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Abstract: The aim of this study was to combine the FAO-56 dual approach and  
remotely-sensed data for mapping water use (ETc) in irrigated wheat crops of a semi-arid 
region. The method is based on the relationships established between Normalized 
Difference Vegetation Index (NDVI) and crop biophysical variables such as basal crop 
coefficient, cover fraction and soil evaporation. A time series of high spatial resolution 
SPOT and Landsat images acquired during the 2002/2003 agricultural season has been 
used to generate the profiles of NDVI in each pixel that have been related to crop 
biophysical parameters which were used in conjunction with FAO-56 dual source 
approach. The obtained results showed that the spatial distribution of seasonal ETc varied 
between 200 and 450 mm depending to sowing date and the development of the 
vegetation. The validation of spatial results showed that the ETc estimated by FAO-56 
corresponded well with actual ET measured by eddy covariance system over test sites of 
wheat, especially when soil evaporation and plant water stress are not encountered. 
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1. Introduction  

Estimates of land surface evapotranspiration (ET) using remote sensing data are essential in 
effective planning of irrigation water use in arid and semiarid regions. The Haouz plain that surrounds 
the city of Marrakech (Central Morocco) is classified among the regions in the country facing strong 
water shortages. This is mainly due the combined effect of persistent drought and the increase of water 
demands related to increases in irrigated surfaces, urbanization and tourism recreational projects. 
There is thus a crucial need to develop tools for better management of irrigation water use through 
accurate estimates of crop water requirement (ETc) at a regional scale. 

Over the last decades, several methods for estimating ET based on combination of crop modelling 
and remotely-sensed data have been developed. These methods ranged from simple ones such as the 
Vegetation Index/Temperature trapezoid [1], to complex land surface models [2]. However, due to low 
frequency of the required high resolution satellite data combined the intermittent presence of cloud 
makes these approaches of little interest for operational purposes [3]. 

The most common and practical approach used for estimating crop water requirement is the  
FAO-56 method [4]. For the operational monitoring of soil-plant water balance, the FAO-56 model is 
often preferred to complex soil-vegetation-atmosphere-transfer models. In the FAO-56 approach, ETc 
is estimated through the combination of a reference evapotranspiration (ET0) and crop coefficients. 
There are two different FAO-56 approaches: single and dual crop coefficients. In the single crop 
coefficient approach, the plant transpiration and soil evaporation are combined into a single crop 
coefficient (Kc). The dual crop coefficient approach uses two coefficients to separate the respective 
contribution of plant transpiration (Kcb) and soil evaporation (Ke). 

Remotely sensed spectral reflectance may provide an indirect estimate of crop coefficient or basal 
crop coefficients. Indeed, several authors have shown similarity between the seasonal patterns of 
vegetation indices and transpiration over annual crops [5-12]. Consequently, Kc can be estimated from 
spectral vegetation indices since both of them are related to leaf area index and fractional ground  
cover [13-15]. In this context, several relationships between Kc and vegetation indices have been 
established. However, there is no agreement on the nature and generality of these relationships [16]. 
Some studies [6-8,11,14,17] have shown that these relationships are linear, but others have found non 
linearity relationships [9,10,12,16]. Therefore, establishing a unique relationship between crop 
coefficient and spectral vegetation indices is an ongoing research topic. 

In this study, we focused on the FAO-56 dual crop coefficient model to derive ETc maps from 
remote sensing data through the use of relationships between the Normalized Difference Vegetation 
Index (NDVI) and crop biophysical variables such as basal crop coefficient, cover fraction. The 
objective is to incorporate these relationships into the FAO-56 dual crop coefficient model to derive 
seasonal variation of evapotranspiration maps. This approach has been previously evaluated at a local 
scale using local field measurements [12]. Here, our aim is to extend the approach to larger scale using 



Remote Sens. 2010, 2                            
 

 

377

NDVI data derived from SPOT and Landsat images during the 2002/2003 agricultural season. The 
approach is implemented over an irrigated district located in the Haouz plain, 40 km East of 
Marrakech (Central Morocco), as part of the SudMed project [18].  

