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Abstract: During 1996–2006 the Ministry of Agriculture and Forestry in Finland, MTT 
Agrifood Research Finland and the Finnish Geodetic Institute carried out a joint remote 
sensing satellite research project. It evaluated the applicability of composite multispectral 
SAR and optical satellite data for cereal yield estimations in the annual crop inventory 
program. Three Vegetation Indices models (VGI, Infrared polynomial, NDVI and Composite 
multispectral SAR and NDVI) were validated to estimate cereal yield levels using solely 
optical and SAR satellite data (Composite Minimum Dataset). The average R2 for cereal yield 
(yb) was 0.627. The averaged composite SAR modeled grain yield level was 3,750 kg/ha 
(RMSE = 10.3%, 387 kg/ha) for high latitude spring cereals (4,018 kg/ha for spring wheat, 
4,037 kg/ha for barley and 3,151 kg/ha for oats). 

Keywords: Composite multispectral modeling; SAR; classification; SatPhenClass algorithm; 
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1. Introduction 

Remote sensing has been extensively applied in world crop production estimations by the European  
Union, the United States of America  and the Food and Agriculture Organization  (FAO) of the United 
Nations. The advantage of applying satellite based remote sensing data is global coverage  and equally 
calibrated  data, which enables temporal  and spatial comparison over the years in monitoring  areas.  

New precision farming techniques in agriculture can be used more accurately to assess crop growth 
and soil conditions during growing seasons [1-5]. New high accuracy GPS satellites used for position 
control, e.g., the new EU-funded GALILEO system [6], and new hyperspectral spectrometers 
operating over a wide range of wavelengths (λ = 400–2,400 nm) provide new possibilities and tools 
for cereal cultivation [1,7-9]. Major climatic events, such as global drought periods during the 
forthcoming climate change can be monitored with new generation satellites of the enhanced spectral 
resolution [10,11] . The Joint Research Centre of EU has applied JRC-FAPAR  index (Fraction of 
Absorbed Photosynthetically Active Radiation) for monitoring large area vegetation stress states and 
biomass productivity during Pan-European drought periods  [12-17]. In addition, JRC-FAPAR  model 
with Radiative Transfer models  (RT) and using SeaWiFS data from the OrbView-2 (AKA SeaStar) 
satellite has bee applied to identify key vegetation phenology events (start, end, length) during 
growing season.  

Recently Harrison et al. [18] used the AFRCWHEAT2 crop model for scaling-up wheat 
phenological development in Europe. Moulin et al. [19] applied SPOT satellite data to validate the 
AFRCWHEAT2 and SAIL reflectance models to estimate wheat yield and biomass NPP (Net  
Primary Production).  

In northern latitudes  the cloudiness  during the growing season  seriously reduces the applicability 
of optical  spectrum satellite data . However, new generation microwave  based satellite systems  (e.g., 
COSMO-SkyMed/Italy, ENVISAT/ESA/EU, ALOS/PALSAR, Radarsat-2 /Canada, TerraSAR-X/ 
Germany can map  images  through cloud  coverage  and during the night-time. The Japanese ADEOS 
II (Miradori II) and GOSAT/IBUKI (Greenhouse gases Observing SATellite)  satellites can also 
measure atmospheric aerosol columns, vertical greenhouse gas profiles (CO2, CH4, NO2, N2O, O3, CFC-
11, CFC-12) and water vapour . Global greenhouse gas estimates can be used in large area climate 
change studies to assess changes in biomass NPP production and cereal yield production [19, 20]. 
Recently multispectral remote sensing studies have focused on integrating both optical and microwave 
SAR data [1,21]. Recently McNairn et al. [1] integrated multispectral classification techniques with 
SAR and optical data in Canada. Cereal, grass and oil crop fields in four prairie testing sites were 
classified with Neural Network and Decision trees methodologies. 

In Finland Kuittinen [22], Kuittinen et al. [23] and Karvonen et al. [24] have reviewed the yield 
estimation of spring wheat and barley (Hordeum vulgare L.) combined with Landsat and SPOT data 
for Nordic high latitude agricultural regions. Yara Co. (formerly Kemira GrowHow Finland) [25] has 
established in Finland a commercial Kemira Loris™ (LOcal Resource Information System) integrated 
expert system for farmers. Loris utilizes GPS based precision farming techniques with optimum 
fertilization and cultivation practises combined with infrared aerial photographs.  

During 1996–2006 the Ministry of Agriculture and Forestry in Finland (MAFF), MTT Agrifood 
Research Finland (MTT), the Finnish Geodetic Institute (FGI) and the Technical Research Centre of 
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Finland (VTT, Dept. of Space Research) performed a joint remote sensing satellite research project 
combined with ground truth measurements to evaluate the applicability of multispectral SAR and 
optical satellite data for cereal yield estimations in the annual crop inventory program. Both optical 
and composite SAR microwave Vegetation Indices models were validated to estimate spring cereal 
yield levels using solely optical and SAR satellite data (Composite Minimum Dataset). 

In summary, new composite multispectral optical and SAR classification and modeling techniques 
provide new integrated tools for cereal yield estimations in national inventory programs [1,17,26-28]. 
In Finland the Ministry of Agriculture and Forestry performs the annual ground based crop inventory 
sampling to estimate cereal yield production and cultivation areas on national level. New classification 
and modeling techniques integrated with digitized Finnish Land Parcel Identification System (FLPIS) 
and Integrated Administration and Control System (IACS) can be used to support Finnish national crop 
inventory programs [29,30]. More accurate cereal inventory estimates will also support Finnish 
national CAP-policy (Common Agricultural Policy) goals and objectives on EU scale. These aspects 
are reviewed in Part II of this publication. 

The aim of the present study  was to estimate actual non-potential grain yield levels for high 
latitude spring cereals  (spring wheat, barley and oats, Avena Sativa L.) in large area field conditions in 
southern Finland. The cereal theoretical maximum yielding capacity is limited by environmental and 
vegetation stresses (e.g., drought periods, nutrient deficiencies, pathogen epidemics) during growing 
season in actual field growing conditions. These stress factors result to reduced non-potential baseline 
yield levels (yb, kg/ha) on field parcel level.  

The objectives  of the present study  were: (i) to construct a dynamic SatPhenClass phenological 
classification model, which classifies both optical and SAR satellite data based on cereal actual 
phenological development in both vegetative and generative phases (ii) to calibrate and validate 
multispectral Composite Vegetation Indices (VGI) models,  which integrate both phenologically pre-
classified optical (Models I–II) and microwave SAR data (Composite SAR and NDVI Model III), and 
finally (iii) VGI models were used to estimate cereal non-potential baseline yield  (yb) levels in 
growing zones (I–IV) in southern Finland during 1996–2006.  

2. Methodology and Study Area  

2.1. System Analysis and Strategy 

The research applied in this study focused on utilizing multispectral optical and microwave SAR 
data extracted from experimental sites in southern Finland. A dynamic SatPhenClass phenological 
algorithm was developed to classify measured satellite data based on phenological development of 
different spring cereals. The pre-classified SAR and optical satellite data were used as input for VGI 
models. The system analysis [31,32] of this study is depicted in Figure 1.  
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Figure 1. System Analysis and design diagram by satellite systems and VGI models [31,38].  

 



Remote Sens. 2010, 2              
 

 

80

 
 

The analysis strategy applied in this study is depicted in phases I–XI. Phases I–II (Section 2.2) 
illustrate satellite and ground truth data pool consisting of solely SAR and optical satellite data 
(Composite SAR and Optical Minimum Datasets 1996–2006). Correspondingly phase III (Section 2.4) 
explains geometric and radiometric calibration of SAR and optical data. Phases IV–V (Sections 2.3.1, 
3.2.1) illustrate SatPhenClass phenological classification model and LAI and ETS ground truth 
sampling methodology. Phases VI–VII (Sections 2.3.2, 3.2.2) explain calibration of VGI models using 
Minimum Datasets without extensive agrometeorological ground truth data required by conventional 
dynamic crop models [33-36]. Phases VIII–IX (Sections 2.5, 3.3) explain the validation of VGI 
models. Phases X–XI(a,b) (Sections 3.2, 3.3) explain the estimation of baseline grain yield levels (yb) 
for different spring cereals resulting outputs for SAR & NDVI models (Phase XI(a), Part I) and for 
detailed optical VGI models (Phase XI(b), Part II). 

In addition, Phase XI(c) scheme presents an alternative cereal specific LAI-bridge coupling  
system [23] reviewed in Part II. LAI-bridge coupling system utilizes optical satellite data as input data 
for dynamic crop models. Hodges [33] and Bowen [36] have reviewed the principles of dynamic crop 
models explaining phenological development and crop physiological processes (root and soil systems, 
photosynthesis, respiration and translocation of assimilates to heads). Dynamic crop models require 
extensive agrometeorological and phenological ground truth data for daily integration of biomass and 
yield accumulation [34,35]. 

In LAI-bridge coupling system, the GEMI-index (Global Environment Monitoring Index, [37]) is 
applied to estimate cereal LAI development (LAIsatellite) from optical reflectance data during growing 
season. A similar model, VGI GEMI (model IV) is used in this study in Part II. The LAI-bridge 
coupling method applies iterative Kalman filter (KF) algorithm [38] commonly applied in System 
Control theory, Markov chains and Bayesian estimations. The GEMI based LAI estimates (LAISatellite) 
and LAI values estimated by crop models (LAICropModel) are corrected in Kalman filter iterations with 
LAISatellite and LAICropModel variances to obtain optimized LAI (Final) values for non-potential baseline 
yield (yb) calculations. LAI-bridge coupling method was originally developed by Karvonen et al. [24] 
using SPOT and Landsat data as input for PotCropF [24] dynamic crop model used in Finnish cereal 
yield estimations. Later on, Kuittinen et al. [23] applied LAI-bridge coupling system with GEMI index 
by using SPOT and NOAA optical data as input for CropWatN [39] and WOFOST [40] crop models. 

In this study (Part I) three Vegetation Indices (VGI)  models  were calibrated and validated with 
optical (NDVI) and microwave SAR satellite and ground truth  (1996–2006) data. The satellite data 
were measured in five different experimental locations in southern Finland (Table 1, Figure 2). The 
detailed analysis strategy (Figure 1, Figure 3a,b) consisted of following specific procedures:  

(a) Pre-classification of SAR and optical data with the SatPhenClass phenological classification 
algorithm for spring cereals (Figure 3a, b). The SatPhenClass algorithm exploits BBCH [41,42] and 
Zadoks [43] growth scales (Table 2) with four phenological classes for spring cereals (ap: BBCH 0–12, 
bp: BBCH 12–50, cp: BBCH 50–90, dp: BBCH > 90). Class ap corresponds to development period 
between sowing and two leaf stage with double ridge formation. Class bp corresponds to period 
between two leaf stage and ear emergence with maximum Leaf Area Index (LAImax) exposure with 
fully closed canopy. Class cp corresponds to period between ear emergence and anthesis with grain 
filling until full maturity. Finally, class dp corresponds to senescence and post-harvest phases. 
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(b) Calibration  of Composite Vegetation Indices (VGI)   models  (models I–III in Part I, models 
IV–V in Part II) with pre-classified C-band SAR and optical data. Both linear and non-linear 
polynomial response functions in VGI models were applied for cereal baseline yield (yb) estimations. 

(c) Validation  of each calibrated VGI   model  using two independent data sources separately:  
(i) the MTT Agrifood Research  Finland  official variety trial data  (1996–2006) and (ii) the MAFF  
(Ministry of Agriculture and Forestry in Finland) annual crop yield  inventory data  (1996–2006). 
MTT and MAFF validation datasets take into account temporal  and spatial variation  between years 
and locations. 

(d) Estimating non-potential baseline grain yield  levels (yb) for different spring cereals in actual 
field growing conditions in Southern Finland with calibrated VGI models and optical and SAR data. 

Table 1. Sensors, datasets, growing zones, locations and soil classification [44]. 

