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Abstract: Measurements of the fraction of vegetation cover (FVC), retrieved from remotely
sensed reflectance spectra, serves as a useful measure of land cover changes on the regional
and global scales. A linear mixture model (LMM) is frequently employed to analytically
estimate the FVC using the spectral vegetation index (VI) as a constraint. Variations in the
application of this algorithm arise due to differences in the choice of endmember spectra and
VI model assumptions. As a result, the retrieved FVCs from a single spectrum depend on
those choices. Therefore, the mechanism underlying this dependency must be understood
fully to improve the interpretation of the results. The objective of this study is to clarify
the relationships among algorithms based on the LMM. The relationships were derived
analytically by limiting both the number of endmembers and the spectral wavelength band
to two each. Numerical experiments were conducted to demonstrate and validate the derived
relationships. It was found that the relationships between two algorithms of this kind could
be characterized by a single parameter that was determined by the endmember spectra and
the coefficients of a VI model equation used in the algorithms.
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1. Introduction

Information about the spatial and temporal distributions of vegetation plays an important role in
several environmental studies fields, from local applications such as land-cover change to global climate
change [1,2]. Changes in the quantity of vegetation cover directly affect water and energy budgets
through plant transpiration, surface albedo, emissivity, and roughness [3]. Biophysical parameters
retrieved from satellite observations are thus particularly important for improving our understanding
of climatic, hydrologic, and geochemical cycles [4]. Satellite remote sensing is an effective and practical
approach to facilitating such a broad range of environmental studies; it provides a retrospective and
synoptic view of large areas, offering the opportunity to monitor the spatio-temporal dynamics of
vegetation cover [5,6]. Vegetation quantity is often parameterized by the fractional area covered by
green vegetation (horizontal density) and the leaf area index (vertical density) estimated from spectral
reflectance measurements of satellite sensors [7]. In this study, we focus on a parameter that represents
the horizontal density, called the fraction of vegetation cover (FVC) [8], which has been widely used for
global and local analysis [8–12].

The algorithms for FVC retrieval fall into three categories based on the level of dependency
on numerical techniques: (1) algorithms based on an analytical formula [13,14], in which the
numerical process appear mainly in the determination of endmember spectra, distance measurement,
and the minimization of the cost function; (2) algorithms based on numerical model inversion of
the canopy radiative transfer [15–17]; and (3) algorithms using artificial intelligence, such as neural
networks [18,19]. The user can choose an algorithm based on their needs, objectives, and the availability
of external data sources. At the same time, algorithm variability implies that a value of the FVC retrieved
from a single spectrum may vary according to the algorithm applied. Furthermore, because each category
can be divided into several subcategories by considering the differences in assumptions and type of model
used, the retrieved FVC values can vary even within a category. Thus, before we discuss the relationships
among the three categories, relationships among algorithms within a category should be described. The
purpose of this study is to examine the algorithms of the first category listed above to identify the source
of variations in calculated FVC.

Our discussion is limited to the first category of FVC retrieval algorithms, although members of
this category share several algorithmic variations and assumption of the linear mixture model (LMM). In
these algorithms, FVC is modeled using the weights of the representative spectra, known as endmembers.
Because of its simplicity, LMMs with very few endmembers have been used frequently over the
years [5,7,13,14,20–30].

LMM-based retrieval algorithms can be characterized by the function and/or conditions under which
the model is minimized [31]. In general, a set of weights is calculated that minimize differences between
a modeled spectrum and the measured target pixel spectrum. Variations in the algorithm arise from
the choice of variable used to measure the similarity between the model and the measurement data.
For example, when reflectance is directly used as a variable, the minimization process considers the
difference (often defined as the root mean square error, RMSE) between the modeled and measured
spectrum [8–14,21,22,24,28,31–35]. Altering the reflectance into a spectral vegetation index (VI)
produces another group of algorithms [1,4,7,25,26,36–39]. In this group, several conditions and
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constraints are imposed to uniquely determine the set of weights. Therefore, the algorithms are further
divided into several groups within this category.

If the values of the FVC derived by the two algorithms had a one-to-one relationship, one would not
need to compute both algorithms. If the relationship is not one-to-one, one would always encounter
some degree of uncertainty in estimating the FVC using different algorithms. If this is the case, this
uncertainty is inherent in the algorithms, meaning that the uncertainty is unavoidable.

The objective of this paper is to investigate the relationships between FVC values calculated using
the various algorithms in the context of the well-known LMM. This work elucidates the underlying
causes of variation observed among results derived from different algorithms. We approach this problem
analytically by limiting both the number of endmembers and the number of wavelength bands to two
each. The simplicity enables us to treat the derivation analytically such that the conclusion is derived
deterministically.

