts from an inhibitory to a promotive
effect on GL extension. In contrast, for extreme high-temperature events, the sensitivity
of vegetation phenology exhibits a symmetrical distribution relative to that of extreme
low-temperature events. When growing season temperatures exceed 12 ◦C, extreme heat
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conditions promote GL extension, whereas at temperatures below 12 ◦C, GL is shortened by
extreme high temperatures. For extreme wet and extreme dry events, sensitivity patterns
follow the precipitation gradient. Extreme wet conditions exhibit an increasingly inhibitory
effect on GL as precipitation increases, whereas extreme drought conditions have the
opposite effect, progressively enhancing GL extension as precipitation levels decline.
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4. Discussion
4.1. Hydrothermal Modulation of Vegetation Thermal-Hydraulic Sensitivity

This study demonstrates that regional hydrothermal climatic conditions modulate
EWE-driven GL variations of grassland ecosystems across large geographical areas such as
the MP. Grassland GL sensitivity to extreme wet events was primarily controlled by local
hydrological regimes, whereas thermal extremes exerted temperature-dependent impacts
governed by baseline climatic conditions.

First and more obviously, the sensitivity of vegetation to extreme wet events is closely
related to local hydrological conditions. In humid regions, excessive water can inhibit
plant growth, leading to root oxygen deficiency and limited photosynthetic activity [48,49],
which may also lead to the accumulation of toxic substances such as alcohols and aldehydes,
further disrupting the normal physiological functions of plants [50]. In contrast, vegetation
in dry regions is susceptible to damage caused by drought [51]. This is because vegetation
in arid regions is more dependent on water availability during growth, and even short-term
water deficits can cause physiological damage to plants.

Secondly, in warmer regions, GL was more susceptible to damage from extreme heat,
whereas in colder regions, it was vulnerable to extreme cold. The SIF data showed higher
values in the warm, humid regions where heat extends the growing season, and lower
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values in the arid/cold regions where heat induces drought stress or exceeds thermal
tolerance (Figures 1 and 2). Plants in warmer regions are adapted to high temperatures, but
temperatures exceeding their heat tolerance thresholds reduces photosynthesis efficiency
significantly [52]. High temperatures cause damage to photosynthetic enzymes, partic-
ularly the Rubisco enzyme, reducing carbon fixation and inhibiting photosynthesis [53].
Extreme heat promotes SIF because plants experience saturation of nonphotochemical
quenching, causing a change in the allocation of energy dissipation pathways towards SIF
(15). Low temperatures cause plant cell walls and membranes to lose elasticity, and the
water inside the cells freezes, leading to structural damage and disrupting normal metabolic
functions [54]. Low temperatures also reduce the efficiency of photosynthesis, affecting
chloroplast function, particularly the efficiency of photochemical electron transport and
ATP synthesis, which limits plant growth [55].

4.2. Divergent Ecosystem Adaptations to Extreme Drought Under Uniform Precipitation

According to the land cover classes, forest ecosystems had greater drought resistance
than grasslands under equivalent precipitation conditions. This difference is closely related
to the morphological and physiological adaptations of vegetation [8,56]. Woody plants have
deep root systems, allowing for the effective utilization of deep soil moisture, while thick-
ened xylem conduits and leaf cuticles help reduce transpiration losses [57,58]. Particularly
in mixed forests, as species diversity increases, drought resistance also improves, which is
closely linked to the complementary water use strategies of different tree species [59]. In
contrast, root systems of herbaceous plants in grasslands are relatively shallow compared
to forests, making them more dependent on surface soil moisture, resulting in weaker
drought resistance [57,60].

The influence of temperature gradients on plant growth shows significant differenti-
ation. Compared to woody plants, herbaceous plants exhibit growth advantages in cold
environments. Studies have shown that the optimal photosynthetic temperature threshold
for herbaceous plants is lower than that of woody plants [61]. This adaptation is attributed
to their short life cycle characteristics, enabling them to maintain metabolic activity at low
temperatures by adjusting the concentration of osmotic regulators, such as proline [62,63].
Conversely, woody plants adapt to high temperatures by providing canopy shading, which
creates a microclimate and reduces under-canopy temperatures [64]. The increase in Ru-
bisco enzyme activity induced by high temperatures enhances photosynthetic efficiency,
allowing woody plants to better tolerate heat [65].