Sensor 
Type (1) 

Publ. 
part 

Data 
set 

Growing
Zone (2) 

MAFF 
Agriculture 
Advisory  
Centre  
(Figures 2 
and 4) 

Location 
(Figure 2) 

Coarse soils (%) Clay soils (%) 

Organic 
& mould 
(%) 

Gravel 
with  
coarse 
sand  

Fine 
sand 
 

Coarse 
sand 
 

Silt 
 

Sandy 
clay 
 

Silt 
clay 
 

Gyttja 
clay 3) 
 

SAR & 

Optical 

 

I/II 1.1 III (IV) Etelä-

Pohjanmaa 

Lapua  

23° 10' E,  

62° 50' N  

 11.2 19.8  23.5    

I/II 1.2 III (IV) Etelä- 

Pohjanmaa 

Seinäjoki 

23° 10' E,  

62° 50' N 

 15.5 10.1  20.5   25.3 

I/II 1.3 III (IV) Etelä- 

Pohjanmaa 

Ilmajoki  

23° 10' E,  

62° 50' N 

 13.2 12.0 3.9 21.4    

I/II 2.1 I Nylands  

Svenska  

Porvoo  

25° 50' E,  

60° 50' N  

6.2 17.8 8.5    38.0 10.9 

Optical 

 

II 3.1 I Nylands  

Svenska 

Kirkkonummi  

24° 30'E, 60° 

10’N  

 9.4   27.5 8.5 41.4 5.4 

 II 3.2 II Häme Jokioinen  

23° 50' E,  

60° 50' N  

(Kuuma  

Exp. Area)  

    56.0 7.0 15.1 7.7 

(70–80) 

II 3.3 II Häme Mellilä  

22° 20'E,  

60° 50' N  

7.4 8.3 13.2  28.6  36.0  

(e) (1) For abbreviations refer to Table 7, Appendix B. (2) Growing zones (I–IV) are depicted in Figure 4a. (3) Gyttja 

clay contains peat and mud fractions. 
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Figure 2. Satellite and ground truth measurement locations in Finland  (Original Data (C) 
NASA, visibleearth.nasa.gov/). 

 

2.2. Overview of Satellite and Ground Truth Sites 

A general overview of satellite and ground truth experimental sites is displayed in Figure 2. A 
detailed description of the experimental sites is given by Kuittinen  et al. [23]. Table 1 depicts the 
microwave SAR and optical data sources with publication division (I–II), growing zones and 
Agriculture Advisory Centres in Finland. A general scheme of the measuring satellite systems and 
calibration parameters used in this study is displayed in Tables 12 and 13 (Appendix C). The 
abbreviations applied in this study are given in Table 7 (Appendix B). 

The satellite measurement and ground truth experiment sites (Lapua, Kirkkonummi , Jokioinen , 
Mellilä  and Porvoo) with corresponding soil classifications [44] are depicted in Table 1 and Table 9 
(Appendix B). The Lapua experimental site, consisting of Lapua , Ilmajoki and Seinäjoki experimental 
sites (Figure 2), was located near the Gulf of Bothnia on sandy clay type soils. Respectively Porvoo 
and Kirkkonummi experimental sites were located close to the Baltic Sea with humid marine climatic 
conditions. Jokioinen and Mellilä sites were located on inland plateaus with mainly clay type soils.  

2.3. Calibration 

2.3.1. Phenological classification algorithm (SatPhenClass) for satellite data  
 

The calibrated optical reflectance and microwave SAR backscattering data (Tables 11–13, 
Appendix B.) measured from different satellite systems was classified with a phenological 
classification algorithm (SatPhenClass) for spring cereals. The detailed SatPhenClass classification 
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model and VGI models applied in Parts I and II (detailed optical) are depicted in Figure 3a,b. The 
SatPhenClass classified satellite data were used in calibration of the VGI yield models (Figure 1). 
Figure 3a depicts the simplified ’Black Box’ diagram and Figure 3b depicts corresponding components 
on system analysis level. The pseudocode for the SatPhenClass-algorithm is presented in Appendix D. 

Figure 3. (a) Simplified Black Box diagram for SatPhenClass satellite data classification 
and VGI models. (b) Satellite data classification diagram for spring cereals, ETS with 
modifications after Kontturi and Mukula & Rantanen [45,46]. 
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The radiometric and geometric corrected surface reflectance (rf) and backscattering (σ 0) data were 
used as input data for the dynamic SatPhenClass classification model using Julian date (DOY) as a 
driving variable. Figure 3a,b depict SatPhenClass-model diagram for spring cereal (wheat, barley and 
oats) classification using optical and microwave satellite data. 

2.3.1.1. SatPhenClass Classification Categories  

SatPhenClass algorithm yields four classification classes (ap, bp cp dp, Table 2) based on spring 
cereal DVS (Development stage) and corresponding satellite measurement Julian date [39,45]. The 
SatPhenClass classification model developed in this project utilizes BBCH numerical growth  
scale [41,42]. In addition, Zadoks, Feekes and Haun growth scales were used as scaling  
references [43,47]. The SatPhenClass model contains four BBCH threshold values for phenological 
classification: 0, 12, 50, and 90 (Figure 3b, phases VII–X, [43]).  

Table 2. SatPhenClass Effective classifiers: Effective temperature sum (ETS) and LAImax 
values for high latitude cereals on growing zones I–IV [23,45]. 

Development period [35,50,51] 

BBCH  
DVS 
Class 
(Range) (1) 

Estimated mean 
Julian DOY 
 (JDay ) (2)  

ETS(Tb) minimum 
requirements (dd) in  
cultivation zones I–IV (3)  

Observed 
LAImax 

(Li-Cor 2000) 
X ± sd 

Sowing-two-leaf &  
double ridge stages  

ap  

(0–12) 
165, 175 Swh Tb 5°: 130 (e)–140 (l) 

Brl Tb 5°: 130 (e)–140 (l) 
Oats Tb 5°: 130 (e)–140 (l) 
 

Swh 2.12 ± 0.46 
Brl 1.85 ± 0.89 
Oats 1.54 ±0.65 

Two leaf-ear emergence,  
LAImax exposure with fully 
closed canopy structures 

bp 

(12–50) 
225 480 (Tb 4°) 

Swh Tb 5°: 450 (e)–460 (l) 
Brl Tb 5°: 800 (e)–950 (l) 
Oats Tb 5°: 370 (e)–400 (l) 
 

Swh 4.27 ± 0.84 
Brl 4.05 ± 0.58 
Oats 3.44 ± 0.78 

Ear emergence, anthesis-
maturity, grain filling 

cp 

(50–90) 
255 399 (Tb 8°) 

 
Swh 3.87 ± 0.24 
Brl 3.24 ± 0.87 
Oats 2.14 ± 0.25 

Senescence, post-harvest  
phase 
 

dp 

(>90) 
> 255   

Sowing-maturity ap , bp, cp 165–255 1050 ± 30, Tb 5° 
Swh Tb 5°: 970 (e)–1040 (l) 
Brl Tb 5°: 800 (e)–950 (l) 
Oats Tb 5°: 900 (e)–990 (l) 

 

(1) BBCH phenological development scale (Figure 3a, b) [41-43] (2) Mean values for JDayETS and JDayLAI (Figure 3b, sections 
IV–V) (3) Tb [°C] threshold baseline temperature (e)—Finnish early cultivars, (l)—Finnish late cultivars. 

In class ap (Figure 3b, phase VII), when the BBCH value is below 12, the cereal plant is in 
vegetative phase between germination, two-leaf and double ridge stages.  

In class bp (Figure 3b, phase VIII), the BBCH value is between 12 and 50. When BBCH value is 
between 12 and 40, the cereal leaf development and stem elongation occur. The booting of the 
uppermost flag leaf and the initialization of heading occur, when BBCH value is between 40 and 50. In 
addition, the Leaf Area Index maximum is usually observed in class bp.  
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In class cp (Figure 3b, phase IX), the BBCH value is between 50 and 90. The cereal inflorescence 
emergence occurs, when BBCH values are between 50 and 60. When the BBCH value is above 60, the 
cereal transition to generative grain filling phase begins with the initialization of anthesis and 
flowering. When the BBCH value is between 70 and 80, the development of grains in the head occurs 
with early milk, hard dough and fully ripened phases. Finally in class dp (Figure 3b, phase X), when 
the BBCH value is above 90, the cereal is in senescence phase. On the average, in Finnish long day 
growing conditions, the phenological class ap corresponds for May, class bp for June, class cp for July 
and dp for August and September.  

The SatPhenClass phenological classification model enabled the temporal synchronization of 
different optical and microwave satellite data along with spring cereal phenological development. The 
classified optical and microwave SAR data can in turn be used as input for cereal VGI (Vegetation 
Indices) or dynamic crops models, like CERES-Wheat model [33-36,48]. In CERES-Wheat 
phenological submodel, the genotype x cultivar variation is taken into account by using genetic 
coefficients controlling cultivar photoperiodism, vernalization and phyllochron development. With 
SatPhenClass submodel, the cultivar and genotype level effects for phenological development were 
assumed to be constant. The genetic coefficients for high latitude Nordic spring cereals have been 
previously calibrated and assessed by Laurila [35] and later reviewed by Saarikko [49]. In Sweden 
Åfors et al. [50] have reviewed the use phenological growth scales for cereals grown in high latitude 
Nordic growing conditions. Recently Peltonen-Sainio et al. [51] revised the Feekes and Zadoks cereal 
growth scaling [43,47] for Finnish long day growing conditions.  

2.3.1.2 LAI and ETS Ground Truth Sampling Methodology for the SatPhenClass Algorithm 

During growing season crop phenological observations (Julian Day of Year, DOY), LAI 
measurements (Leaf Area Index), biomass, growing density and other ground truth parameters were 
recorded simultaneously with satellite measurement dates (JDaySAT, Table 9, Appendix B) in the 
experimental sites (Table 1). Kuittinen  et al. [23] presented a detailed description for the ground truth 
sampling methodology. Portable Li-Cor 2000 Plant Canopy Analyzer [52] was used to measure spring 
cereal LAI values with corresponding Julian dates (JDayLAI) during the growing period. 

The sampling methodology on experimental sites was applied after Kuittinen et al. [23] and is 
displayed in Figure 6 (Appendix A). Sampling plots were randomly selected from the field parcels in 
experimental areas (Table 1). Sampling plots were adjusted to Landsat pixel size (30 × 30 m). In each 
plot inside selected parcels, the LAI and biomass were measured using 10 points. The distance 
between the points varied between 20 and 30 m depending on the size of the parcel. The LAI value of 
each point was the mean of 9 LAI measurements around the original point integrated automatically by 
the Li-Cor 2000 Plant Canopy Analyzer. The average plant biomass on the field parcel was estimated 
by selecting randomly 20 plant samples. Late on, the dry-weights of the dried plant samples were 
measured. The growing density was determined by calculating the number of plants from the randomly 
selected 1 meter long sowing row with two replicates. After the harvest in the autumn, the final cereal 
grain yield levels (kg/ha corrected to 15% moisture content) were estimated by the farmers in the 
experimental areas. Yield  samples were measured from the granary silos.  
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The Finnish Meteorological Institute provided Cumulative Effective Temperature Sum (ETS,  
Tb = 5 °C) measurements with corresponding Julian dates (JDayETS, Figure 4b). Kriging interpolation 
method was applied to estimate ETS values in experimental sites from the nearest weather stations 
(Figure 4c). 

Figure 4. (a) Growing zones (I–V) and MTT Experimental Station locations in Finland, 
(b) ETS (Tb 5 °C) cumulative isolines and (c) Meteorological Weather Stations in Finland 
(Original Data (C) MTT Agrifood Research Finland, Finnish Meteorological Institute and 
Finfood Finland).  

 
  
The cumulative ETS(Tb = 5 °C) and measured LAI values were used as categorical classifiers in the 

SatPhenClass algorithm [23,24]. The Julian dates of the measured satellite data (JDaySat) were 
compared with the estimated Julian dates for spring cereals using the SatPhenClass algorithm  
(Figure 3b, sections II–VI: LAI development and ETS accumulation). The LAImax-values for high 
latitude spring cereals (Table 2) with corresponding Julian dates (JDayLAI, Figure 3b, section V) were 
used to estimate the transition date from generative (class bp) to grain filling phase (class cp). The 
LAImax for spring cereals varied between 3.44 and 4.27 in bp phase and between 2.14 and 3.87 in cp 

phase. Table 2 depicts the cereal ETS temperature sum requirements in Finnish growing conditions for 
different phenological classes (ap–dp) with corresponding threshold temperatures (Tb) and typical 
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Julian dates (JDayETS, Figure 3b, section IV). In growing zones I–IV, the ETS requirements for a 
spring  
cereals [53,54] vary over years and locations (Figure 4a). In Nordic high latitude long day growing 
conditions the growing season is generally defined as the period when mean air temperature  
exceeds +5 °C (Tb 5 °C, Table 2 [45]). The average thermal time requirement of 1050 ± 30° degree-
days (dd, Tb 5 °C) from sowing to yellow ripening stage is considered adequate for spring cereal 
ideotypes grown in growing zones I–IV [23,55,56]. The corresponding averaged Finnish ETS isolines 
(Tb 5 °C) are presented in Figure 4b. According to Hakala [53], Hakala et al. [54] typical Julian dates 
for spring cereals in southern Finland are: Sowing on average on 14–16th of May (DOY 164–166), 
emergence 25–30th of May (DOY 175–180), anthesis on 5–15th of July (DOY 220–225), full maturity 
on 5–15th of August (250–255). 