2. Model Assumptions and Retrieval Algorithms

This paper focuses on the LMM-based retrieval algorithms in which algorithmic variations arise
mainly from the choice of endmember variable and the constraints imposed on the model. We consider
two choices for the endmember variables, the measured reflectance and the VI obtained by band algebra.
The constraints imposed on the model comprise the same two choices (reflectance and VI). The model
assumptions and algorithms considered in this study are explained in the following section.

2.1. Model Assumptions

An LMM represents the spectrum from a target pixel as a linear combination of the representative
components (endmembers) of the land surface. The weights of each endmember are the fractional area
covered by the surface type. Two types of endmember, vegetation and non-vegetation, are assumed in
this study. Under this assumption, the weight of the vegetation endmember corresponds to the fraction
of vegetation cover (FVC). The spectra of vegetation and non-vegetation endmembers are represented
by the vectors, ρρρv and ρρρs, respectively. The subscripts v and s denote vegetation or soil. Because the
number of endmembers is limited to two, two measured spectral bands are sufficient to determine the
weights of each endmember. Red and NIR bands are the most commonly chosen bands for the purpose
of estimating FVC, and will be assumed in this study. Under these assumptions, the two vectors of the
endmember spectra consist of red and NIR reflectance, ρρρv = (ρv,r, ρv,n) and ρρρs = (ρs,r, ρs,n), where the
subscripts r and n indicate the red and NIR bands, respectively.

The spectrum of the target pixel is modeled by the weighted linear sum of all endmembers, where the
weights, ω̂, are given as

ρρρm(ω̂) = ω̂ρρρv + (1 − ω̂)ρρρs. (1)

The subscript m denotes the modeled spectrum. In Equation (1), the unity constraint is assumed. Note
that the parameter ω̂ is explicitly written in ρρρm for clarity.
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Figure 1. Illustration of the three algorithms in red-NIR reflectance space. (a) Reflectance
based LMM, (b) VI based LMM (for the case of NDVI), and (c) VI-Isoline based LMM
(also for the case of NDVI). The marks denoted by V and S represent endmember spectrum
of vegetation and non-vegetation surfaces, respectively. T and M represent measured and
modeled spectrum, respectively. The key variables (such as d, ℓi(i = 1, 2), and θ) which
determine FVC estimation are also shown in the figures.

2.2. Algorithm-1: Reflectance-Based LMM

The standard algorithm uses reflectance directly (no VI involved,) and imposes a condition on the
difference between the model and target reflectances to determine the weights. The minimization is
performed on the root mean square error (RMSE) calculated directly from the reflectance. Thus, the cost
function is the distance between the target spectrum, ρρρt = (ρt,r, ρt,n), and modeled spectrum, ρρρm. The
FVC estimation, ω̂, is determined to minimize the distance,

ω̂ =
(ρρρv − ρρρs) · (ρρρt − ρρρs)

(ρρρv − ρρρs) · (ρρρv − ρρρs)
= g1(ρρρt). (2)

RMSE minimization also implies that given a measure of distance, the algorithm finds ω̂ to calculate
the best fit for the spectrum within the model subspace. The model subspace occupies one dimension
and is spanned by the vegetation and non-vegetation endmember spectra, as illustrated in Figure 1(a). In
the figure, the three spectra (indicated by V , S, and T for vegetation, non-vegetation, and target spectra,
respectively) are plotted in the red-NIR reflectance space with the best fit spectrum denoted by M .
When the Euclidean norm is chosen, the distance is measured, along with the line perpendicular to the
model subspace spanned by the spectrum of the vegetation endmember, V , and that of non-vegetation
endmember, S (Figure 1(a)). The FVC value, ω̂, is then determined as the ratio of the distance (ℓ1)
between S and M to the distance (d) between S and V .

The FVC value obtained by this algorithm is not the same as the one obtained by the algorithms that
use VI as an additional condition, as explained in the following subsections.
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2.3. Algorithm-2: VI-Based LMM

One variation of the FVC retrieval algorithm is introduced by the choice of the variable that will be
linearly blended. One choice is to use the VI instead of the direct reflectance to model a mixed pixel.
Although numerous variations of the two-band VI (v) have been proposed, their forms can be represented
by the function f ,

v = f(ρρρ)

=
p1ρr + q1ρn + r1
p2ρr + q2ρn + r2

, (3)

where the coefficients pi, qi, and ri depend on the actual choice of VI. In this study, we chose six VIs,
namely, the normalized difference vegetation index (NDVI) [40], difference vegetation index (DVI) [41],
perpendicular vegetation index (PVI) [42], soil-adjusted vegetation index (SAVI) [43], transformed SAVI
(TSAVI) [44,45], and enhanced VI-2 (EVI2) [46] (EVI2 is a two-band version of the original EVI [47]).
The coefficients for the VIs are summarized in Table 1.