2. Materials and Methods 

2.1. Study Area 

The region of interest is an irrigated area located in the Haouz plain in the centre of the Tensift 
basin (Central Morocco), 40 km east of Marrakech city. The climate is of semi arid Mediterranean type 
with an average annual precipitation of about 250 mm of which 70 % falls during winter and spring. 
The soil type is clay to loam. The area covers about 2,800 ha and is mostly flat. The main land cover 
classes are cereals; mostly wheat, then barley (Figure 1). The distribution of dam irrigation water is 
organized by a regional public agency (ORMVAH) together with the local farmer associations. For 
wheat crops during the 2002–2003 seasons, three irrigation rounds were decided on, with an amount of 
around 30 mm in equivalent water depth each time. Field 1 was irrigated six times using ground water. 
More details about the site description and experimental data are given in [11,12]. 

Figure 1. Land cover (coloured shapes) and location of three wheat fields (delimited with 
white rectangles) under study during 2002–2003 agricultural season in the Tensift AL 
Haouz, Marrakech, Morocco. The towers equipped with evapotranspiration measurement 
systems (black disks) are located in each field.  
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2.2. Data Description 

Meteorological measurements were recorded within the irrigated area using an automated weather 
station consisting of measurements of solar radiation, air temperature and humidity, wind speed, net 
radiation and rainfall. Daily averaged values of climatic data were calculated in order to compute the 
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daily reference evapotranspiration ET0 (mm/day), according to the FAO-56 Penman-Monteith 
parameterization [4]. Three eddy-covariance systems were also installed over three fields of wheat to 
provide continuous measurements of evapotranspiration flux (Figure 1). These data were used to 
validate spatial ET estimates zooming on each of these fields. Detail on the climatic and flux 
measurements can be found in [12]. 

In addition of climatic and flux measurements, a time series of 20 high spatial resolution images 
acquired by Landsat and SPOT was collected during the growing season of wheat. Due to cloudiness 
or uncertainty in atmospheric corrections, only 10 images have been used in this study. These images 
were radiometrically calibrated and atmospherically corrected based on the reflectance of an invariant 
objects and transformed to NDVI maps [19]. The NDVI was derived from red and near infrared 
reflectances bands after resampling of the time series of images at 20 m. The geometric correction of 
satellite images was performed using the Ground Control Points collected during the experiment. The 
radiometric correction was achieved in three steps. Firstly, we corrected a “reference” image from 
atmospheric effects using the SMAC correction algorithm [20] and standard values of atmospheric 
components. Secondly, the radiometry of each image were homogenised against this reference images 
thanks to a set of reliable invariant features [21]. This normalisation was performed by applying linear 
relationships which were established on these invariants between the digital numbers of raw images 
and the reflectance values of the reference image. Thirdly, an additional linear correction has been 
applied between the satellite NDVI values and the NDVI ground measurements collected using the 
hand-held Cropscan MultiSpectral Radiometer [12]. This inter-calibration ensures a maximal 
agreement between satellite and surface NDVI values. 

2.3. Model Description 

The model used in this study is the FAO-56 dual crop coefficient developed by [4]. This model 
describes the relationship between the crop evapotranspiration under standard non-stressed conditions 
(ETc) and reference evapotranspiration (ET0) by separating crop coefficient (Kc) into the basal crop 
coefficient (Kcb) and soil water evaporation (Ke) coefficients: 

ETc = (Kcb + Ke) * ET0   (1) 

where ET0 is calculated at daily time step by the FAO Penman-Monteith equation (Equation 6 in  
FAO-56 paper). In order to integrate the remote sensing data into FAO model, the others parameters 
(Kcb and Ke) for the equation 1 were derived from NDVI by equations 2 and 3, respectively. More 
details about these equations are available in [12]. The local calibration performed in [12] was also 
retained here, the only difference being the source of the NDVI data (satellite or hand-held 
radiometer). Thus there is no contradiction to state that local calibration is necessary and to find that 
the same method driven by satellite data is accurate: 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