In the final stage the SatPhenClass algorithm (Figure 3b, sections IV–V: ETS and LAI Classifiers) 
compares the ETS and LAI classification results. The classification result is accepted only, if both 
submodels reach concord (Figure 3b, section VI: ETS and LAI Evaluation). The measured optical or 
microwave satellite data with corresponding Julian date (JDaySat) is finally set to corresponding cereal 
phenological class ap-dp shown in Figure 3b (graphical plot in left lower corner). The phenologically 
classified optical and SAR satellite data can be used as input for optical VGI infrared and NDVI 
models (Table 3, Figure 3b, XI: Output VGII–II) and for Composite NDVI and SAR model (Figure 3b, 
XII: Output VGIIII).  

Table 3. Composite Vegetation Indices  Models (I–III) with dependent baseline yield  (yb) 
and independent variables [23,57-59](1),(2). 

Model 
(Type) 

Model equation,  
Table 12, Appendix C (1), (2) 

Independent variables 
(2) 

Model name, description of derived satellite parameters used in 
regression  equations 

I 
Optical 
 

yb = rf3(ap,bp,cp) + 
rf4(ap,bp,cp) 
 

rf3(ap,bp,cp) rf4(ap,bp,cp) Polynomial infrared model 
Calibrated reflectance  (rfchannel) values for infrared (channel = 3) 
and near infrared (channel=4) during growing season. 
- ap,bp,cp classes correspond on average to Zadoks crop 
phenological growth scale with cereals: ap: 0–12, bp: 12–50,  
cp: 50–90, dp: >90 [43]. (2) 

II 
Optical 

yb = NDVI (ap,bp,cp) 
NDVI  =  
(NIR(ap,bp,cp) 
RED(ap,bp,cp))/ 
(NIR(ap,bp,cp) + 
RED(ap,bp,cp)) 

NDVI   
(ap,bp,cp)  

Normalized Difference Vegetation Index (NDVI) model [57-59] (2). 
- Ratio between near infrared and infrared channel surface 
reflectance (rf) values  
- rf3 infrared (λ = 0.63–0.69 µm)  
- rf4 near infrared (λ = 0.76–0.90 µm) 
- Landsat NDVI  = (rf4(ap,bp,cp) – rf3(ap,bp,cp))/(rf4(ap,bp,cp) + 
rf3(ap,bp,cp)) ,  
- SPOT NDVI  = (rf3(ap,bp,cp) – rf2(ap,bp,cp))/(rf3(ap,bp,cp) + 
Rf2(ap,bp,cp))  

III 
SAR + 
optical 

yb = NDVI  (ap,bp,cp ) + 
σ0 HH5GHz,(ap,bp,cp,dp) + 
σ0 VV5GHz,(ap,bp,cp, dp) + 
σ0 HV5GHz,(ap,bp,cp, dp) + 
σ0 VH5GHz,(ap,bp,cp, dp) 

NDVI  (ap,bp,cp), 
σ0 

5GHz,(ap,bp,cp, dp) 
 

 Composite multispectral SAR and NDVI model for spring cereals 
(swh, oats, barley) using NDVI reflectance and microwave 
backscattering (σ0, f = 5.3, 5.4 GHz) data with horizontal (HH), 
vertical (VV), and cross-polarization (HV, VH) levels. Instruments: 
HUTSCAT Scatterometer, ERS/SAR, Radarsat/SAR, 
Envisat/ASAR (Table 10, [60-63]). 

(1) Model equations presented in Table 12 (Appendix C), for abbreviations refer to Table 7. (2) Independent variables 

classified with SatPhenClass-algorithm (Figure 3a,b). 
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2.3.2. Composite Vegetation Indices  (VGI) models I–III 

Three different Composite Vegetation Indices (VGI) models (I–III, Table 3) were calibrated with 
linear and non-linear polynomial regression models (Equations 1–2, Appendix C). Calibrated optical 
reflectance data were used for Models I–II (Models I-Infrared, II-NDVI)  and composite SAR and 
optical data for the Model III (Composite NDVI and SAR). The NDVI optical and SAR satellite data 
were pre-classified with SatPhenClass model into the vegetative pre-anthesis phenological classes  
(ap, bp) and into the generative post-anthesis and senescence classes (cp, dp, Figure 3b, phases IV–VI).  

The VGI models (I–III) were calibrated with SAS© linear stepwise REG/Stepwise (STW) 
regression algorithm (Equation 1, Appendix C, [57,58]) and with non-linear polynomial RSREG 
regression algorithm (Equation 2, Appendix C) by using SAR and optical satellite data (Table 12, 
Appendix C). The non-linear RSREG algorithm takes into account (i) the general linear component, 
(ii) the polynomial quadratic response of non-linear variation (iii) the cross product effect of dependent 
variables and (iv) the total model component (Table 5). The statistical significance levels are given in 
Table 8 (Appendix B). 

The polynomial infrared model (I) is a polynomial linear regression model, which estimates 
baseline yield production (yb, kg/ha) with infra red (rf3) and near infrared (rf4) channels. Respectively 
in VGI model II the NDVI Index [57-59] and in Model III the composite SAR and optical NDVI 
components were applied.  

 
2.4. Calibration of Data 
 
2.4.1. Microwave SAR backscattering (σ0 ) and optical reflectance data 
 

The primary combined microwave SAR and optical dataset pool (Table 1) consisted of (i) 
microwave SAR/ASAR (ERS, Radarsat, Envisat) and (ii) optical (Landsat and SPOT) datasets from 
the Etelä-Pohjanmaa (Lapua, Seinäjoki and Ilmajoki sites), Nylands Svenska (Kirkkonummi) and 
Häme (Jokioinen) Agricultural Advisory and Rural Development Centres 1996–2006 (Table 1,  
Figure 2, [27,28]). The satellite measurement dates (JDaySAT) in ground truth measurement sites 
(Lapua, Kirkkonummi , Jokioinen , Mellilä  and Porvoo) are depicted in Table 9 (Appendix B). The 
Technical Research Centre of Finland (VTT, Dept. of Space Research) and the Finnish Geodetic 
Institute digitized and performed the classification of field parcels from the satellite images [23,27,28]. 
The total cultivation area (Seinäjoki, Ilmajoki and Lapua, Mellilä , Porvoo , Kirkkonummi , Jokioinen) 
estimated from satellite images  was 1,253 ha for all spring cereal crops.  

The composite SAR and optical reflectance datasets were used for spring cereal yield modeling under 
actual non-potential field conditions. Water stress limited significantly cereal yield accumulation on clay 
type soils in Kuuma and Porvoo experimental areas during growing season (Table 1, Figure 2).  

The SAR calibration details for ERS, Radarsat and Envisat data have been previously published by 
Karjalainen and et al. [27,28] and by Matikainen et al. [26]. The set of Radarsat-1 images consisted of 
scenes acquired with various beam modes of Radarsat-1 satellite. The Radarsat incidence look angles 
varied between 39–44° in the experimental sites (Table 1). Envisat ASAR images were acquired in 
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dual-polarization mode, the VV and VH polarization channels were used in calibration of VGI models 
(Tables 11 and 12, Appendix B). 

In addition, two older auxiliary optical [23] and microwave (HUTSCAT scatterometer, Table 10, 
Appendix B) [61,63] datasets consisting from Mellilä and Porvoo sites (Nylands Svenska Agric. 
Advisory Centre, Figure 2) were used in calibration of SatPhenClass phenology and VGI models (I–III, 
Table 3). The Porvoo experimental site (Kullogård experimental farm, Figure 5) was used for both 
optical Landsat and SPOT and microwave HUTSCAT measurements for spring cereals.  

Figure 5. Landsat/TM satellite image from the Porvoo  field experimental area. The image 
location was used for optical Landsat, SPOT and microwave HUTSCAT measurements. 
Porvoo River on the right corner of the image. 

 

The helicopter mounted HUTSCAT (Helsinki Univ. of Technology, Lab. Of Space Technology [63]) 
is a monostatic scatterometer system measuring with C- (f = 5.4 GHz) and X-bands (f = 9.8 GHz) with 
horizontal (HH), vertical (VV) and cross-polarizations levels (VH, HV). In this study only C-band data 
from HUTSCAT was used for the calibration of VGI models. Both the transmitter and receiver are 
mounted in the same flight rack under the helicopter [63]. The technical configuration of HUTSCAT 
resembles SAR/ASAR spectrometers currently onboard ERS, Radarsat and ENVISAT satellites  
(Table 10, Appendix B). The technical configuration of the monostatic HUTSCAT scatterometer has 
been previously published by Hallikainen et al. [61] and Koskinen et al. [62]. The HUTSCAT 
calibration details have been published Hyyppä et al. [63]. 

The Finnish Geodetic Institute applied ortho-rectification and radiometric correction for the optical 
Landsat and SPOT satellite data (Table 1, [23]). The optical calibration procedure for different 
Vegetation Indices models was originally presented by Price [57] and later revised and utilized for cereals 
by Flowers et al. [64], Prasad et al. [65], Maas [66-68] and Maas  and Dunlap [69]. Table 11  
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(Appendix B) presents calibration parameter values applied in optical calibration equations 3–5 
(Appendix C), which convert binary digital count (dc) values from satellite optical sensors into surface 
reflectance values (rf). The Landsat  and SPOT  raw data coded as 8 bit binary values (digital counts, dc) 
were converted to integer values between 0–255 (surface reflectance , rf ) with higher values indicating 
higher reflectance  radiation to satellite sensors from ground cover and atmosphere. The satellite digital 
count-value (dc)  to spectral radiance  (R) transformation  was performed after Equation 3. The spectral 
radiance —values were transformed into surface reflectance (rf) by means of solar equivalent radiance 
(S)  (Equation 4). In addition, the sun zenith-angle during the observation time was taken into account 
(Equation 5).  

The calibrated SAR backscattering and ortho-rectified  and radiometric corrected  optical 
reflectance data were applied in the calibration of VGI models. Total of 18 SAR and cloud free optical 
satellite images (Landsat5 /TM  and SPOT /HRV2) were obtained during the 1996–2006 campaign. 
Images were temporarily well dispersed along the growing season  between May, June, July and 
August (Tables 11 and 12, Appendix C). Additional details of the optical calibration procedure and 
corresponding calibration parameters are presented in Electronic Supplementary Information  
Appendix (ESI).  

 
2.5. Validation 

2.5.1. Validation of Composite Vegetation Indices (VGI) Models 

After the calibration procedure for VGI  Composite models  (I–III)),  the validation procedure was 
applied to test the VGI Composite models for cereal non-potential baseline grain yield (yb, kg/ha) 
predictions. Yield differences were  calculated as absolute values (kg/ha) and per cent (%) differences 
vs. observed MAFF annual yield inventory [29,70] and MTT Official Variety Trial grain yield 
estimates in corresponding sites and years [55,56,71]. MAFF and MTT validation datasets with over 3º 
latitude variation  were used to assess cereal baseline yield variation (yb) in growing zones I–IV 
(Figure 4). In addition, the Polynomial Infrared and NDVI models (Models I, II) were analyzed with 
soil*species and soil*cultivar covariance categories. The MTT Official Variety Trial yield data for one 
Finnish malting barley cultivar (cv. Inari) and for two Finnish spring wheat cultivars (cv. Manu, Satu) 
in cultivation zones I–IV were used in analyzing soil*cultivar covariances (Table 1, Figure 4a). 