4.3. Methodological Contributions and Perspectives

This study has several limitations that warrant consideration. First, the effects of
human activities such as grazing intensity and land-use practices are important factors that
affect the vegetation phenology [66–69]. Overgrazing weakens the grassland’s buffering
capacity against extreme weather events by damaging vegetation cover and altering the
soil microbial community structure [70,71]. Su et al. investigated the effects of grazing
and vegetation type on community characteristics and ecosystem functions, indicating that
grazing reduces the cover, height, species richness, and aboveground biomass in meadow
and typical grasslands, but has little impact on desert grasslands [31]. Wang et al. (2023)
analyzed a grazing dataset from 114 counties on the Tibetan Plateau in conjunction with SIF
data to assess the impact of grazing intensity on vegetation phenology. Their study found
that the sensitivity of the SOS and EOS to grazing intensity decreased as grazing intensity
increased. Reducing grazing intensity enhanced soil moisture, resulting in an earlier SOS
under moderate grazing levels in spring [72]. Therefore, different grazing intensities have
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varying effects on plant phenology, which in turn influences the GL’s responses to extreme
climate events.

Secondly, this study primarily focused on the impacts of independent EWEs, neglect-
ing the combined effects of multiple EWEs. The impact of compound events on ecosystems
can be more severe than that of individual events. For instance, the co-occurrence of
drought and heatwave events exert a more significant and pronounced destructive effect
on natural ecosystems compared to isolated extreme heat or drought events [73]. Zhou
et al. (2024) assessed the impact of Compound Drought and Heatwave Events (CDHEs)
on vegetation across climate zones and ecosystems from 1993 to 2020. They found that
vegetation was most affected by CDHEs lasting 5 to 9 days, with an expanded geographical
extent and decreased lag time [74]. Future studies should prioritize examining the syner-
gistic impacts of compound extreme climatic events on GL, particularly under intensifying
global climate variability.

In addition to these limitations, our study also presents several conceptual and method-
ological innovations that address gaps in previous research. Most existing studies have
focused on phenological responses to long-term climatic trends or individual extreme
events, often treating them in isolation. In contrast, we employed event coincidence analy-
sis (ECA) in combination with SIF data to systematically quantify the probability of growing
season length (GL) anomalies, coinciding with distinct types of EWEs across hydrother-
mal gradients. Unlike traditional regression-based approaches, ECA captures short-term,
discrete responses, providing a novel event-based perspective on vegetation sensitivity. Fur-
thermore, while previous research has largely emphasized the effects of extreme drought
and heat, our findings reveal the unexpectedly large and spatially heterogeneous influence
of extreme wetness—both in shortening and extending the growing season, depending on
regional hydrological conditions. This highlights the complex and often underestimated
ecological role of moisture surplus in shaping ecosystem phenology. Finally, by applying a
z-score-based framework to define EWE thresholds from detrended meteorological time
series, our study offers a standardized and ecologically relevant method to detect climatic
extremes and assess vegetation responses. This directly addresses a methodological gap
highlighted by Walsh et al. (2020), who pointed out that existing observation and model-
ing approaches remain insufficient—particularly in high-latitude and arid regions, where
threshold definitions and ecological impact assessments are still scarce [9].

5. Conclusions
This study systematically investigated the response of growing season length (GL) to

extreme weather events (EWEs) on the Mongolian Plateau (MP) from 2000 to 2022, using
solar-induced fluorescence (SIF) data and event coincidence analysis (ECA). It is among
the very few studies to define EWEs for geo-environmental investigations statistically
based on long time series of ERA5 meteorological data through initial detrending extremity
threshold detection through z-score transformation. The coincidence analysis revealed that
83.7% of negative GL anomalies and 87.4% of positive anomalies coincided with at least
one type of EWE, emphasizing their dominant role. Extreme wetness contributed the most
to GL variations (27.0% of negative and 27.7% of positive anomalies), followed by extreme
heat (20.5% and 25.4%, respectively), highlighting the differential roles of moisture- and
temperature-related stressors across hydrothermal gradients in the MP.

The results further highlighted that negative GL anomalies were more strongly as-
sociated with EWEs than positive anomalies, with extreme heat and extreme wet events
significantly contributing to GL shortening in warmer and wetter regions, respectively.
Conversely, extreme cold and extreme drought events played a dominant role in drier and
colder regions, leading to varied GL responses. Additionally, we observed that hydrother-
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mal conditions modulate vegetation sensitivity, with warmer regions more susceptible to
heat stress and drier regions more vulnerable to drought impacts.

In addition to quantifying the dominant influence of EWEs on phenological vari-
ability, our study also contributes conceptually and methodologically by introducing a
standardized, event-based framework that improves the detection of short-term vegetation
responses to climatic extremes. These insights provide a valuable foundation for future
ecological modeling and risk assessment in arid and semi-arid regions. Future research
should further explore the compound effects of multiple extreme events and anthropogenic
influences, such as grazing and land-use change, to better understand the resilience and
vulnerability of ecosystems under intensified climate variability.
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