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Abstract: The global characteristics of retrievals of the column-averaged CO2 dry air mole 

fraction, XCO2, from shortwave infrared observations has been studied using the expected 

measurement performance of the NASA Orbiting Carbon Observatory-2 (OCO-2) mission. 

This study focuses on XCO2 retrieval precision and averaging kernels and their sensitivity to 

key parameters such as solar zenith angle (SZA), surface pressure, surface type and aerosol 

optical depth (AOD), for both nadir and sunglint observing modes. Realistic simulations 

have been carried out and the single sounding retrieval errors for XCO2 have been derived 

from the formal retrieval error covariance matrix under the assumption that the retrieval 

has converged to the correct answer and that the forward model can adequately describe 

the measurement. Thus, the retrieval errors presented in this study represent an estimate of 

the retrieval precision. For nadir observations, we find single-sounding retrieval errors with 

values typically less than 1 part per million (ppm) over most land surfaces for SZAs less 

than 70° and up to 2.5 ppm for larger SZAs. Larger errors are found over snow/ice and 

ocean surfaces due to their low albedo in the spectral regions of the CO2 absorption bands 

and, for ocean, also in the O2 A band. For sunglint observations, errors over the ocean are 

significantly smaller than in nadir mode with values in the range of 0.3 to 0.6 ppm for 
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small SZAs which can decrease to values as small as 0.15 for the largest SZAs. The 

vertical sensitivity of the retrieval that is represented by the column averaging kernel peaks 

near the surface and exhibits values near unity throughout most of the troposphere for most 

anticipated scenes. Nadir observations over dark ocean or snow/ice surfaces and 

observations with large AOD and large SZA show a decreased sensitivity to near-surface 

CO2. All simulations are carried out for a mid-latitude summer atmospheric profile, a given 

aerosol type and vertical distribution, a constant windspeed for ocean sunglint and by 

excluding the presence of thin cirrus clouds. The impact of these parameters on averaging 

kernels and XCO2 retrieval errors are studied with sensitivity studies. Systematic biases in 

retrieved XCO2, as can be introduced by uncertainties in the spectroscopic parameters, 

instrument calibration or deficiencies in the retrieval algorithm itself, are not included in 

this study. The presented error estimates will therefore only describe the true retrieval 

errors once systematic biases are eliminated. It is expected that it will be possible to 

retrieve XCO2 for cloud free observations and for low AOD (here less than 0.3 for the 

wavelength region of the O2 A band) with sufficient accuracy for improving CO2 surface 

flux estimates and we find that on average 18% to 21% of all observations are sufficiently 

cloud-free with only few areas suffering from the presence of persistent clouds or high 

AOD. This results typically in tens of useful observations per 16 day ground track repeat 

cycle at a 1° × 1°
 
resolution. Averaging observations acquired along ~1° intervals for 

individual ground tracks will significantly reduce the random component of the errors of 

the XCO2 average product for ingestion into data assimilation/inverse models. If biases in 

the XCO2 retrieval of the order of a few tenth ppm can be successfully removed by 

validation or by bias-correction in the flux inversion, then it can be expected that OCO-2 

XCO2 data can lead to tremendous improvements in estimates of CO2 surface-atmosphere 

fluxes. 

Keywords: trace gases; remote sensing; inverse theory 

 

1. Introduction  

Human activities such as fossil fuel combustion and land use change have increased global average 

atmospheric carbon dioxide (CO2) concentrations from a pre-industrial level of 280 parts per million 

(ppm) to more than 388 ppm as of June 2010. Atmospheric CO2 acts as an effective greenhouse 

forcing agent and its increasing concentration has contributed 1.66 ± 0.17 Wm
−2

 to the global radiative 

forcing [1]. 

Networks of surface in situ CO2 sensors provide accurate measurements of the globally-averaged 

atmospheric CO2 concentration as well as large scale temporal, seasonal, and latitudinal variations. 

However, these measurements are too sparse to constrain accurate carbon budgets on sub-continental 

or regional spatial scales leaving key scientific and socio-economic questions about the functioning of 

the global carbon cycle unresolved [2]. On average about 40 percent of the anthropogenic emissions 

remain in the atmosphere and 60 percent is taken up by the oceans and terrestrial biosphere. However, 
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there are large uncertainties associated with the location, strength, distribution and temporal duration 

of these natural sinks and whether they will persist in the future [3]. 