2.5.2. Validation Data 

The calibrated VGI yield models (I–III) were validated with two independent cereal yield datasets 
consisting of (i) the Ministry of Agriculture and Forestry Official Inventory Statistics 1994–2006 data for 
cereal yields [29,30] and (ii) the MTT Agrifood Research  Finland  Official Variety trial results  1994–
2006 (Figure 4, [56,71]). The MAFF validation dataset consisted yield inventory statistics from Etelä 
Pohjanmaa  (Averaged III–IV Zone) Agricultural Advisory Centre. The MTT Official Variety Trial 
dataset consisted of yield trials from the Ylistaro (Zone III) and Ruukki (Zone IV) MTT Experimental 
Stations Averaged to Zone III–IV. Zones III–IV were pooled together because the satellite and ground 
truth measurement sites in Lapua, Seinäjoki and Ilmajoki were located in the middle  
of 1,100 ETS(Tb = 5 °C) isoline (Figure 4b). 
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3. Results  
 
3.1. Cereal Canopy Soil Backscattering Covariance Variation 
 

The SAR (Radarsat, ERS), ASAR (Envisat) and HUTSCAT backscattering variance (σ0) between 
different spring cereals in Lapua, Seinäjoki and Porvoo experimental sites is presented in Table 4. In 
addition, SAR backscattering horizontal and vertical polarization levels (HH, VV) and the  
cross-polarization (VH/HV) of the monostatic HUTSCAT scatterometer are presented. The Radarsat 
horizontal (HH) backscattering (σ0) variation between malt (MBrl) and fodder barley (FBrl) is 
presented in Radarsat sensor column. Table 4 depicts cereal canopy*soil backscattering covariance 
during generative phenological phases cp and dp (anthesis, grain full maturity and canopy senescence, 
Table 2) grown on clay, coarse and fine sand type soils. 

Both the soil type and soil*cereal canopy covariances expressed extensive variation with SAR 
backscattering signal (σ 0) on clay type soils, which were dominant in experimental areas in zones I–IV 
(Table 1). According to Henderson & Lewis [60] the vertically oriented components (VV) with cereals, 
especially the stems, interact effectively with vertically polarized signals resulting increased backscattering 
attenuation. Oat species with more planophile canopy and panicle inflorescence structures have different 
backscattering polarization properties from corresponding properties of wheat and barley, which have 
more erectophile head and canopy structures [23,28,72].  

On sandy clay soils the HUTSCAT backscattering signal (σ0) varied between –6 dB and –29 dB. On 
fine and coarse sands the Envisat and ERS SAR signal amplitude varied between –17 dB (Envisat in VV, 
VH dual polarization mode) and –8 dB (ERS) respectively. In the Porvoo experimental area the  
topsoil (5–10 cm) and the subsoil (<10 cm) consisted of fine and coarse sandy alluvium deposits from the 
Porvoo river (Figure 5) and gyttja clays containing minor fractions of organic compounds (mould, peat and 
mud) and silt. In Lapua and Seinäjoki areas the major soil type was sandy clay with minor fractions of 
organic mould and humus fractions (Table 1).  

The SAR backscattering signals indicated extensive topsoil*cereal canopy layer covariance 
interaction especially after the anthesis (phenological stage cp) and during grain filling, yellow ripening 
and canopy senescence (dp). When analyzing the variation between different SAR sensors the HUTSCAT 
backscattering signal (f = 5.4 GHz, Table 10, Appendix B) varied with wheat, barley and oat cereals 
between –29 dB (oats* cp*VH*coarse sandy clay) and –6 dB (wheat*cp*VV*coarse and fine sand clay, 
barley*cp*VV*fine sand and gyttja clay). The ERS signal (f = 5.3 GHz) varied between –8 dB 
(barley*dp*VH*fine and coarse sandy clay) and –10 dB (barley*cp*VV* sandy clay, oats*cp*VV*sandy 
clay). The Radarsat signal (f = 5.3 GHz) varied between –13 dB (malt barley*cp*HH* fine and coarse 
sandy clay) and –10 dB (wheat*dp*HH*sandy clay). The Envisat signal (f = 5.3 GHz) varied between—
16 dB (oats*dp*VH* fine and coarse sandy clay) and –9 dB (barley*dp*VV* sandy clay).  

The helicopter mounted HUTSCAT signal amplitude varied more significantly when compared to 
other backscattering signals (Envisat, ERS, Radarsat) measured on clay and sandy soils. In addition, the 
HUTSCAT C-band measurement frequency was slightly higher (f=5.4 GHz) than with Envisat, ERS and 
Radarsat (f = 5.3 GHz). 
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Table 4. SAR backscattering variation (σ 0, f=5.3–5.4 GHz) on sand and clay type soils with different polarization levels during anthesis (cp), 
full grain maturity and canopy senescence (dp). (1),(2) 

SAR 

Sensor 

Main  

soil  

Type 

S.wheat 

[dB] (X±Sd) 

Barley 1) 

[dB] (X±Sd) 

Oats  

[dB] (X ± Sd) 

DVS3)  
cp 

(July) 

dp 

(Aug.) 

cp 

(July) 

dp 

(Aug.) 

cp 

(July) 

dp 

(Aug.) 

HUT 

SCAT 

Scattero 

Meter 

Sandy  

clay 

VV/ 

HH 

VH/ 

HV 3) 

VV/ 

HH 

VH/ 

HV 3) 

VV/ 

HH 

VH/ 

HV 3) 

VV/ 

HH 

VH/ 

HV 3) 

VV/ 

HH 

VH/ 

HV 3) 

VV/ 

HH 

VH/ 

HV 3) 

–6.40 

(±0.84)/ 

–16.21 

(±0.32) 

–20.26 

(±0.35)/ 

–20.16 

(±0.14) 

–10.53 

(±0.24)/ 

–10.09 

(±0.23) 

–20.71 

(±0.15)/ 

–20.05 

(±0.13) 

–5.78 

(±1.79)/ 

–12.27 

(±1.72) 

–22.85 

(±0.90)/ 

–22.97 

(±0.87) 

–11.26 

(±1.79)/ 

–10.21 

(±1.72) 

–22.54 

(±0.67)/ 

–22.48 

(±0.49) 

–9.75 

(±1.58)/ 

–18.52 

(±1.87) 

–21.09 

(±0.90)/ 

–21.31 

(±0.73) 

–13.39 

(±1.47)/ 

–11.62 

(±1.97) 

–21.54 

(±0.76)/ 

–21.17 

(±0.58) 

              

Envisat 

ASAR 

Fine, 

coarse 

sand 

VV VH  VV VH  VV VH  VV  VH  VV VH  VV VH  

–12.47 

(±1.17) 

–17.52 

(±0.95) 

–10.09 

(±1.41) 

–14.81 

(±1.18) 

–11.45 

(±2.17) 

–17.16  

(±1.59)  

–9.45 

(±1.38) 

–14.59  

(±1.51) 

–11.08 

(±2.51) 

–17.22  

(±1.47) 

–11.37 

(±1.37) 

–16.25  

(±1.87) 

              

Radarsat SAR  
(1),(2) 

 

Fine, 

coarse 

sand 

HH   HH   
MBrl 

HH 
2) 

FBrl 

HH 
2) 

MBrl 

HH 
2) 

FBrl 

HH 
2) 

HH   HH   

–12.27 

(±2.28) 
 

–10.48 

(±0.79) 
 

–13.88 

(±1.25) 

–12.57 

(±1.58) 

–12.28 

(±2.27) 

–11.39 

(±1.28) 

–12.64 

(±1.65)  
 

–11.23 

(±0.97) 
 

              

ERS  

SAR 

 

Fine, 

coarse 

sand 

    VV  VV  VV  VV  

    
–10.24 

(±1.17) 
 

–8.12 

(±2.11) 
 

–10.24 

(±1.28 
 

–9.28 

(±1.02) 
 

(1)MBrl- Malt barley, FBrl—feed barley (2) Soil types in Table 1 (3) HUTSCAT σ0 VH/HV cross-polarization 
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When analyzing the cereal variation for the wheat, the SAR signal varied between –25 dB 
(HUTSCAT *cp*VH* fine and coarse sandy clay) and –6 dB (HUTSCAT *dp*VH* sandy clay). The 
wheat VH cross-polarization amplitude was higher when compared with VV vertical levels both in 
anthesis (cp) and full maturity (dp) on clay and sandy soils. The wheat HH horizontal signal amplitude 
was higher in stage cp compared to dp.  

The oat SAR amplitude varied between –29 dB (HUTSCAT *cp*VH* sandy clay) and –6 dB 
(HUTSCAT *dp*VH* sandy clay). The oats VH cross-polarization amplitude was higher when compared 
with VV vertical levels both in anthesis (cp) and full maturity (dp) on clay and sandy soils. Both the oats 
horizontal and vertical (HH, VV) signal amplitudes were higher in anthesis stage (cp) compared to 
maturity stage (dp).  

With barley the SAR amplitude varied between –22 dB (HUTSCAT *cp*VH* sandy clay) and –5 dB 
(HUTSCAT *cp*VV* sandy clay). Especially the barley experimental plots with clay and peat topsoil 
layers in Porvoo (Table 1, Figure 2) were affected by excessive water from melting snow in the 
beginning of the growing season (ap) causing the topsoil to reach the full soil water capacity. Later on 
during mid-summer, drought periods especially in generative phases (cp, dp), caused the soil moisture 
content to recede close to wilting point. These factors affected the translocation of assimilates to the head 
with a reduction effect on final grain filling. The barley VH cross-polarization amplitude was higher 
when compared with VV vertical levels both in anthesis (cp) and full maturity (dp) on clay and sandy 
soils. Both the barley horizontal (HH) and vertical (VV) σ 0 signal amplitudes were higher in anthesis 
stage (cp) than in full maturity stage (dp). The malt barley (MBrl) σ 0 amplitude with Radarsat varied 
between –13 dB (malt barley*cp*HH* fine and coarse sandy clay) and –12 dB (malt 
barley*dp*HH*sandy clay). Respectively with fodder barley (FBrl) the Radarsat signal varied between—
12 dB (feed barley*cp*HH* fine and coarse sandy clay) and –11 dB (feed barley*dp*HH* sandy clay).  

 
3.2. Calibration Results 
 
3.2.1. Testing the SatPhenClass Phenological Model Accuracy  
 

The SatPhenClass classification results for spring cereals are depicted in Table 5. The SatPhenClass 
classification accuracy for spring cereals varied between 61% and 89% with corresponding classification 
error ranging between phenological classes (ap 21–28%, bp 11–22%, cp 14–28% and dp 25–39%) as 
calculated from the observed mean phenological Julian dates (DOY). The observed phenological Julian dates 
for spring cereals were averaged from ground truth experimental sites in cultivation zones I–IV (Figures 2 
and 4). In addition, the mean observed Julian dates for spring cereals from MTT experimental stations in 
cultivation zones I–III were used for phenological validation (Zone I-Pernaja and Inkoo, Zone II-Jokioinen, 
Zone III and IV-Ylistaro and Ruukki). 

The early emergence in vegetative phase (ap, BBCH 0–12) in two leaf stage before double ridge induction 
and the senescence phase after full maturity and harvest (dp), BBCH > 90) were difficult to estimate. This 
increased the classification error in ap and dp classes [35]. In addition, the SatPhenClass classification result 
was accepted only, if both submodels (ETS and LAI comparisons) were in line (Figure 3b).  
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Table 5. VGI composite linear and non-linear model (I–III) non-potential baseline yield estimates (yb, kg/ha) for spring cereals [64,65]. 