The function f can also be rewritten in the form

f(ρρρ) =
ccc1 · ρρρ+ r1
ccc2 · ρρρ+ r2

, (4)

where the two vectors represented by ccci are defined by

ccci = (pi,qi), (i = 1, 2). (5)

Using the above definitions, the remotely sensed spectrum of a target pixel ρρρt are transformed into the
VI (vt) by

vt = f(ρρρt). (6)

We also define the VI values of each endmember spectrum, vv and vs for the vegetation and
non-vegetation endmember spectra, by

vv = f(ρρρv), (7)

vs = f(ρρρs). (8)

The VI-based algorithm simply models VI value as the linear sum of vv and vs using the weight ω̂:

vm(ω̂) = ω̂vv + (1 − ω̂)vs, (9)

where vm represents a modeled VI value. The weight can be determined by imposing a condition such
that the VI modeled by Equation (9) is equal to the measured VI,

vm(ω̂) = vt. (10)

Equation (10) can be solved for ω̂ to give

ω̂ =
vt − vs

vv − vs

. (11)
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Table 1. Coefficients of two-band VIs (pi, qi and ri) used in this study.

p1 q1 r1 p2 q2 r2

NDVI −1 1 0 1 1 0

DVI −1 1 0 0 0 1

PVI −a † 1 −b † 0 0 (1 + a)1/2 †

SAVI −1.5 * 1.5 * 0 1 1 0.5 *

TSAVI −a2 † a † −ab † 1 a † −ab+X(1 + a2) †

EVI2 −2.5 2.5 0 2.4 1 1

* We assumed that L = 0.5.
† a and b represent the slope and intercept of a soil line. We also assumed that X = 0.08 in this study.

We then define a function g2 to represent the above transformation from vt to ω̂,

g2(vt) =
vt − vs

vv − vs

, (12)

to have the following general representation of the composite function

ω̂ = g2(vt) = g2(f(ρρρt)) = (g2 ◦ f)(ρρρt). (13)

An interpretation of this algorithm is illustrated in Figure 1(b) for the case of NDVI. In the figure, an
estimation of the FVC, ω̂, can be approximated as the ratio of the angle spanned by the VI isoline,
which passes through the target spectrum (denoted by the point T in the figure) and the isoline of
the non-vegetation endmembers (θt − θs), to the angle spanned by the VI isolines of vegetation and
non-vegetation endmembers (θv − θs). The actual representation of ω̂ for the choice of NDVI with these
angles becomes

ω̂ =
tan θt − tan θs

tan θv − tan θs

. (14)

2.4. Algorithm-3: VI-Isoline-Based LMM

The VI-Isoline-based algorithm models VI using the function f based on a spectrum modeled by the
LMM,

vm(ω̂) = f(ρρρm(ω̂)), (15)

where vm represents the modeled VI. ρρρm represents the spectrum as a linear combination of vegetation
and non-vegetation endmember spectra. ω̂ is the weight (estimated FVC) of the vegetation endmember.
We expand the right hand side of the above equation to give

vm(ω̂) =
ccc1 · ρρρm(ω̂) + r1
ccc2 · ρρρm(ω̂) + r2

(16)

=
ω̂ccc1 · (ρρρv − ρρρs) + ccc1 · ρρρs + r1
ω̂ccc2 · (ρρρv − ρρρs) + ccc2 · ρρρs + r2

. (17)
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The FVC is determined by imposing the condition used in the previous algorithm (VI-based LMM),

vm(ω̂) = vt. (18)

The above equation can be solved for ω̂,

ω̂ =
(ccc1 − vtccc2) · ρρρs + r1 − vsr2

(vtccc2 − ccc1) · (ρρρv − ρρρs)
. (19)

We define a function g3 to represent the above transformation from vt to ω̂ as

g3(vt) =
(ccc1 − vtccc2) · ρρρs + r1 − vsr2

(vtccc2 − ccc1) · (ρρρv − ρρρs)
. (20)

Finally, we arrive at a general representation of the composite function,

ω̂ = g3(vt) = (g3 ◦ f)(ρρρt). (21)

This algorithm is illustrated in Figure 1(c) for the case of NDVI. In the figure, the modeled spectrum
(denoted by the point M ) is determined by the intersection of the model subspace and the single
dimension spanned by the endmember spectra (V for the vegetation and S for the non-vegetation) and
the VI-isoline, which passes through the target spectrum (the point T in the figure). The value of FVC
(ω̂) is determined as the ratio of the distance (ℓ2) between S and M to the distance (d) between S and V .