Satellite sensors are well-suited to provide dense and uniform atmospheric CO2 observations over 

land and ocean on a global scale. Several studies have shown the advantage that space-based CO2 

column observations provide in estimating surface fluxes if they are acquired globally with precisions 

in the range of 1–10 ppm (0.3–3.0%) and without significant biases [4-9].  

In recent years, thermal-infrared (IR) CO2 measurements from space have become available from 

the High Resolution Infrared Sounder 2 (HIRS-2) instrument aboard the NOAA 10 satellite, from the 

Atmospheric Infrared Sounder (AIRS) on the Aqua satellite and from the Infrared Atmospheric 

Sounding Interferometer (IASI) on METOP. Chedin et al. ([10] and references therein) have retrieved 

mid-tropospheric CO2 with a precision of around 1% for monthly means averaged over 15° × 15° 

regions in the tropics that reproduce the seasonal patterns of CO2 measured by in situ aircraft 

instruments [11]. Several groups have retrieved mid-tropospheric CO2 with better spatial coverage, 

spatial resolution and precision using measurements from the AIRS and IASI instrument [12-16]. 

However, the lack of sensitivity of these thermal-IR data to near-surface CO2 and potential 

shortcomings in the description of vertical transport in transport models results in a limited value of 

these observations for inverse studies of surface fluxes [17,18]. 

Total CO2 column data with high near-surface sensitivity can be obtained from shortwave infrared 

(SWIR) observations. Recently, such measurements have become available through the SCIAMACHY 

instrument on ENVISAT [19,20]. SCIAMACHY was designed to provide global measurements of 

trace gases in the troposphere and in the stratosphere, including experimental measurements of CO2 

and CH4. Although SCIAMACHY was not optimized for CO2 observations, CO2 retrievals from 

SCIAMACHY have demonstrated a precision approaching ~2% with biases of 1–2% [21-24]. 

However, as pointed out by Palmer et al. [25], the magnitude and variability of the CO2 columns 

differs between models and SCIAMACHY, which is most likely due to uncharacterized retrieval and 

model errors. 

The Japanese Aerospace Exploration Agency (JAXA) successfully launched the Greenhouse-gases 

Observing Satellite (GOSAT) on 23 January 2009. The payload of GOSAT consists of two 

instruments optimized for observations of atmospheric greenhouse gases: the TANSO-FTS and 

TANSO-CAI. TANSO-FTS is a Fourier transform spectrometer (FTS) operating in the thermal and 

shortwave infrared that provides near global measurements of CO2, CH4, H2O, and O3 [26]. It covers 

three SWIR bands and one thermal-IR band with spectral resolutions of <0.6 cm
−1

 for band 1 and of 

<0.3 cm
−1

 for bands 2–4. The instrument has a field of view of 15.8 mrad which corresponds to a 

surface footprint with a diameter of 10.5 km at nadir. TANSO-FTS employs a scanning mirror to point 

the instrument towards a fixed target for the duration of a scan. Over land the scanner will use a 

flexible scan pattern with 1 to 9 cross track points within 35 of nadir, yielding a ~750 km  

cross-track range. From April 2009 through July 2010, the scanner collected 5 cross-track soundings 

spaced at ~160 km intervals. Since that time, 3 cross-track samples, separated by ~260 km intervals. 

Over the ocean, within ±20° of the subsolar latitude, the scanner can point the instrument boresight to 

observe the sunglint spot otherwise the nadir scan mode is used. TANSO-CAI is a cloud and aerosol 

imager that uses four narrow spectral bands to characterize scattering interferences in the FTS field of 

view. The first year of GOSAT observations have yielded promising results and the observed global 
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distributions and seasonal variations are consistent with those of the reference data obtained from 

ground-based remote-sensing (e.g., [27,28]) and airborne in situ instruments [29]. However, initial 

validation showed that the retrievals of column-averaged dry mole fraction XCO2 were systematically 

lower by 2 to 3% than the reference values [30]. Significant improvements can be expected from future 

releases with improved retrieval algorithms.  