Crop Model Grow. 
Zone 

Main  
Soil 
Type 

Dataset, 
(Model 
Equation) (1) 

R2 lin(a)/ 
non-lin. 
polyn.(b),(2) 

RMSE  
lin(c)/ 
non-lin.  
polyn. (d)(4) 

Model  
mean yield 
(I–III) 
kg/ha(2) 

 Cv 
(%) 

 Pr > F  
linear  

 

Pr > F  
quad 
ratic 
 

Pr > F  
cross 
product 
 

Pr > F  
total  
model  

 

Sat Phen Class 
phonological 
classification error range 
(% DOY, Table 2) (3) 

Swh 
I IR 

I–II Gyttja & Sandy clay 2.1–3.3 (1.1) 0.764(a) 282.3(c) 4219.0 6.66 <.0001  
*** 

<.0001  
*** 

<.0001 
 *** 

<.0001  
*** 

ap 21–29 

bp 11–16 
cp 14–19 

dp 25–32 
 

III–IV Sandy clay II (1.2) 0.794(a) 42.46(c) 3768.6 5.89 

II NDVI 
I–II Gyttja & Sandy clay 2.1–3.3 (1.3) 0.737(b) 297.6(d)  4219.0 7.02 <.0001  

*** 
<.0001  
*** 

<.0001  
*** 

<.0001  
*** I–II Gyttja & Sandy clay 2.1–3.3(1.4) 0.732(a) 300.1(c) 3556.7 7.88 

III 
SAR,NDVI(2)(a)  

III–IV Sandy clay 1.1–1.3 (5.1,6.1) 0.723 E 
0.731 R 

302.1 
300.8 

4127.0 
4213.0 

3.78 
5.56 

<.0001  
*** 

<.0001  
*** 

<.0001 
 *** 

<.0001  
*** 

Brl  
I IR 
 

I–II Gyttja & Sandy clay 2.1–3.3(2.1) 0.615(a) 449.3(c) 4395.0 10.3 <.0001  
*** 

<.0001  
*** 

N.S. <.0001  ap 24–26 

bp 15–19 
cp 17–21 

dp 29–34 
 

II 
NDVI 

I–II Gyttja & Sandy clay 2.1–3.3(2.2) 0.611(b) 449.6(d) 4298.0 10.3 <.0001  
*** 

<.0001  
*** 

0.0014  
* 

*** 

IIISAR,NDVI 
(2)(a)  

III–IV Sandy clay 
 

1.1–1.3 
(4.1,5.2,6.2) 
  

0.694 E 
0.702 R 
0.448 S 

349.8 
322.8 
482.7 

3750.0 
3909.0 
3835.0 

3.12 
6.92 
7.22 

<.0001  
*** 

<.0001  
*** 

<.0001 
 *** 

<.0001  
*** 

Oat  

I IR 

I,II,IV Sandy clay 
 

1.1,2.1,3.3(2.5) 0.760(a) 55.0. (c) 3740.0 1.58 <.0001  
*** 

<.0001  
*** 

<.0001  
*** 

<.0001  ap 28–34 

bp 17–22 
cp 19–28 
dp 36–39 

 I,II Gyttja & Sandy clay 2.1,3.3(e) 0.756 55.1 3488.7 1.58 <.0001  
*** 

N.S. N.S. *** 

I,II Gyttja & Sandy clay 2.1,3.3(e) 0.056 994.8 3462.0 28.7 <.0001  
*** 

<.0001  
*** 

N.S. <.0001  

III 
SAR, 

NDVI(2) (a)  

III–IV Sandy clay 
 

1.1–1.3 
(4.2,5.3,6.3) (a) 

0.617 E 
0.624 R 
0.417 S 

389.7 
483.6 
584.2 

2826.0 
3038.0 
2942.0 

4.22 
7.89 
8.47 

<.0001  
*** 

<.0001  
*** 

<.0001 
 *** 

<.0001  
*** 

Cereal 
Mean 

    
0.627 386.9 3752.2 7.47 

     

(1) Table 1, Table 12 (Appendix C) (2) SAR-components: Envisat (E), Radarsat (R), ERS2 (S) SAR backscattering (σ 0 )  
(3) SatPhenClass phenological classification accuracy error range (% DOY) (a) R2  linear (b) R2 non-linear polynomial equation (c) RMSE  linear (d) RMSE (kg/ha) non-linear polynomial 
equation (e) Equation not shown  
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3.2.2. Testing the Composite VGI model (I–III) calibration performance  

The spring cereal calibration results derived from phenologically pre-classified (SatPhenClass) 
SAR and reflectance data, are depicted in Table 5. It contains linear (REG/Stepwise) and non-linear 
polynomial (RSREG) VGI  model (I–III, Table 3) baseline yield estimates (yb, kg/ha) with 
corresponding R2  and RMSE, Cv (%) and Anova F-test significance level estimates. The calibrated 
VGI model (I–III) equations are presented in Table 12 (Appendix C). 

There was a large variation in VGI Composite model cereal yield responses between years and 
locations with averaged R2 0.627 and RMSE 387 kg/ha in growing zones I–IV in southern Finland 
(Table 1). The average modeled yield response varied between 3.5 t/ha and 4.2 t/ha with spring wheat, 
between 4.1 t/ha and 4.4 t/ha with barley and between 3.4 t/ha and 3.7 t/ha with oats. The coefficient of 
variation (Cv,%) varied between 1.6% and 28.7% with spring cereals, respectively the VGI model 
subcomponents (linear, quadratic and cross products) were significant on 0.1% error level. 

The calibration results indicate that the R2 of the VGI modeled (I–III, Table 3) final grain yield 
accuracy varied significantly between different spring cereals. The overall R2  average for yield  
(kg/ha) prediction was for spring sown cereals 0.63 (mean response yield 3750 kg/ha, RMSE 387 kg/ha). 
According to calibration results obtained from the optical VGI models (I–II) and Composite VGI 
model (III), the R2 tends to stabilize on the 0.60–0.70 level. With relatively few observations  
(n < 500) the R2 tends to increase above 0.80, whereas with larger data sets (n > 1,000 observations) 
the R2 varies between 0.50 and 0.70. The overall R2 for wheat, barley and oats varied between 0.615 
and 0.794 for Infrared model (I), between 0.611 and 0.737 for NDVI (II), and between 0.417 (oats 
using ERS data) and for 0.730 (wheat using Envisat and Radarsat data) for Composite SAR model 
(III). The total cultivation area used for the calibration of VGI models was 1253 hectares. The R2  

varied for wheat ranged between 0.731 (SAR-model (IIII), RMSE 300 kg/ha) and 0.794 (Infrared 
model (I), RMSE 42 kg/ha), for barley between 0.448 (III) and 0.615 (I) and for oats between 0.417 
(III) and 0.760 (I).  

The Composite Model III (NDVI * SAR) calibration results for ERS, Radarsat and Envisat are 
presented in Table 5 (Model III SAR, NDVI). The R2 for the Composite model III varied for wheat 
between 0.723 (Envisat SAR-component, RMSE 302 kg/ha) and 0.731 (Radarsat SAR-component, 
RMSE 300 kg/ha), for barley between 0.694 (ERS component, RMSE 482 kg/ha) and 0.702 (Radarsat 
SAR component, RMSE 322 kg/ha) and for oats between 0.417 (ERS SAR component, RMSE 584 
kg/ha) and 0.624 (Radarsat, RMSE 483 kg/ha). The corresponding optical calibration results for 
soil*species and soil (clay) * cultivar covariances with Infrared Polynomial Model I are reviewed in Part II. 

3.3. Validation Results 
 
3.3.1. Soil Species Covariance Validation with Composite Models 
 

The validation results assessing both soil*species (Composite SAR and NDVI Model III) and soil 
cultivar covariance (Infrared NDVI Models I, II) categories for cereal baseline yield (yb) are depicted in 
Table 6 (Model Categories I–II).  
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In model category I (Table 6), the SAR Composite Model (III) validation results were compared and 
validated with averaged inventory estimates (kg/ha) from the MAFF Etelä-Pohjanmaa Agricultural 
Advisory Centre. The SAR and NDVI modeling results depict detailed soil*canopy interactions between 
cereal canopies and soil top cover (5–10 cm) with fine and coarse sand soil textures. The SAR composite 
model validation results take into account both the pre-anthesis ap and bp phenological phases (Figure 3b, 
phases I–II) using the NDVI component and post-anthesis and senescence phases (cp and dp, phase III) 
using the SAR component with HH and VV levels. 

In model category II (Table 6), the soil cultivar covariance validation results are depicted. Two 
spring wheat (cv. Manu, Satu) and one malting barley (cv. Inari) cultivars grown on heavy clay type 
soils and currently cultivated in Finland were analyzed by using optical VGI Infrared and NDVI 
models [44,56,71]. The response mean yields (kg/ha) were compared with the MTT Official Variety 
Trial mean yield results correspondingly grown on clay type soils in cultivation zone I (Pernaja and 
Inkoo Exp. Stations), II (Jokioinen Exp. Station) and III–IV (Ylistaro and Ruukki Exp. Station, Figure 4a). 

The Model III soil*species validation results (Model Category I, Table 6) using MAFF validation 
data, indicated with spring wheat an overestimation (DPMAFF,%) between +104% (Envisat) and 107% 
(Radarsat) from the observed MAFF inventory reference (100% [29]). With oat cereals, the 
underestimation was between 85% (Envisat) and 88% (ERS2). Respectively with barley between 97% 
(Envisat) and 112% (ERS) and more precisely with malt barley 96% underestimation (Radarsat) vs. 
fodder barley 102%. Respectively the yield difference calculated as kg/ha (DYMAFF) ranged between—
177 kg/ha (swh, Envisat ASAR) and 484 kg/ha (Oats, Envisat ASAR). The mean composite model 
baseline yield (yb, kg/ha) was 4,170 kg/ha for wheat, 3,848 kg/ha for barley (3,909 for malting barley 
and 3,899 kg/ha for fodder barley) and 3,386 kg/ha for oats. 

The Model I and II validation results (Model Category II, Table 6) using MTT validation data, 
indicated that both observed wheat and barley yield levels from the MTT official variety trials (kg/ha) 
exceeded corresponding modeled spring wheat and barley yield levels. The soil*species and 
soil*cultivar covariance validation averaged results with Infrared and NDVI models indicated an 
underestimated yield difference (DPMTT, %) by –10% in soil*species category and between –31%  
and –14% in soil*cultivar category. The modeled results for spring wheat and barley baseline yield 
levels (yb) in both categories were lower than the corresponding yield levels in MTT Official  
Variety trials.  

Spring wheat and barley cereals in MTT field trials were grown on more optimal, non-limiting 
growing conditions. The optical VGI modeling results indicate a general underestimation of modeled 
vs. MTT observed yield levels. More specifically, the results indicate that yield difference (DPMTT,%) 
ranged between 69% [Clay*Swh*(cv. Satu)] and 92% (Barley*clay) from the baseline reference 
(100%). In both categories (soil*species, soil*cultivar) the VGI models underestimated the baseline 
yield levels (yb) when compared with the corresponding observed MTT yield levels. Especially cv. 
Satu yield level on clay type soils was clearly underestimated (–44.9% DPMTT). Respectively the yield 
difference calculated as kg/ha (DYMTT) varied between –363 kg/ha (barley*clay) and –1,427 kg/ha 
(Satu*clay).  
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Table 6. Cereal composite SAR and optical VGI model baseline yield (yb kg/ha) validation on different soil types vs. MAFF and vs. MTT 
observed values in the Etelä-Pohjanmaa Agric. Advisory Centre [30,56,71](1). 