−=
54.0
84.0

minmax

max1*07.1
NDVINDVI

NDVINDVIKcb   (2) 

 



Remote Sens. 2010, 2                            
 

 

379

( )ce fK −= 1*25.0     (3) 

where NDVImin and NDVImax are the minimum and the maximum values of NDVI associated with bare 
soil and dense vegetation, respectively. The values 0.14 and 0.93 are used in this study. fc is the 
vegetation fraction cover given by [12]:  

)(*18.1 minNDVINDVIfc −=     (4) 

Equation 2 presents the general form of the equation for deriving Kcb from vegetation indices as 
shown by [15,16]. An empirical function between Kcb and NDVI, consisting of two regressions, has 
been found by [9] for cotton crops. Other authors [6,14,17,22] have found linear Kcb-VI relationships. 

For Equation 3, it is a simple formalism to account for the fact that soil evaporation occurs 
predominantly from the exposed soil. Soil evaporation coefficient (Ke) is clearly correlated with (1-fc). 
This equation showed that Ke decreases with the development of crop (increase of fraction of ground 
cover, fc) and becomes negligible when the crop is well developed and completely covers the  
soil (fc = 1). The relation between Ke and (1-fc) is also modulated with the value 0.25. The value 0.25 
was determined according to the figure 29 in the FAO-56 book [4] based on the observed frequency of 
water supply (≈10 days) and the average value of ET0 (4 mm/day) during the growing season. 

3. Results and Discussion 

Before applying the FAO dual approach in each pixel, we masked the images to keep only wheat 
fields. A binary mask (wheat) was built from the land cover map [11], and was superimposed on 
surface NDVI images to keep only wheat pixels. After masking the wheat planting, we used an 
unsupervised classification method (K-means, [23]) to regroup the pixels which have similar NDVI 
profiles. 50 different classes were extracted (Figure 2). The principle of K-means is summarized  
in the Appendix.  

Figure 2. Profiles of NDVI corresponding to 50 classes of winter wheat identified by K-
means classification. A cubic interpolation method was used to determine the values of 
NDVI between two satellite overpass. 
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The inter-class variability is due to the differences in agricultural practices (sowing date, irrigation, 
fertilization…). Plant sowing dates were computed based on the time profiles of NDVI (Figure 3). The 
sowing date is determined based on the vegetation fraction cover (fc) derived from NDVI through 
Equation 4. Sowing dates are determined from emergence dates (identified using a fc = 0.1 criteria) by 
subtracting 13 days for early sown crops and 20 days for late sown crops. The values (13 days  
and 20 days) were determined based on the observations in some cultivated fields. The time lag 
between sowing and emergence is larger for late sown crops because lower temperatures were 
experienced at this time of year. It can be seen in Figure 3 that there is a large spatial variability in 
sowing dates, with two distinct periods: early (before December 15) and late (after January 15). This 
was found consistent with field observations of sowing dates.   

Figure 3. Map of sowing date of winter wheat. The value 1 corresponds to November 7th 
2002. Note that the sowing date was calculated by subtracting 13 days for early sown crops 
and 20 days for late sown crops from the date corresponding to cf  = 0.1. 
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After, we derived the map of the seasonal ETc (mm) of winter wheat by cumulating daily values of 