The Orbiting Carbon Observatory (OCO), NASA‘s first satellite sensor dedicated to atmospheric 

CO2 measurements was launched from Vandenberg Air Force Base, CA at 4:55 am EST on 24 

February 2009. Unfortunately, there was a launch vehicle failure and the satellite was lost. However, in 

early 2010 NASA initiated formulation of an OCO re-flight mission (now known as OCO-2) for a 

launch readiness no later than February 2013. OCO-2 will use the OCO instrument and mission design 

including the same orbit to the extent possible to minimize risk and time required to launch readiness.  

The OCO-2 mission is developed specifically to deliver space-based XCO2 data with the precision, 

temporal and spatial resolution, and coverage needed to characterize the variability of CO2 sources and 

sinks on regional spatial scales and seasonal to inter-annual timescales [31,32]. Its most critical 

requirement is to measure XCO2 with 1–2 ppm (0.3–0.5%) precision with no significant biases on 

regional scales (1,000 × 1,000 km
2
) at semi-monthly intervals for up to two years. To achieve these 

goals, the OCO-2 instrument design is optimized to measure the SWIR absorption bands of CO2 at 

1.61 and 2.06 μm, and the O2 A-band at 0.765 μm, with high spectral resolution and high  

signal-to-noise. Furthermore, the instrument is designed to observe the Earth surface with a small field 

of view with an area of 3 km
2
 in nadir (~1.8 mrad instantaneous field of view and 3 Hz sampling) to 

maximize the number of cloud-free scenes observed. 

The OCO-2 sampling strategy employs two science observation modes. In the nadir mode, the 

instrument boresight points toward the local sub-spacecraft point on the Earth‘s surface. This mode 

will provide the highest spatial resolution. Nadir mode is also expected to yield the most reliable data 

over bright land surfaces and to maximize the number of cloud-free scenes in regions with patchy 

clouds. In glint mode, the instrument boresight points at the spot on the Earth surface, where sunlight 

is specularly reflected. Glint mode yields 10–1,000 times more signal over dark ocean surfaces 

compared to nadir observations. It is important to note that the OCO-2 instrument pointing is 

accomplished using the spacecraft attitude control system and not a scanning mirror assembly. 

Therefore, nadir and glint observations were planned for alternating 16 day repeat cycles since the 

spacecraft lacked sufficient pointing agility to switch rapidly between nadir and glint modes.  

In this study, we have analyzed the theoretical retrieval precision and sensitivity of XCO2 retrievals 

from space-based observations of OCO-2 of near infrared and shortwave infrared radiances of 

reflected sunlight from the Earth‘s surface using performance parameters for the OCO instrument. 

Specifically, we have studied the characteristics of OCO-2 soundings and their measurement 

uncertainties, given by an analysis of the OCO ―full-physics‖ forward model for different surface 

types, surface pressures, aerosol loadings, and solar zenith angle. Aerosol and cloud statistics derived 

from MODIS and MISR have been examined to determine the spatio-temporal distribution of the 

OCO-2 measurement errors and to obtain the expected number of cloud-free OCO-2 soundings from 

which multi-shot measurement errors can be inferred. This study provides the most accurate current 

estimate of the performance expected for the OCO-2 mission. 
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2. OCO Full Physics Retrieval Algorithm 

The OCO full physics retrieval algorithm was developed to retrieve XCO2 from a simultaneous fit of 

the near-infrared O2 A Band spectrum at 0.76 µm and the CO2 bands at 1.61 and 2.06 µm as measured 

by the OCO-2 instrument. While the algorithm was developed to retrieve XCO2 from OCO and OCO-2 

observations, it was designed to be adaptable to analyze data from other instruments for algorithm 

testing and validation. The OCO algorithm has successfully been used to analyze observations from 

SCIAMACHY, GOSAT, and ground-based Fourier Transform spectrometers (FTS) [24].  

The retrieval algorithm uses an iterative retrieval scheme based on Bayesian optimal 

estimation [33,34] to estimate a set of atmospheric/surface/instrument parameters, referred to as the 

state vector x, from measured, calibrated spectral radiances. The forward model and inverse method 

are the main components of the algorithm and have been described in detail previously [24,32]. Below, 

we highlight the algorithm improvements and modifications for the version used here. 