Model Category 
I Crop Composite 

model 

Covariance 
Category 

 

SAR 
Sensor 

Mean yb , kg/ha, 
X ± Sd 

MAFF mean 
estimate 
kg/ha 
(X ± Sd) (2) 

DYMAFF Difference 
kg/ha from 
MAFF obs.(1) (5) 

DPMAFF 
Difference 
(%) from 
MAFF obs. 
(100 ref.) (4) 

I (2) 
Composite SAR 
& NDVI (II,III)  

Swh II+III  Fine coarse 
sandy clay  
(Table 1) 
 

Envisat ASAR 4127 ± 68 3950 ± 72 –177.0 oe 104.4 

II+III Radarsat SAR 4213 ± 41 3840 ± 86 –373.0 oe 109.7
Swh ave. 4170 ± 54 3895 ± 78 –275.0 oe 107.1

Brl (general) II+III  
Fine coarse 
sandy clay 
(Table 1) 
 
 

Envisat ASAR 3750 ± 91 3880 ± 47 130.0 ue 96.6
II+III  ERS2 SAR 3835 ± 98 3 420 ± 82 –415.0 oe 112.1

Brl malt II+III  Radarsat SAR 3909 ± 24 4050 ± 76 141.0 ue 96.5
Brl feed & 
fodder II+III Radarsat SAR 3899 ± 32 3820 ± 82 –79.0 oe 102.7 

 Brl ave.  3848 ± 74 3792 ± 72 –55.7 oe 101.8 

Oats II+III  Fine coarse 
sandy clay 
(Table 1) 
 

Envisat ASAR 2826 ± 85 3310 ± 54 484.0 ue 85.4
II+III  ERS2 SAR 2942 ± 49 3 330 ± 54 388.0 ue 88.4
II+III  Radarsat SAR 3038 ± 23 3520 ± 81 482.0 ue 86.3

 Oats ave.  2935 ± 28 3386 ± 48 451.3 ue 86.7 

  Mean tot.   3615 ± 12 3680 ± 49 64.5 ue 98.2
Model Category

II 
Species Model Covariance

Category 
 

Soil type/
Cultivar(1) 

Averaged 
model I,II 
yield yb 
X ± Sd kg/ha 

MTT mean
X ± Sd kg/ha (3) 

DYMTT 
Difference 
kg/ha from 
MTT obs (7) 

DPMTT,
Difference 
(%) from 
MTT obs (100 
ref.) (6)

II (3) 
Optical Infrared 
(I), NDVI (II) 

Swheat I+II Soil*
Species 

Sandy clay 4240 ± 52 4645 ± 546 –404*ue) 91.3*ue)

Barley I+II Sandy clay 4428 ± 48 4791 ± 29 –363*ue) 92.4*ue)

Swheat I+II 
Soil* 
Cultivar 

Sand clay*Manu 4015 ± 62 4423 ± 72 –408*ue) 90.8*ue)

Swheat I+II Sandy clay*Satu 3181 ± 31 4608 ± 92 –1427*ue) 69.0*ue)

Barley  I+II Sandy clay*Inari 4749 ± 89 5483 ± 44 –733*ue) 86.6*ue)

(1) Yield estimates corrected to 15% moisture content (2) MAFF mean inventory estimate (3) MTT Official Variety Trial averaged results from cultivation zones I–IV (Figure 4a) 

(4) DPMAFF—difference (%) modeled vs. MAFF inventory estimate (5) DYMAFF - difference modeled vs. MAFF inventory estimate (6) DPMTT —difference (%) modeled vs. MTT 

estimate (7) DYMTT — difference (kg/ha) modeled vs. MTT estimate *(ue) —underestimated by the corresponding model vs. observed *(oe) —overestimated by the corresponding 

model vs. observed. 
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4. Discussion 
 
4.1. Implications from SAR Soil*Canopy Interactions 
 

Both the SAR backscattering (σ 0) signal and SAR and NDVI baseline yield (yb) levels varied 
significantly both in cereal soil*species and species*canopy covariance categories. In the species*soil 
covariance category SAR backscattering signal varied significantly especially on clay type soils with 
minor fractions of sand, silt and organic mould in the Porvoo, Mellilä, Kirkkonummi, Jokioinen and 
Lapua experimental areas (Table 1).  

With spring wheat the VH cross-polarization amplitude was higher when compared with VV 
vertical levels both in anthesis (cp) and full maturity (dp) on clay and sandy soils. The wheat horizontal 
signal (HH) amplitude was higher in cp stage compared to dp.  

The microwave Radarsat VH cross-polarization amplitude in barley plots was higher when 
compared with VV vertical levels both in anthesis (cp) and full maturity (dp) on clay and sandy soils. 
Both the barley horizontal and vertical (HH, VV) σ 0 signal amplitudes were higher in anthesis stage 
when compared to full maturity stage.  

With oat cereals, the VH cross-polarization amplitude was higher when compared with VV vertical 
levels both in anthesis (cp) and full maturity (dp) on clay and sandy soils. Both the horizontal and 
vertical (HH, VV) signal amplitudes were higher in anthesis stage than in full maturity stage 
containing grain filling, yellow ripening and canopy senescence stages.  

In the species*canopy covariance category level there was a significant variation both in 
backscattering amplitude and polarization properties between spring wheat, barley and oats. Especially 
the canopy structure of oat cereals differs morphologically from other spring cereals. Oat cereals with 
more planophile canopy and panicle inflorescence structures differ in polarization properties from 
those of wheat and barley with more erectophile head and canopy structures [23,60,72].  

 
4.2. Implications from the SAR Composite Modeling Results for Baseline Yield Levels (Yb) 
 

The SAR calibration results with Composite NDVI and SAR models indicated that averaged 
baseline yield (yb) response varied between 3.5 t/ha and 4.2 t/ha with spring wheat, between 4.1 t/ha 
and 4.4 t/ha with barley and between 3.4 t/ha and 3.7 t/ha with oats. Correspondingly the SAR 
validation results compared with MAFF data indicated that with spring wheat the overestimation was 
between +104% (Envisat) and 107% (Radarsat) from the observed MAFF inventory reference. 
Respectively with oats the underestimation was between 85% (Envisat) and 88% (ERS2). With barley 
the underestimation was 97% with Envisat and overestimation 112% with ERS. With malt barley the 
yield was underestimated (96%) with Radarsat data and overestimated with fodder barley (102%).  

The use of Composite Multispectral model (III) combined with the SatPhenClass phenological 
classification algorithm for spring cereals provides a promising integrating technique for combining both 
microwave SAR and optical reflectance data. The Composite Multispectral model takes into account both 
the pre-anthesis phenological phases using the NDVI component and post-anthesis and senescence 
phases using the SAR component with backscattering polarization levels. In addition, the Composite 



Remote Sens. 2010, 2              
 

 

99

 
 

multispectral model can be used in assessing the soil*canopy covariances between cereal canopies and 
soil top layers on different soil types. 

The Composite model (III) calibration results indicate that the R2 tends to stabilize on  
the 60%–70% level similar to optical VGI models (I–II). The Composite model results indicated that 
the use of the Envisat ASAR additional cross-polarization component (VH) did not increase the R2 
level compared to ERS (VV) and Radarsat (HH) with only one polarization level in the 5.3 GHz 
measurement spectrum. The Radarsat signal with the HH horizontal polarization component yielded 
highest R2 values with wheat, barley and oats. ERS signal with only one VV vertical polarization 
component produced consistently lower R2 values. In Finland Karjalainen et al. [28] reported SAR 
modeling results with the mean R2 of 0.55. The average crop height was used to estimate the amount of 
biomass using dual-polarization (VV/VH) Envisat SAR data in the Lapua and Seinäjoki experimental 
sites [28].  

Recently McNairn et al. [1] reported the composite VV-VH SAR and optical data to be the most 
suitable for wheat, maize and soybean classification with over 85% overall accuracy (κ Kappa  
range 0.47–0.89) in Canadian growing conditions. McNairn et al. [1] applied three primary 
classification methodologies Neural Networks [73], Gaussian Maximum-Likelihood Classifier [21,74] 
and Decision trees [75] for crop classification using composite SAR and optical data. Respectively in 
this study the SatPhenClass classification accuracy for spring cereals varied between 61% and 89% in 
phenological classes (ap–dp). Especially the early vegetative phase before double-ridge induction  
(ap) [35,50,51] and post-harvest senescence (dp) phases were major source for error variation 
decreasing the overall classification accuracy. Highest classification accuracies (>80%) were obtained 
during the anthesis (bp) near the LAI maximum proximity. 

The composite model validation results indicated an overestimation with wheat and feed barley 
cereals. On the contrary, an underestimation was noticed with oats and malting barley cereals by using 
different SAR/ASAR and NDVI sources. In summary, the results suggest the potential inclusion of 
horizontal polarization component (HH) in the SAR composite models. The oat canopy and head 
structures differ from those of wheat and barley potentially changing the backscattering polarization 
properties [23,28,60]. 

5. Conclusions 

The cereal validation results obtained in this study suggest that spring cereal baseline yield 
estimates derived from Vegetation Indices Models tend to retain between the observed MAFF  yield 
inventory estimates and MTT Agrifood Official Variety trial data results. The annual MAFF   
non-potential yield inventory  estimates are obtained from suboptimal growing conditions on actual 
farm level, where as MTT Agrifood Official Variety trial results are obtained from more optimal 
growing conditions.  

Composite multispectral models combined with SatPhenClass phenological classification algorithm 
provide a new promising integrating technique by combining SAR and optical data with the cereal 
phenological development both in vegetative and generative phases. This new methodology can be 
applied in future large area crop monitoring campaigns and also in national crop inventory programs 
for assessing grain yield production on the Agricultural Advisory Centre level. The use of VGI models 
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combined with satellite based Minimum Datasets would significantly reduce the operational costs and 
time required for more accurate cereal inventory estimates when compared with the traditional ground 
based crop inventory systems. The implications of this study for Finnish national inventory system and 
CAP policy are reviewed in the second part of this publication. 
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Appendix A. Additional Figures and Tables 
 
Additional figures and tables can be downloaded from the link: http://koti.armas.fi/~hlaurila/download/Pb4 

Figure 6. Ground truth sampling methodology and LAI measurements with portable  
Li-Cor 2000 Plant Canopy Analyzer [23,52]. 
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Appendix B. Abbreviations, Significance Levels and Tables, Satellite Systems and Locations 

Table 7. Abbreviations used. 

Definition, 

abbreviation 

Unit, (range) Description 

X  Mean of sample 

Sd  Standard deviation of sample (n) 

Cv  Coefficient of variation (%) = Sd/X 

Sx   

Standard error of mean =  

MSE  Mean squared error  

 

RMSE  Root Mean Square Error , square root of MSE 

R2  Coefficient of determination  

LSE  Least-Square Estimation-algorithm  

VGI with submodels 

(I-III) 

 Vegetation Indices submodels (I-III: I—Infrared polynomial, II—NDVI, 

III—composite NDVI and backscattering model (Table 6) 

ap, bp, cp, dp   DVS (Phenological Development stage) four classification values in 

SatphenlClass algorithm (Table 3 a,b), used in VGI models:  

ap—vegetation stage class from emergence until 2 leaf and double ridge 

stages, bp—generative stage class until heading, cp—grain filling stage in 

generative phase between anthesis and full maturity, dp—senescence 

phase (Used only in microwave polynomial model III) 

Rf (Ch,month)  Landsat or SPOT calibrated reflectance values with index denoting 

channel and month during growing season (a–May, b–June, c–July); 

used in VGI Infrared model (I) as independent variables for 

crop*cultivar*soil covariance interaction and yield estimations (Table 3, 

Models. 1.1–7.3, Table 12 App. C),  

* - general notation for covariance effects 

DYMTT  Yield Difference (kg/ha) modelled (VGI)—observed MTT average 

(Table 11,14) 

DRTMTT  Yield Difference Ratio, Modelled (VGI)/MTT Observed; 

over/underestimation (%) from the reference (100%) (Table 11, 14) 

DYMAFF  Yield Difference (kg/ha) modelled (VGI)—obs. MAFF average  

(Table 10, 13). 

DRTMAFF  Yield Difference Ratio, modelled (VGI)/MAFF Observed; 

over/underestimation (%) from the reference (100%) (Table 10,13) 

Oe / ue   Overestimated / Underestimated by the corresponding VGI model vs. 

observed (Tables 12–14). 

spc., Cv.  species, cultivar 

spc.  Spring sown cereal species (spring wheat, barley, oats) 

Swh  Spring wheat (Triticum aestivum L.) including cv. Heta, Kadett, Manu, 

Reno, Ruso, Satu, Tjalve 

n
Sd 
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Brl  Barley (Hordeum vulgare L.) including cv. Arra, Arttu, Artturi, Arve, 

Eero, Ida, Inari, Kustaa, Kymppi, Loviisa, Mette, Pohto, Pokko 

Oats  Oats (Avena Sativa L.) including cv. Aarre, Salo 

loc.  Loc—Location: J-Jokioinen, K—Kirkkonummi, M-Mellilä, P—Porvoo, 

L—Lapua 

Tb degree (°C) Threshold temperature 

Dd degree days  

ETS(Tb) dd—degree days Cumulative temperature sum over threshold temperature (Tb = 5°) 

PAR MJ/d/m2 

(10–20) 

Photosynthetically Active Radiation (λ = 400–700 nm) 

IR 

NIR—Near IR 

Mid IR 

Thermal IR  

MJ/d/m2 infrared radiation (IR), λ = 630–690 nm  

near infra, λ = 760–900 nm  

mid infra, λ = 1.55–1.75 μm 

thermal IR, λ = 10.4–12.5 μm 

Rf (0.0– 1.0) Optical (λ = 400–700 nm) and 

infrared sensors (λ = 630–12.5 μm). 