3. Relationships Among the Algorithms

In this section, we explain the relationships among the FVCs calculated by the different algorithms.
If the relationship between two transformations is one-to-one (and onto), the FVC estimated by one
algorithm can be transformed into the other uniquely (without uncertainty). When this is the case, the
two algorithms can be considered equivalent. In contrast, if the relationship is not one-to-one then
it is impossible to deterministically transfer results from one algorithm to the other. Some degree of
uncertainty would remain in the transformation. This implies that a comparison of the FVC values
retrieved by different algorithms may contain bias errors. In this section, we clarify the relationships
among the three algorithms using the functions defined in the previous section. To discriminate the ω̂
derived by the three algorithms, we denote the estimated FVC values by ω̂1, ω̂2, and ω̂3 for algorithms 1,
2, and 3, respectively.

3.1. Relationships Between Algorithm-1 and the Others

FVC estimation using algorithm-1, ω̂1, can be obtained by the function g1 for a given target spectrum
ρρρt as

ω̂1 = g1(ρρρt). (22)

Although this transformation (from ρρρt to ω̂1) maps ρρρt uniquely to ω̂, the inverse transformation, g−1
1 ,

does not map ω̂1 uniquely to a single value of ρρρt. We define a set of reflectance spectra that give ω̂1 as
S1(ω̂1):

S1(ω̂1) = {ρρρ
∣∣ g1(ρρρ) = ω̂1)}. (23)



Remote Sens. 2010, 2 1687

Figure 2. The relationship between the algorithm-1 and the other two in red-NIR
reflectance space. (a) Relationship between algorithm-1 and algorithm-2, (b) algorithm-1
and algorithm-3. V and S represent endmember spectrum of vegetation and non-vegetation
surface. T1 and T2 are target spectra. M1 is a modeled spectrum by algorithm-1 for two
measured spectra denoted by T1 and T2. M31 and M32 are modeled spectra by algorithm-3
for T1 and T2, respectively. The figures illustrate the source of uncertainties between
the algorithms.

A set of ω̂2 that can be mapped from ρρρ ∈ S1(ω̂1) is then defined by T1→2(ω̂1) as

T1→2(ω̂1) = {ω̂2

∣∣ ω̂2 = (g2 ◦ f)(ρρρ), ρρρ ∈ S1(ω̂1)}. (24)

Similarly, the relationship between algorithm-1 and algorithm-3 can be represented by defining
T1→3(ω̂1) as

T1→3(ω̂1) = {ω̂3

∣∣ ω̂3 = (g3 ◦ f)(ρρρ), ρρρ ∈ S1(ω̂1)}. (25)

Since the mappings T1→2 and T1→3 are not one-to-one, the relationships between ω̂1 and the others
(ω̂2 and ω̂3) are not uniquely determined. This implies some degree of uncertainty in the relationships
between the two algorithms. This fact is clearly illustrated in Figure 2(a). The figure shows the
geometrical relationship between algorithms-1 and -2 in the red-NIR reflectance space. In the figure,
the spectra of the two endmembers are represented by the points denoted by V and S. The two target
spectra represented by T1 and T2 produce an identical FVC value by algorithm-1 because the nearest
point in the model subspace (M1) is the same for both T1 and T2. However, θt1 and θt2 are not the same,
which means that the values of ω̂2 for T1 and T2 are different. Similarly, the relationship between ω̂1 and
ω̂3 is illustrated in Figure 2(b). Although the two target spectra T1 and T2 yield the same FVC value by
algorithm-1, the FVCs retrieved by algorithm-3 are different (denoted by M31 and M32).

In summary, FVC retrieved by algorithm-1 is not uniquely transformed to a single value of FVC
retrieved by algorithms-2 and -3. Non-uniqueness is a source of uncertainty induced by the choice of
retrieval algorithm.
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3.2. Relationship Between Algorithms-2 and -3

The relationship between these two algorithms is somewhat different from the relationships
introduced in the previous subsection. Major difference arise from the fact that both algorithms use VI,
although the implementation is not identical. FVC estimation by algorithm-2 can be obtained directly
from the VI value of the target spectrum (vt) using the function g2,

ω̂2 = g2(vt). (26)

FVC estimation by algorithm-3, ω̂3, can also be written as

ω̂3 = g3(vt). (27)

In the above two equations, vt is a common variable that can be removed by combining the two
equations. Solving Equation (26) for vt using the inverse function of g2 gives

vt = g−1
2 (ω̂2), (28)

then substituting Equation (28) into Equation (27) yields a relationship between ω̂2 and ω̂3 defined by
the composite function

ω̂3 = (g3 ◦ g−1
2 )(ω̂2). (29)

Similarly, ω̂2 can be written as a function of ω̂3

ω̂2 = (g2 ◦ g−1
3 )(ω̂3). (30)