The forward model describes the physics of the measurement process and relates measured 

radiances to the state vector x. It consists of a radiative transfer (RT) model coupled to a model of the 

solar spectrum to calculate the monochromatic spectrum of light that originates from the sun, passes 

through the atmosphere, reflects from the Earth‘s surface or scatters back from the atmosphere, exits at 

the top of the atmosphere and enters the OCO-2 instrument. The top of atmosphere (TOA) radiances 

are then passed through the OCO-2 instrument model to simulate the measured radiances at the OCO-2 

spectral resolution. 

The version of the OCO algorithm used in the present study employs the Radiant RT model, which 

solves the radiative transfer equation using the adding-Eigenmatrix method [35,36]. Radiant has been 

fully linearized to provide analytic weighting functions K (derivatives of the radiance spectrum y with 

respect to state vector x). This version of Radiant also contains a full bidirectional reflectance 

distribution function (BRDF) surface reflectance capability, based on the formulations of 

LIDORT [37] and a pseudo-spherical approximation that treats the solar beam attenuation in a curved 

spherical-shell atmosphere, whereas atmospheric scattering is treated using a plane-parallel 

approximation. 

The OCO-2 instrument measures only radiation polarized perpendicular to the plane containing the 

incoming solar beam and the beam entering the instrument. This requires a vector RT model that yields 

accurate polarized monochromatic spectral radiances. Scalar RT will lead to unacceptably large 

retrieval errors [38]. The OCO algorithm solves this problem by incorporating a fast  

2-orders-of-scattering (2OS) vector radiative transfer code to correct polarization effects [39,40]. 

The monochromatic TOA spectrum calculated by the Radiant-2OS code is then multiplied with a 

synthetic solar spectrum, which is calculated with an algorithm based on an empirical list of solar line 

parameters [G. Toon, private communication]. The solar line list covers the range from 550 to 

15,000 cm
−1

 and is derived from FTS solar spectra: Atmospheric Trace Molecule Spectroscopy 

(ATMOS), MkIV balloon spectra for the range 550–5,650 cm
−1

 [41,42], and Kitt Peak ground-based 

spectra for 5,000–15,000 cm
−1

 [43,44]. The solar model includes both disk center and disk integrated 

line lists. 
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The instrument model convolves the monochromatic radiance spectrum with the instrument 

lineshape function (ILS). As described in Boesch et al. [24], the instrument model can also simulate 

continuum intensity scaling, zero-level offsets and channeling effects. 

A detailed description of the inverse method can be found in Connor et al. [34]. Briefly, the inverse 

method employs the Levenberg-Marquardt modification of the Gauss-Newton method to find the 

estimate of the state vector  with the maximum a posteriori probability, given the measurement y. The 

state vector for this study includes a CO2 profile, an H2O profile, a temperature profile, an aerosol 

extinction profiles, surface pressure, surface albedo and its spectral change for each band, as well as 

spectral shift and spectral stretch for each band [34]. For sunglint retrievals over ocean, the Cox and 

Munk [45] BRDF model describes the surface reflectance, and the six surface albedo parameters are 

replaced with a single windspeed parameter. For this study, we used a model with 12 vertical levels, 

which results in 61 and 56 state vector elements for nadir and ocean sunglint retrievals, respectively.  

The main parameters for the characterization of the XCO2 retrieval that are calculated by the 

retrieval algorithm are the a posteriori XCO2 retrieval error (here simply referred to as the retrieval error 

or retrieval precision) given by the square root of the variance σXCO2 and the column averaging kernel 

aCO2. 