Reflectance; reflected radiation from soil and vegetation canopies and 

measured by optical satellites [22-23,57-58,68-69] 

σ0 (sigma zero) 

 

(–20–10 dB). Calibrated SAR (Synthetic 

Aperture radar) backscattering signal with 

microwave 5.4 GHz (C-band, λ = 5.7 cm) 

and 9.8 GHz (X-band) and polarization 

levels (HH, VV, VH, HV). 

Backscatter coefficient (sigma zero) for microwave backscattering 

signal, which is a combined signal reflected from soil and vegetation 

canopies [60-63,26-28]. 

Potential,  

non-limited yield, 

yield potential 

kg/ha Modelled maximum yield capacity (kg/ha) for a specific cultivar without 

limiting environmental stress factors during growing season (vegetation 

water stress, nutrient deficiencies, pathogen epidemics etc.) 

Non-potential, 

limited yield 

kg/ha VGI modeled yield level (kg/ha) for a specific cultivar with limiting 

environmental stress factors during growing season reducing maximum 

yield capacity, see potential yield. 

yb(spc, cv, soil type.) 

spc=swh,brl,oats 

 

kg/ha, 15% moisture content Baseline yield for spring cereal species (swh, brl, oats).VGI (I-III) 

modeled cereal yield level (kg/ha) using time series for a specific 

cultivar under field conditions, see non-potential yield. 

Index denotes crop, cultivar and soil type; used as dependent variable in 

VGI models (Models. 1.1–7.3, Table 12, App. C). 

NDVI % Normalized Difference Vegetation Index  

SatphenlClass  BBCH and Zadok’s scaling Satellite data classification algorithm based on cereal phenology  

Minimum dataset  Experimental dataset without ground truth or meteorological data, 

containing only optical or microwave satellite data 

VGI with submodels 

(I-II) 

 Vegetation Indices submodels (I-IIII: I—Infrared polynomial,  

II—NDVI, III—composite NDVI and backscattering model. 

MAFF  Ministry of Agriculture and Forestry in Finland 

IIASA  The International Institute for Applied Systems Analysis [32]  
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Table 8. Statistical significance levels. 

Significance levels (α = reference probability) (1) 
N.S. Statistically non-significant 
0 Moderately significant on 10% error level, α(0.10) 
* Significant on 5% error level, α(0.05) 
** Highly significant on 1% error level, α(0.01) 
*** Highly significant on 0.1% error level, α (0.001) 

(1) Used in testing the p-value (Pr) in F-test 

Table 9. Satellite measurements in Finnish experimental locations [23,26,28]. 

Location  

 

Date  

(Satellite measurement) 

Satellite type, sensor and  

Image no. 

Incidence 

angle  

(ϕ) –1) 

Soil type4)  

Lapua, Seinäjoki  

23° 10 ' E,  

62° 50' N 

 

6.7.1994, 24.6.1995,  

1996: 21.5., 3.7. 

Optical: 

SPOT XS 65 220 

–21.3, –4.3,  

10, 0.2 

Clay (Sandy clay 56%), 

coarse  

(Coarse sand 33.5%) 

1997: 17.5.,7.6.,1.7 Optical: 

SPOT XS 65 220–221 

9.3,5.9,–23.8 

1996: 17.6, 30.7, 25.8, 

25.9 

 

Microwave SAR: 

ERS1 

SAR5), f = 5.3 GHz, C 

band, (λ = 5.7 cm), VV 

polarization 

 

2001: 6.5,16.5, 30.5, 6.6, 

16.6, 23.6.,10.7, 17.7, 

24.7, 3.8, 17.8, 27.8, 10.9, 

17.9, 20.9, 27.9, 28.10. 

Microwave SAR: 

Radarsat1 

SAR, f = 5.3 GHz, C 

band, HH polarization 

 

2003–2004: 

15.6,18.6,21.6,28.6,4.7,7.

7,14.7,23.7,02.8,11.8,24.8

,15.9 

2005–2006: Only ground 

truth observations 5) 

Microwave ASAR: 

ENVISAT 

ASAR , f = 5.3 GHz,  

C-band), VV, HH, 

VV/HH, HV/HH, or 

VH/VV polarizations 

 

Kirkkonummi  

24° 30' E,  

60° 10' N 

1994: 6.6., 7.7 Optical: 

SPOT XS 73 227 

24.5, –21.6 Clay (2) 

(gyttja clay  

41.4%) 25.7.1994, 3.6.1995 Optical: 

Optical: 

LANDSAT TM 189 18 

23 

15.6.1995, 13.7.1994 Optical: 

SPOT XS 73 227, 69 225 

–2.2 
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Jokioinen  

23° 50' E,  

60° 50' N 

25.7.1994 Optical: 

LANDSAT TM 189 18 

–23.4 Clay (Sandy clay 56%), 

Kuuma exp. area  

(70–80% organic  

top layer, Table 3) 

 

Mellilä  

22° 20' E,  

60°, 50' N 

1989:24.5., 25.6., 27.7. Optical: 

LANDSAT 5/TM  

48.28, 50.39,  

46.05 

Clay (Sandy clay 29%,  

gyttja clay 36%)(2) 

Porvoo  

25° 50 ' E,  

60° 50' N 

1990: 13.5., 21.6 29.7. Optical: 

SPOT/HRV2/XS  

50.01, 48.1 Clay (2) 

(gyttja clay 38%) 

1990: 21.6 Optical: 

LANDSAT 5/TM  

- 

1990: 25.7, 24.8 Microwave SAR: 

HUTSCAT  

Scatterometer (f = 5.4 

GHz, C-band, 9.8 GHz, 

X-band), VV, HH, VH, 

HV polarizations(3)  

 

1995: 25.6., 15.7.,  

1996:25.7. 

Optical: 

SPOT XS 69 225 

–1.6 

14.6.1994 Optical: 

SPOT XS 65 220 

5.2 

(1) Used in Equation 2 (Appendix C) (2) Gyttja clay contains peat and mud fractions) (3) Helicopter mounted [61-63] (4) Main soil type 

classification with soil sub fractions (5) No Envisat data obtained in 2005–2006 because of re-programming of ASAR sensors and 

technical problems in ESA. Only ground truth phenological and LAI measurements measured in experimental areas. 

Table 10. SAR and optical satellite systems used in remote sensing campaigns. 

Satellite type Name Sensor Experimental 

locations & years 

Reference 

 

Microwave 

ASAR 

ENVISAT (3) ASAR(6), f = 5.3 GHz,  

C-band), VV, HH, VV/HH, 

HV/HH, or VH/VV 

polarizations 

Seinäjoki, Lapua 

(2002–2004, Table 11). 

http://earth.esa.int, 

http://envisat.esa.int/object/inde

x.cfm?fobjectid=3772, 

[27,28] 

Microwave 

Scatterometer 

HUTSCAT(1),(6) Scatterometer (f = 5.4 GHz, 

C-band, 9.8 GHz, X-band), 

VV, HH, VH, HV 

polarizations 

Porvoo, calibration 

data (1990, Table 11). 

www.space.hut.fi/research/equi

pment/ hutscat.html. [61-63] 

Microwave 

SAR 

ERS12) SAR (5), f = 5.3 GHz, C 

band, (λ = 5.7 cm), VV 

polarization 

Seinäjoki, Lapua 

(1995–1996, Table 11). 

http://earth.esa.int/ers, 

earth.esa.int/ers/sar,  

[26,62] 
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Microwave 

SAR 

Radarsat1 SAR(5), f = 5.3 GHz, C 

band, HH polarization  

Seinäjoki, Lapua 

(2001, Table 11). 

Reference [27], Canadian Space 

Agency (CSA). 

ccrs.nrcan.gc.ca/, 

radar/spaceborne/radarsat1/index

_e.php 

Optical Landsat 5 Thematic Mapper (TM) 

(λ = 450 nm–2.35 μm) 

Porvoo, Mellilä, 

Kirkkonummi, 

Jokioinen, Lapua 

(1989–1997, Table 11). 

www.landsat.org, [76,22-23] 

Optical SPOT 2 HRV2/XS 

(λ = 450 nm–890 nm) 

Porvoo, Mellilä, 

Kirkkonummi, 

Jokioinen, Lapua 

(1989–1997, Table 11). 

www.spot.com, 

www.spotimage.fr, [77,22,23] 

Multi- 

sensor 

 

ADEOS1  

Advanced Earth 

Observing 

Satellite4) 

AVNIR, ILAS, RIS, 

IMG,TOMS: 

atmospheric 

greenhouse gas (CO2, 

O3, CH4) columns (4) 

(1996-1997,  

non-operational) 

Collaboration with 

Prof. Hiroshi Koizumi, 

NIAES/ Tsukuba, 

Japan 

NASDA/ JAXA, 

http//home.gna.org/adeos/ 

http://kuroshio.eorc.jaxa.jp/ADE

OS,http://msl.jpl.nasa.gov/Quick

Looks/ adeosQL.html 

(1) HUTSCAT is helicopter mounted, see space.hut.fi/research/equipment/hutscat.html [63]  
(2) European Remote Sensing satellite (ESA, European Space Agency) 
(3) ENVISAT (Environmental satellite, ESA) AOS (Announce of Opportunity) contract: AOE-488 for ENVISAT 
(4) ADEOS1 AOS contract: NASDA Contract 1062/Vegetation and Biology, MAFF, 5118/416/94 
(5) SAR, Synthetic Aperture Radar (6) Advanced Synthetic Aperture Radar 
(6) HUTSCAT used for calibration verification purposes only (helicopter mounted) 

Table 11. The optical calibration parameters of Landsat and SPOT—satellites [57]. 

Satellite/ sensor 
(1),(2) 

Sensor channel/λ (wave 
length)/type 

Date Sun 
elevation 

Angle 
(deg.) 

S(6) α(7) β(8) 

TM1
(1) 450–520 nm/PAR(3) 24.5.1989 48.28 620 0.602 –1.5 

TM2
(1) 520–600 nm/PAR(3) 25.6.1989 50.39 577 1.17 –2.8 

TM3
(1) 630-690nm/infrared(3) 27.7.1989 46.05 493 0.806 –1.2 

TM4
(1) 760–900 nm/ 

near infra 
21.6.1990 50.01 332 0.815 –1.5 

TM5
(1) 1.55–1.75 μm /  

mid infra 
  67.1 0.108 –0.37 

TM6
(1) 10.4–12.5 μm/ 

thermal IR(4) 
  n.a.(3) - - 

TM7
(1) 2.08–2.35 μm /  

mid infra 
  24.5 0.057 –0.15 

HRV2/S1
(2) 500–590 nm / PAR(3) 13.5.1990 n.a.(5) 587.0 1.22181 0 
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HRV2/S2
(2) 610–680 nm / infrared(3) 29.7.1990 48.1 502.0 1.22545 0 

HRV2/S3
(2) 790–890 nm/near 

infrared 
  331.0 1.29753 0 

(1) Landsat5 / TM: Landsat (1987). Sensor: Thematic Mapper (λ = 450 nm–2.35 μm, resolution 30 × 30 m2 (2) SPOT / HRV2/XS: SPOT 

(1986). High Resolution Visible 2 (λ=500 nm–890 nm, resolution 20 × 20 m2). (3) PAR – Photosynthetically Active Radiation  

(λ = 400–700 nm) (4) Thermal infrared channel with ground resolution of 120 m. (5) n.a.—parameter not available  
(6) S—Equivalent solar radiance (7) α—Calibration gain coefficient (8) β—Calibration offset coefficient.  

Appendix C. Equations 

Statistical Analysis Equations 

Equation 1 y(i) = β0 + βI × x(i) +...β(i+1) × x(i+1) + ε (linear REG/Stepwise [64]) 

Equation 2 y(i) = β0+β1 × x(1)+ β2 × x(2)+ β3 × x(1)
2
 + β4 × x(2)

2
 + β5 × x(1) × x(2) + ε (non-linear RSREG [65]) 

y(i) = dependent grain yield for spring cereals (wheat, barley, oats, kg/ha, 15% moisture content) 
x(i) = independent ground truth and satellite (Table 3) variables in Vegetation Indices regression 
models  
β0 = model intercept, βI = coefficient for independent variable x(i),  

ε = error residual variation, 
β1 × x(1)+ β2 × x(2)—the linear term,  
β3 × x(1)

2
 + β4 × x(2)

2—the squared effect term,  
β5 × x(1) × x(2)—the cross product effect. 