ETc between sowing and full senescence stages (Figure 4). Daily crop water requirement (ETc) was 
calculated by multiplying daily Kc of daily ET0 (Equation 1). As mentioned above, Kc was derived 
through the relationships between Kcb and NDVI (Equation 2), and between Ke and NDVI  
(Equation 3). In addition, a cubic interpolation was used to determine the values of NDVI between two 
satellite overpass. Figure 4 shows that the values of seasonal ETc varied between 200 and 450 mm, 
with an average value of 330 mm. The observed variability of ETc can be mainly explained by two 
major factors. The first one is the length of crop cycle, due to differences in sowing dates. This is well 
captured using spectral vegetation index. The cycle is very short for the late sowing classes and larger 
for early sowing ones. As it can be seen in Figure 2, the amplitude of NDVI (or Kc) is lower for the 
late sowing classes (<0.5) and higher for early sowing classes (>0.8). This result is in agreement with 
other studies [24,25]. The second factor is cropping practices i.e., irrigation, application or not of 
nutrients, wheat variety. Globally, the obtained values of ETc are also in accordance with others 
studies [26,27], which found that the ETc of wheat cultivated in Morocco is around 480 mm depending 
to the wheat variety and sowing date. The obtained results reveal the potential of remote sensing data 
to estimate crop water requirements (ETc) on an operational basis and consumption at a regional scale.  
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Figure 4. Map of seasonal crop water requirement ETc (in mm) of winter wheat obtained 
by applying the FAO-56 dual approach. 
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To assess the performance of the FAO-56 model, we compared ETc calculated by this approach 

with the measured ET over three fields of wheat (Figure 5a). According to this figure, it is safe to state 
that the FAO-56 correctly simulates ETc using remote sensing data. The corresponding Root Mean 
Square Error (RMSE) was about 0.88 mm per day can be considered acceptable regarding to the 
average values of ETc (about 3.6 mm per day). The coefficient of determination (R2) is around 0.5, the 
efficiency (E) is around 0.4 and the slope is close to 1.  

However Figure 5a shows that some discrepancies between observed and simulated ET occurred 
under specific conditions. To identify the reasons of these discrepancies, we analysed soil moisture 
data collected in these fields [12]. According to soil moisture data, the model seems to over-estimate 
ET when the plant is stressed and under-estimate ET when the soil fully evaporates. This is because 
the FAO model simulates the evapotranspiration under no limiting water supply and with an average 
value for soil evaporation (0.25) while the measurements are for actual conditions (presence of the 
stress). The approximation of Ke is not satisfactory for spatial monitoring. It may vary greatly 
regarding the large heterogeneity in the water supply in terms of amount and periods of distribution.  

In order to quantify the gain due to the driving of Kc by NDVI, the comparison between (ET0, i.e., 
Kc = 1) and actual ET measured at three fields of wheat using eddy covariance system has been made 
(Figure 5b). According to this comparison, measured ET appeared evidently overestimated and there is 
no clear relationship between the two variables. The coefficient of determination R2 is equal to 0.02, 
showing that the two variables are not linearly related. The corresponding RMSE (1.9 mm) and the 
efficiency (E = −1.77) are also not acceptable.  

In order to test the accuracy of our approach, we compared the ETc provided by this model under 
standard conditions with the measurements for wheat field 1. This field was monitored during the 
period of maturity (high vegetation recovering, thus reduced soil evaporation) and was irrigated six 
times to prevent plant water stress. In this case, there is a close agreement between simulated and 
measured ETc (Figure 6a); the coefficient of determination and the efficiency are larger than 0.85 and 
the RMSE is around 0.40 mm per day. 
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Figure 5. Scatter plot between daily estimated evapotranspiration (ETc) by the FAO-56 
dual approach (Figure 5a), reference ET0 (Figure 5b), and measured actual (ET) by Eddy 
covariance technique over three fields of wheat in the Tensift basin (center of Morocco). 
The graph includes the 1:1 line. 