Because both g2 and g3 are one-to-one transformations, the composite functions in Equations (29)
and (30) are also one-to-one transformations. Therefore, the FVC value estimated by one algorithm can
be uniquely transformed to the other. The actual form of Equation (29) becomes

ω̂3 =
ω̂2ϕ2 + ψ2

ω̂2ϕ1 + ψ1

, (31)

where

ϕ1 = (vv − vs)ccc2 · (ρρρv − ρρρs), (32a)

ϕ2 = −(vv − vs)(ccc2 · ρρρs + r2), (32b)

ψ1 = (vsccc2 − c1c1c1) · (ρρρv − ρρρs), (32c)

ψ2 = (ccc1 − vsccc2) · ρρρs + r1 − vsr2. (32d)

Because (vv − vs) and (ccc2 · ρρρs + r2) are positive, ϕ2 is always negative,

ϕ2 < 0. (33)

Furthermore, the following relationships can be found directly from the definitions

ϕ2 = ϕ1 + ψ1, (34)

ψ2 = 0. (35)
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Using these relationships, Equation (31) can be rewritten with only one variable ν as

ω̂3 =
ω̂2

νω̂2 + 1 − ν
, (36)

where

ν =
ϕ1

ϕ1 + ψ1

, (37a)

1 − ν =
ψ1

ϕ1 + ψ1

. (37b)

Note that this relationship can be obtained if and only if the choice of VI in both algorithms-2 and
-3 are equivalent. Thus, ν depends on the choice of VI and endmember spectra of vegetation and
non-vegetation class. The forms of the coefficients ϕ1 and ψ1 for several VIs are summarized in Table 2.

When ν becomes 0, ω̂3 is identical to ω̂2, implying that it is not necessary to investigate the relationship
between these variables in this particular case. This case occurs when the inner product of the vectors ccc2
and ρρρv − ρρρs becomes 0 (the vectors are orthogonal).

For the discussion presented in this study, we consider the range of ν based on the following
inequality, which holds for all VIs in Table 2.

ccc2 · ρρρv > −r2. (38)

(Most likely, this inequality holds for the other two-band VIs represented by the general form in
Equation (4)). Subtracting ccc2 ·ρρρs from the both sides of the above inequality then multiplying by (vv−vs)

yields

(vv − vs)ccc2 · (ρρρv − ρρρs) > −(vv − vs)(ccc2 · ρρρs + r2). (39)

The left and right hand sides are the definitions of ϕ1 and ϕ2, respectively. The inequality can also be
written as

ϕ1 > ϕ2. (40)

From Equation (34), the variable ν, which is defined as the ratio of ϕ1 to ϕ2, is less than one.

ν < 1. (41)

In the following discussion, the above range of values for ν should be considered. We exclude the
trivial case ν = 0 from the derivations in the following section. This approach will help us analyze
the maximum difference between ω̂2 and ω̂3 provided in subsection 4.3. A detailed discussion of the
difference in estimated FVC values is provided with the numerical examples in the next section.
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Table 2. Summary of ϕ1 and ψ1 for the VIs considered in this study. ρv,r and ρv,n are the red
and NIR reflectance of vegetation endmember, respectively. Likewise, ρs,r and ρs,n are the
red and NIR reflectance of non-vegetation endmember, respectively. a represents a slope of
soil line.

ϕ1 ψ1

NDVI (vv − vs)(ρv,r + ρv,n − ρs,r − ρs,n) (1 + vs)(ρv,r − ρs,r) − (1 − vs)(ρv,n − ρs,n)

DVI 0 ρv,r − ρv,n − ρs,r + ρs,n

PVI 0 a(ρv,r − ρs,r) − ρv,n + ρs,n

SAVI (vv − vs)(ρv,r + ρv,n − ρs,r − ρs,n) (1.5 + vs)(ρv,r − ρs,r) − (1.5 − vs)(ρv,n − ρs,n)

TSAVI (vv − vs)[ρv,r − ρs,r + a(ρv,n − ρs,n)] (a2 + vs)(ρv,r − ρs,r) + a(vs − 1)(ρv,n − ρs,n)

EVI2 (vv − vs)[2.4(ρv,r − ρs,r) + ρv,n − ρs,n] (2.4vs + 2.5)(ρv,r − ρs,r) + (vs − 2.5)(ρv,n − ρs,n)