Optical Satellite Data Calibration Equations  

Equation 3 βα += dc*R  [57] 

R = Spectral radiance (W·m-2·sr–1·µm–1) 
dc = digital count value from the satellite sensor (0-255) 
α = calibration gain coefficient (W·m–2·sr–1·µm–1·count–1) 
β = calibration offset coefficient (W·m–2·sr–1·µm–1), sr = angle expressed as steradians 

Equation 4 )= ϕcos(*R/(Srf  

rf = surface reflectance value (%—ratio between the radiation reflected from the soil cover and the 
incoming solar radiation) 
R = spectral radiance (W·m–2·sr–1·µm–1)  
S = equivalent solar radiance (W·m–2·sr–1·µm–1) 
cos(ϕ) = Solar zenith-angle correction, calculated from the measuring time and the corresponding 
elevation or incidence angle (el): ϕ = (90-el), ϕ expressed in radians,  
sr = angle expressed as steradians 

Equation 5 [ ] [ ] }ΩΦΩΩ∫= **).(*{*[1/w]S ncesolarradiaeqvd  

Ω = satellite channel wavelength (µm) 
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w = satellite channel spectral bandwidth (µm) 
Φ(Ω) = normalized wavelength response function of specific satellite channel  
 
Baseline VGI (I-IV) linear (REG/Stepwise) and non-linear (RSREG) yield models for spring crops  

Table 12. SAR and optical VGI (I-IV) linear (REG/Stepwise) and non-linear (RSREG) 
yield models for spring cereals(1),(2). 

Model  

category  

Factor : 

Crop /Species 1) 

Model  

(I-IV)  

R2 RMSE 

kg/ha 

Model equation 

I 

Optical 

Swh 
1.1 (I)  0.764 282.3 yb(swh) = 4941.9 – 5455.9 × rf3ap – 1351.4 × rf4ap + 957.1 × rf3bp + 656.2 × 

rf4bp + 4742.1 × rf3cp – 4983.5 × rf4cp  

Swh 
1.2 (I)  0.794 42.46 yb(swh) = 985.93 + 13337.46 × rf3ap + 8355.88 × rf4ap – 387.19 × rf4bp + 

255.58 × rf3cp 

Swh 

1.3  

(II, NDVI)  

0.737 297.6 yb(swh,NDVI) = 4659.2 + 175.4 × nap – 25.6 × nbp – 3215.5 × ncp + 93.7 × 

nap
2 – 19.1 × nbp × nap – 178.5 × nbp

2 – 560.4 × ncp × nap + 3250.4 × ncp × nbp 

– 864.7 × ncp2 

Swh 
1.4  

(II, NDVI)  

0.732  300.1  yb(swh,NDVI) = 4692.90 + 109.84 × nap – 210.38 × nbp – 969.22 × ncp 

Swh  

1.5(5) 

(III,GEMI) 

0.704 316.1 Y(swh,GEMI) = 5074.1 – 766.2 × gap – 143.1 × gbp – 3378.2 × gcp + 4254.1 

× gap
2 + 1079.8 × gbp × gap – 1326.2 × gbp

2 – 7264.8 × gcp × gap + 7717.2 × gcp 

× gbp – 2622.1 × gcp
2 

Swh  
1.6(5) 

(III,GEMI) 

0.570  536.8  yb(swh,GEMI) = 5506.31 + 7780.47 × gap – 12478.3 × gbp + 761.96 × gcp 

Swh  
1.7(5) 

(IV,PARND) 

0.712  311.6 yb (swh, PARND)=4397.9+2736.9*pap-379.4*pbp-493.8*pcp-4235.1*pap
2+ 

2701.1*pbp*pap+605.8*pbp
2 -2161.6*pcp*pap+883.1*pcp*pbp+493.9pcp

2 

Swh  
1.8(5) 

(IV,PARND) 

0.509  406.3  Y(swh, PARND)=4502.31+529.36*pap+2377.05*pbp-779.31*pcp 

Brl 
2.1 (I) 0.615 449.3. Y(brl) = 5348.8 – 600.8 × rf3ap – 184.5 × rf4ap – 8562.4 × rf3bp – 2105.6 × 

rf4bp – 2766.9 × rf3cp – 1556.2 × rf4cp  

Brl 

2.2  

(II, NDVI) 

0.611 449.6 Y(brl,NDVI) = 3481.5 –2 05.5 × nap–312.1 × nbp + 396.5 × ncp – 60.5 × nap
2 

– 584.5 × nbp × nap + 864.6 × nbp
2 + 1081.4 × ncp × nap – 710.5 × ncp × nbp – 

232.4 × ncp
2 

Brl  

2.3(5) 

(III, GEMI) 

0.614 448.6 Y(brl,GEMI)=5184.0 – 2802.9 × gap – 187.4 × gbp – 3457.9 × gcp – 374.8 × 

gap
2 + 91.5 × gbp × gap + 1161.4 × gbp

2 + 4817.1 × gcp × gap – 1932.1 × gcp × 

gbp + 2255.6 × gcp
2 

Brl  

2.4(5) 

(IV,PARND) 

0.587 463.7 Y(brl,PARND) = 4621.7 + 1852.8 × pap-6418.5 × pbp – 5850.4 × pcp + 48.9 × 

pap
2 – 5952.3 × pbp × pap + 10853.0 × pbp

2 –2040.4 × pcp × pap + 12879.0 × pcp 

× pbp + 6002.9 × pcp
2 

 
Oats 

2.5 (I) 0.760 55.0 yb(oats) = 3457.4 – 3762.5 × rf3ap – 2135.8 × rf4ap+6643.1 × rf3bp + 1566.5 

× rf4bp + 571.4 × rf3cp – 179.1 × rf4cp 
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Table 12. Cont. 

II 

Optical 

Species*soil 

Covariance 

Crop /Species 1) Model  R2 RMSE Model equation 

Swh * sandy clay 
2.6 (I) 0.764 282.3 yb(swheat,clay) = 6765.5 – 38407.0 × rf3ap – 14979.0 × rf4ap– 23698.0 × rf3bp + 

9552.7 × rf4bp + 7261.4 × rf3cp – 22022.0 × rf4cp 

Brl * sandy clay 
2.7 (I) 0.166 1382 yb(barley,clay) = 7141.4-3842.1 × rf3ap-2612.4 × rf4ap – 3032.1 × rf3bp-11708.0 × 

rf4bp – 28637.0 × rf3cp – 1636.2 × rf4cp 

III 

Optical 

Species* 

Cultivar Cov. 

Swh* cv. Manu 3.1 (I) 0.089 1292 yb (cv. Manu*clay) = 5696.5 + 2293.8 × rf3bp + 5387.9 × rf3cp – 736396.0 × (rf3bp)2 

Swh * cv. Satu 3.2 (I) 0.046 1031 yb (cv. Satu*clay) = –9798.2 + 736440.0 × rf2bp – 9925014.0 × (rf2bp)2 

Brl * cv. Inari 
3.3 (I) 0.144 1220 yb (cv. Inari*clay) = 8336.8 – 71506.0 × rf3bp – 45627.0 × (rf3bp)2 

IV 

Microwave 

SAR  

Sensor Cereal 

specie 

Model4) R2 RMSE Model equation 

 

ERS 

SAR(4) 

 

Brl 4.1(III) 0.448 482.7 yb (brl, ERS2) = 4345.7 + 109.4 × NDVIap – 211.6 × NDVIbp – 983.3 × NDVIcp –

0.57 × VV(5GHz,cp) + 5.61 × VV(5GHz,dp) 

Oats 4.2(III) 0.417 584.2 yb (oats, ERS2) = 3739.5 + 108.9 × NDVIap – 212.1 × NDVIbp – 938.8 × NDVIcp – 

0.47 × VV(5GHz,cp) + 4.28*VV(5GHz,dp)  

 

Radarsat 

SAR4) 

 

 

Swh 5.1(III) 0.731 300.8 yb (swh, Radarsat) = 4690.7 + 111.8 × NDVIap – 213.4 × NDVIbp – 982.6 × NDVIcp – 

2.69 × HH(5GHz,cp) + 3.9 × HH(5GHz,dp)  

Brl 5.2(III) 0.702 322.8 yb(brl,Radarsat) = 4430.1 + 109.4 × NDVIap – 211.6 × NDVIbp – 983.3 × NDVIcp – 

0.52 × HH(5GHz,cp) + 5.07 × HH(5GHz,dp)  

Oats 5.3(III) 0.624 483.6 yb (oats, Radarsat) = 3843.3 + 108.9 × NDVIap – 212.1 × NDVIbp – 983.8 × NDVIcp – 

0.47 × HH(5GHz,cp) + 4.03 × HH(5GHz,dp) 

 

Envisat 

ASAR(4) 

 

Swh 6.1(III) 0.723 302.1 yb(swh,Envisat) = 4701.1 + 108.2 × NDVIap – 208.8 × NDVIbp – 983.1 × NDVIcp – 

3.9 × VH(5GHz,cp) + 17.4 × VV(5GHz,cp) – 3.1 × VH(5GHz,dp)+ 5.2 × VV(5GHz,dp)  

Brl 6.2(III) 0.694 349.8 yb (brl, Envisat) = 4261.4 + 109.4 × NDVIap – 211.6 × NDVIbp – 983.3 × NDVIcp – 

4.59 × VH(5GHz,cp) + 18.24 × VV(5GHz,cp) – 4.04 × VH(5GHz,dp) + 6.15 × VV(5GHz,dp)  

Oats 6.3(III) 0.617 389.7 yb (oats, Envisat) = 3635.7 + 108.9 × NDVIap – 212.8 × NDVIbp – 983.8 × NDVIcp – 

2.59 × VH(5GHz,cp) + 16.46 × VV(5GHz,cp) – 2.03 × VH(5GHz,dp) + 4.05 × VV(5GHz,dp) 

HUTSCAT 

Scattero 

meter(3),(4) 

Swh 7.1(III) 0.582 416.8 yb(swh,HUTSCAT) = 4258.4 + 109.4 × NDVIap – 198.2 × NDVIbp – 937.4 × NDVIcp + 

5.2 × VV(5GHz,cp) + 18.4 × HH(5GHz,cp) – 2.9 × VH(5GHz,cp) – 16.4 × HV(5GHz,cp) + 

4.4 × VV(5GHz,dp) + 12.4 × HH(5GHz,dp) – 2.3 × VH(5GHz,dp) – 14.4 × HV(5GHz,dp)  

Brl 7.2(III) 0.518 490.1 yb (brl, HUTSCAT) = 4294.2 + 107.2 × NDVIap–  209.2 × NDVIbp – 928.2 × NDVIcp + 

3.2 × VV(5GHz,cp) + 17.4 × HH(5GHz,cp) – 3.9 × VH(5GHz,cp) – 15.4 × HV(5GHz,cp) + 

5.4 × VV(5GHz,dp) + 11.4 × HH(5GHz,dp) – 4.3 × VH(5GHz,dp) – 15.4 × HV(5GHz,dp)  

Oats 7.3(III) 0.424 544.2 yb(oats,HUTSCAT) = 3782.5 + 106.8 × NDVIap – 207.2 × NDVIbp – 942.5 × NDVIcp + 

4.2 × VV(5GHz,cp) + 15.2 × HH(5GHz,cp) – 5.9 × VH(5GHz,cp) – 17.1 × HV(5GHz,cp) + 4.8 

× VV(5GHz,dp) + 11.8 × HH(5GHz,dp) – 4.3 × VH(5GHz,dp) – 12.2 × HV(5GHz,dp)  

(1) For abbreviations refer to Table 9 (2) Independent variables classified with SatPhenClass-algorithm (Figure 3a,b). (3) HUTSCAT used for calibration 

verification purposes only (helicopter mounted) (4) Only in Part I (SAR+Optical models) (5) Only in Part II (Optical models)  
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Appendix D. SatPhenClass Classification Algorithm for Satellite Data  

Appendix figures and tables can be downloaded from the link: 
http://koti.armas.fi/~hlaurila/download/Pb4. 
The SatPhenClass classification algorithm can be downloaded from the link: 
http://koti.armas.fi/~hlaurila/download/Pb4 file: SatPhenClass-Appendix.pdf 
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