0

2

4

6

8

0 2 4 6 8
ET in situ_ Eddy covariance,( mm/day)

Es
tim

at
ed

 E
Tc

, (
m

m
/d

ay
)

1:1Y = 0.85x+0.67; R2 = 0.56
RMSE=0.88 mm; E=0.38

stress

soil evaporation

a)

 

0

2

4

6

8

0 2 4 6 8
ET in situ_ Eddy covariance,( mm/day)

 E
T 0

, (
m

m
/d

ay
)

1:1

Y = 0.1691x+3.76; R2 = 0.02
RMSE=1.86 mm; E=-1.77

b)

 

Knowing that the Kc values of the mature wheat under standard non-stressed conditions are close  
to 1 [4], it is of interest to check this and to quantify also the contribution of Kc in calculating crop 
evapotarnspiration (ETc). For this purpose, we plotted (ET0, i.e., Kc = 1) against actual ET measured 
over field 1 under standard conditions (Figure 6b). This comparison revealed practically perfect 
agreement almost similarly to figure 6a (R2 = 0.84, with E = 0.80 and RMSE = 0.48 mm) between the 
two variables, justifying that the contribution of Kc was minimal since the crop is mature and moisture 
is unlimited. This is in agreement with other studies (e.g., [10,12]) when they found that the Kc derived 
from NDVI was quasi-equal to 1 for the mature wheat developed under standards conditions. The 
difference is the source of NDVI data; the ground remotely-sensed measurements have been used for 
deriving Kc instead of satellite remote sensing data used in this study.  
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Figure 6. Same as Figure 5, but for one field (field 1) of mature wheat under standard 
conditions (no stress) and the soil evaporation was negligible. 
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Based on the calculation of ETc, the amount of irrigation needed for the wheat was derived as the 

difference between ETc and precipitation. The spatial and temporal distributed of irrigation needs was 
presented in Figure 7. Temporally, the irrigation amount appears the largest in March and April when 
it is the peak period of winter wheat development and the reference evapotranspiration begins to be 
large. It is the smallest in December and May, when winter wheat was in the initial and senescence 
stages. The obtained cumulative amount of irrigation needs during the whole growing season varied 
between 50 and 220 mm, depending of sowing date. This value is centered on (about 135 mm) the 
amount which has been supplied during this agricultural season by the regional office which is in 
charge of the distribution of dam water for irrigation. Maps of irrigations could be used by farmers to 
assist in water management and irrigation scheduling potentially saving water and improving yield. 
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Figure 7. Spatial and temporal distribution of irrigation amount (mm) of winter wheat in 
the Tensift ALHaouz basin during 2002–2003 growing season. 
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4. Conclusions and Perspectives 

This study showed that how remote sensing data can be integrated in FAO dual approach for 
mapping water use (ETc) of wheat crop in semi arid region. The method consists of linking the main 
crop biophysical parameters (basal crop coefficient, cover fraction) to the Normalized Difference 
Vegetation Index (NDVI). The results showed that remote sensing estimates of ETc compare very 
satisfactorily with ground measurements, especially when the soil evaporation and plant water stress 
are negligible. The RMSE between measured and estimated ET was about 0.40 mm per day.  

For actual estimates of ET, developments should be done to get information about plant water 
stress. Additional information such as surface temperature (which is the most indicator of the stress) 
from TIR sensors can be very useful. In the near future we apply spatially an innovative approach 
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tested at local scale by [28]. It consists of assimilating daily ET from TIR data combined to an energy 
balance model into FAO approach. Finally, it should be noted that our approach was tested only for the 
wheat crop. The method should be tested over an extended spatially distributed dataset with  
different crops.  
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Appendix: K-means Method 

An unsupervised classification method (K-means, [23]) has been used to regroup the pixels which 
have similar NDVI profiles. The principle of K-means is summarized in the following steps:  

Step 1: choose randomly k centers of classes  
Step 2: Assign to k centers each object to the group that has the closest centroid. 
Step 3: Recalculate the positions of the centroids. 
Step 4: If the positions of the centroids didn't change go to the next step, else go to Step 2. 
Step 5: End. 

In order to find good groups, the distance intra groups (intra) must be minimized, and the distance 
inter groups (inter) must be maximized. 

 

where N: Number of elements; Zi: Centre of group i. 
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