4. Numerical Results

4.1. Uncertainties in the Relationships

Numerical experiments were conducted to demonstrate and validate the derived relationships between
algorithm-1 and algorithms-2 and -3. We assumed that a target pixel could be divided into vegetated and
non-vegetated (bare soil) surface cover. Thus, the reflectance spectra from the target pixel could be
modeled by a two-endmember linear mixture model. The endmember spectrum of the vegetation class
was parameterized as a function of the leaf area index (LAI) using a canopy radiative transfer model
GeoSail [17]. For this simulation, soil reflectance beneath the canopy layer was assumed to be constant.
The red reflectance of the soil layer within a canopy portion was fixed to 0.1, and the NIR reflectance of
the soil surface was modeled to be 0.1586 by assuming a general soil line reported in [48]. The slope a
and intercept b of the soil line were 1.166 and 0.042, respectively. The endmember spectrum of the bare
soil portion of a target pixel was modeled by the same general soil line such that the soil endmember
spectrum was parameterized by the soil reflectance of the red band (ρr,s). The two sets of endmember
spectra are plotted in Figure 3.

To demonstrate the relationships among the FVCs retrieved by the three algorithms, we prepared a set
of reflectance spectra consisting of 388 pairs of red and NIR reflectance values, plotted in Figure 4(a).
In the figure, the endmember spectra of the vegetation and non-vegetation classes are superimposed.
These endmember spectra were obtained by assuming LAI= 4 and ρr,s = 0.15 for vegetation and
non-vegetation classes, respectively. (Note that reflectances of the NIR band for the non-vegetation
endmember were obtained using the general soil line.) We chose NDVI as a representative VI for
algorithms-2 and -3 in this subsection. The FVC values were computed using the three algorithms
for all reflectance spectra shown in Figure 4(a).

The relationships among the retrieved FVC values using the three algorithms (ω̂1, ω̂2, and ω̂3) are
shown as cross plots of the three combinations of ω̂ in Figures 4(b–d). The FVC values estimated by
algorithm-1 were plotted against the values estimated by algorithms-2 and -3 in Figures 4(b) and (c),
respectively. Figure 4(d) shows the relationships between algorithms-2 and -3. From these results, FVC
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Figure 3. Plot of endmember spectra in red-NIR reflectance space. Sequences of vegetation
and non-vegetation endmember are represented as a green and a brown line, respectively.
Values of LAI and red reflectance of non-vegetation surface (ρs,r) are indicated in the lines.
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estimation by algorithm-1 was not transformed uniquely to a single FVC value by algorithms-2 and -3.
In consequence, some degree of uncertainty is present in these algorithms. The uncertainty is inherent in
any comparison between these two estimations. In contrast, a one-to-one relationship exists between
algorithms-2 and -3 (Figure 4(d)). This result clearly validated the one-to-one relationship derived
between algorithms-2 and -3. The FVC estimation by either algorithm can be transformed uniquely
to the other (thus, the two algorithms can be considered equivalent.)

4.2. Differences Between ω̂2 and ω̂3 as a Function of Endmember Spectra

The previous subsection demonstrated that the difference between the results of algorithms-2 and
-3 appeared to depend on the FVC value, although the relationship was one-to-one between the two
algorithms. In fact, the difference also depended on the endmember spectra and the choice of VI
(which will be confirmed in the next subsection.) In the following subsections, we will investigate
these differences thoroughly.

The difference between ω̂2 and ω̂3 was obtained using several endmember spectra for both
non-vegetation (soil) and vegetation classes with four different VIs (NDVI, SAVI, TSAVI, and EVI2)
shown in Figures 5(a–d) and 6(a–d). We excluded DVI and PVI from the analysis because ϕ1 = 0 for
these VIs (meaning that there is no difference between ω̂2 and ω̂3.) Figures 5(a–d) show the plots of
(ω̂2 − ω̂3) at a fixed vegetation endmember spectrum simulated by setting LAI to 4 (the endmember
spectrum is shown in Figure 3). Thus, the variations arose only from the choice of soil endmember
spectrum (the variations of which are shown in Figure 3). Figures 5(a–d) clearly show that the difference
(ω̂2− ω̂3) depended on the choice of soil endmember spectrum assumed for the FVC retrieval. Similarly,
Figures 6(a–d) show the dependency of (ω̂2 − ω̂3) on the choice of vegetation endmember spectrum.
The soil endmember spectrum was fixed for Figures 6(a–d) at ρs = (0.15, 0.22). These results indicated
the dependency of the FVC estimation difference on the vegetation endmember spectrum. In addition,
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Figure 4. Hypothetical target spectra in red-NIR reflectance space and cross plots of FVC
estimations by the three algorithms for the target spectra. (a) Scatter plot of target spectra
(dot), endmember spectra of vegetation (filled circle) and non-vegetation (empty circle) in
red-NIR reflectance space. (b) Cross plots of ω̂2 and ω̂1, (c) ω̂3 and ω̂1, and (d) ω̂3 and ω̂2.
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Figures 5(a–d) and 6(a–d) implied the following facts: (1) The differences could be both positive and
negative (depending on the choice of endmember); however, the signature of the difference remained
the same once the endmember spectra were fixed. (2) The maximum differences and the point of ω̂2

where the maximum occurred also depended on the choice of endmember (the maximum did not occur
at the same value of ω̂2.) (3) The relationships between algorithms-2 and -3 showed some degree of
nonlinearity (depending on the endmember spectra.)

To demonstrate the effects of both endmember spectra simultaneously, the difference (ω̂2 − ω̂3) was
plotted for several values of ω̂2 (0.2, 0.5, and 0.8) as a function of LAI (as a parameter for the vegetation
endmember spectrum) and red reflectance of the soil endmember (Figures 7(a-l)). From these results,
the influence of the soil endmember spectrum was large relative to that of the vegetation endmember for
all VIs. (As a result, the isolines in Figure 7 were nearly horizontal.) This implied that differences in soil
brightness may induce discrepancies in the FVCs retrieved by the two algorithms that are larger than the
differences produced by the choice of vegetation endmember spectrum.
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Figure 5. Plot of (ω̂3 − ω̂2) against ω̂2 under various non-vegetation endmember spectra
for the case of four VIs ((a) NDVI, (b) SAVI, (c) TSAVI, and (d) EVI2). The endmember
spectrum of vegetation class is fixed at ρρρv = (0.02, 0.40) corresponding to the value of
LAI= 4. The maximum difference for each case is indicated by a dot (computed from
Equations (46) and (47)).
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4.3. The Maximum Difference Between ω̂2 and ω̂3

As mentioned in the previous subsection, the maximum difference occurred at somewhat different
values of ω̂2 (Figures 5 and 6) depending on the choice of endmember spectra. Additionally, the sign
and absolute value of the difference depended on the endmember spectra. In this subsection, we will
investigate this point.

We first rewrite the difference between ω̂2 and ω̂3 (denoted as the function h) in terms of ω̂2 and ν:

h(ω̂2) = ω̂3 − ω̂2

=
−νω̂2(ω̂2 − 1)

νω̂2 + 1 − ν
. (42)

To derive the value of ω̂2 at which the maximum of h(ω̂2) occurs (defined as ω̂2max), we consider the
partial derivative of the function h with respect to ω̂2

∂h(ω̂2)

∂ω̂2

= −ν
2ω̂2

2 + 2ν(1 − ν)ω̂2 − ν(1 − ν)

(νω̂2 + 1 − ν)2
. (43)
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Figure 6. Plot of (ω̂3 − ω̂2) against ω̂2 under various vegetation endmember spectra for the
case of four VIs ((a) NDVI, (b) SAVI, (c) TSAVI, and (d) EVI2). The endmember spectrum
of non-vegetation class is fixed at ρρρs = (0.15, 0.22). The maximum difference for each case
is indicated by a dot (computed from Equations (46) and (47)).
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The maximum of h occurs at the root of the partial derivative. Because the denominator is always
positive, ω̂2max should satisfy the following relationship:

νω̂2
2max + 2ν(1 − ν)ω̂2max − ν(1 − ν) = 0. (44)

Solving for ω̂2max, we have

ω̂2max =
ν − 1 ±

√
1 − ν

ν
. (45)

Although two values will satisfy Equation (44), only the positive value is an appropriate choice for the
following reason. When 0 < ν < 1, the value of ω̂2max exceeds one when the negative sign is chosen.
Thus, the positive sign is the only choice that yields an appropriate value (ω̂2max becomes smaller than
1.0 for this case):

ω̂2max =
ν − 1 +

√
1 − ν

ν
. (46)

Likewise, when ν < 0, the positive value should be chosen because (ν − 1)/ν > 1 and
√

1 − ν/ν < 0.
The maximum difference can be obtained by substituting ω̂2max into Equation (42) to obtain

h(ω̂2max) =
(
√

1 − ν − 1)2

ν
. (47)
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Figure 7. Contour plots of (ω̂3 − ω̂2) for the cases of (a) NDVI, (b) SAVI, (c) TSAVI, and
(d) EVI2 as a function of vegetation and non-vegetation endmember spectra at fixed values
of ω̂2 (0.2, 0.5 and 0.8.) Variations of vegetation and non-vegetation endmember spectra are
represented by LAI (in x-axis) and soil reflectance of red band (in y-axis), respectively.

Equation (47) suggests that the sign of h(ω̂2) can be determined from the sign of ν. When ν is
positive, ω̂3 is larger than ω̂2.

4.4. Variations of ν, ϕ1, ψ1, and h(ω̂2max) with Variations in the Endmember Spectra

The relationship between algorithms-2 and -3 can be represented as a function of a single variable
(ν), as described in subsections 4.2 and 4.3. In this subsection, we focus on the behavior of ν and its
influence on the sign of (ω̂3− ω̂2), its magnitude, and ω̂2max. Note that because ν is defined by ϕ1 and ψ1

(and the sum of these two, ϕ2), we need to examine their variations as a function of endmember spectra.
Figures 8(a–t) summarize the contour plots of ϕ1, ψ1, ϕ2, ν, and 1 − ν as a function of vegetation

endmember spectrum (represented by LAI in the x-axis) and non-vegetation endmember spectrum
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Figure 8. Variations of ϕ1, ψ1, ϕ2, ν, and 1−ν as a function of vegetation and non-vegetation
endmember spectra represented by LAI and soil red reflectance, respectively. The plots are
arranged in a matrix form, where the choice of VI is arranged column-wise, and the five
coefficients are arranged row-wise.
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Figure 9. Variations of ω̂2max and h(ω̂2max) as a function of spectrum of vegetation and
non-vegetation endmember. The upper figures (a)-(d) are the results of ω̂2max for the case
of NDVI, SAVI, TSAVI and EVI2 (arranged column-wise), respectively. The lower figures
(e)-(h) are the results of h(ω̂2max).

(represented by soil reflectance of the red band in the y-axis) for the four VIs (NDVI, SAVI, TSAVI,
and EVI2).

The behavior of ϕ1, ψ1, and ϕ2 suggest several dependency relationships. The coefficients ψ1 and
ϕ2 were negative over the entire range of both endmember spectra for all four VIs. In contrast, ϕ1 was
both positive and negative. Because ϕ1 = 0 implies no difference between the two estimations of FVC,
there is an isoline along which the two estimations become identical. This isoline appears at almost
the same location for NDVI, SAVI, and TSAVI (Figures 8(a–c)), whereas only EVI2 showed different
behavior in this respect (Figure 8(d)). The coefficient ψ1 depended mostly on the vegetation endmember
spectrum for the cases of SAVI, TSAVI, and EVI2 (Figure 8(f–h)), because the contours were parallel to
the y-axis. This implied that ψ1 mainly represented the influence of the vegetation endmember spectrum
in these cases. The behavior of ν was similar for all four VIs (Figure 8(m–p)), although the location
of the zero contour for EVI2 differed somewhat from the other three cases. Because the sign of the
difference (h(ω̂2)) was identical to the sign of ν, this result confirmed that the sign of (h(ω̂2)) was mostly
the same for NDVI, SAVI, and TSAVI (as was shown in Figures 5 and 6).

Finally, the plots of ω̂2max and h(ω̂2max) are shown in Figures 9(a–d) and Figures 9(e–h), respectively.
In those figures, LAI (the x-axis) represents the vegetation endmember spectrum, and the soil red
reflectance (the y-axis) represents the non-vegetation endmember. These figures clearly showed that
ω̂2max and the maximum difference h(ω̂2max) (in the absolute sense) depended on the combination of the
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endmember spectra to some extent. Interestingly, both ω̂2max and h(ω̂2max) depended more heavily on
the choice of non-vegetation endmember spectrum than on the vegetation endmember spectrum, which
implies the presence of soil influence on both variables.

5. Discussion

Several types of algorithms have been proposed for the purpose of FVC estimation from remotely
sensed reflectance spectra. However, the relationships among the FVC estimates derived from a single
spectrum using different algorithms had not been fully clarified. The relationships were thoroughly
derived in this study by focusing on a limited set of retrieval algorithms based on an LMM. In the
algorithms, both the number of endmembers and the number of spectral bands were limited to two each
to simplify and clarify the discussion. A general form of the VIs, represented as the ratio of the linear
sum of red and NIR reflectances, were assumed to cover several well-known VIs in a single form.

This study derived expressions for the relationships among the various FVC algorithms in the context
of these limitations. The major findings of this study were that the one-to-one relationships between
algorithms-2 and -3 depended on the choice of endmember spectra (vegetation and non-vegetation
classes). The maximum difference between the estimated FVCs, as well as the FVC value at which
the maximum occurred, could be written as a function of only one variable, ν, which was determined by
the endmember spectra. The dependencies were demonstrated and validated numerically using a canopy
RT model with a general soil line.

The applicability of the results and findings of this study are mostly restricted by the assumptions
imposed on the retrieval algorithms. The analytical relationships were derived only for techniques based
on two endmembers and two bands with a VI expressed in the general form. Further investigations would
be required to extend this discussion to the analysis of hyperspectral data with constraints represented
in a rather complex form. Nevertheless, the fundamental aspects of the derived relationships form a
theoretical basis for similar investigations. For this reason, this study is expected to contribute to a better
understanding of the retrieval algorithms.
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