After the iterative retrieval process has converged to a solution, the error covariance matrix Ŝ  

 (1) 

and the averaging kernel matrix A 

 (2) 

are calculated using the a priori covariance matrix Sa and the measurement covariance matrix Sε. XCO2 

is inferred by averaging the retrieved CO2 profile, weighted by the pressure weighting function, h, 

such that 

   (3) 

The associated column averaging kernel for a level j is then given by 

 

 

  (4) 

and the variance of XCO2 by 

  (5) 

3. Simulation of OCO-2 Soundings 

We have simulated OCO-2 radiance spectra using the forward model of the OCO full physics 

retrieval algorithm for nadir and sunglint observation modes. These simulations have been carried out 

for a set of geophysical scenarios that cover a large range of values for the parameters surface albedo, 

aerosol loading, surface pressure and solar zenith angle (SZA). These parameters will have a large 

impact on the radiance spectra and thus on the expected retrieval errors and averaging kernels. The 

water vapor, temperature, and CO2 profiles, as well as the shape of the aerosol extinction profile, the 

aerosol type, and the windspeed for ocean sunglint mode, are kept constant in order to keep the number 
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of required simulations small while still capturing the main variations in the XCO2 retrieval 

characterization. A sensitivity analysis has been carried out to investigate the sensitivity of the retrieval 

error and averaging kernels to those parameters that have been kept constant (section 4.2). 

For the simulations of land and ocean scenarios in nadir mode, a Lambertian reflecting surface has 

been employed. Five different surface types have been chosen: ocean, vegetation, desert, snow/ice and 

savannah. The spectral surface albedos for the vegetation (conifer), desert, and snow/ice types are 

taken from the ASTER spectral library [46]. A conifer and soil mixture has been used to represent the 

savannah type. The Lambertian albedo for ocean in nadir mode has been set to 1% for all three spectral 

bands. To describe ocean reflectance in sunglint mode, a polarizing non-Lambertian Cox and Munk 

BRDF kernel for a windspeed of 5 m/s has been used. Snow/ice surfaces are also known to show some 

anisotropy effects which will depend on the snow physical properties [47]. In general, a Lambertian 

albedo will result in an overestimation of the nadir reflectance and an underestimate of the glint 

reflectance. For very wet, melting snow, a sunglint effect similar to that of water surfaces is found and 

a Lambertian surface will represent a poor description of the true surface reflectance. For dry snow, the 

surface reflectance is smooth and slowly varying, but it shows a significant increase of the surface 

reflectance for forward scattering with large angles. Thus, we have excluded snow/ice surfaces for 

glint mode in our study as our assumption of a Lambertian surface reflectance would introduce 

significant uncertainties. 

The atmospheric aerosol profile has been represented by an exponentially-decreasing extinction 

profile with a scale height of 2 km for a vertically-integrated aerosol optical depth ranging from 0.01 to 

0.3 at 0.76 µm. Pre-computed spectral extinction coefficients are used to infer the aerosol optical depth 

at all other wavelengths. We have used aerosol optical properties (spectral extinction and absorption 

coefficients and scattering matrix) for a continental type typically found over Northern America in 

summer (type 4a) from the climatology given in Kahn et al. [48]. The optical properties for the 

spherical components are computed using a polydisperse Mie scattering code [49], those for the  

non-spherical components such as mineral dust, with a T-matrix code [50]. In addition, we have 

included a stratospheric aerosol profile based on SAGE-2 measurements. The optical properties of this 

stratospheric type are for a 75% solution of H2SO4 with a modified gamma-function size distribution. 

The surface pressure has been varied in steps of 100 hPa between 1,000 hPa and 700 hPa. The 

surface pressure values correspond to the centre of the atmospheric layer grid. If the surface pressure is 

not in the bottom layer, then the layers below are discarded and the number of vertical atmospheric 

levels reduced accordingly. The CO2 profile is taken from a MATCH/CASA model run [51] and the 

H2O and temperature profiles are from the ECWMF ERA 40 dataset, all for mid-latitude summer 

conditions (Park Falls, July scenario from [34]). The SZA has been varied between 10° and 75° and 

85°
 
for nadir and glint modes, respectively. The viewing zenith angle has been set to zero for the nadir 

mode while for the glint simulations the viewing zenith angle has been set to the value of the SZA. For 

OCO-2, it has been planned to offset the pointing from the true glint spot to avoid saturation of the 

detectors. This spacecraft pointing offset will increase with SZA angle with a near zero value at the 

sub-solar latitude and a value of up to 9.6 degrees for the largest SZAs. As a consequence, OCO-2 will 

be able to observe the sunglint spot up to a SZA of 85°. This pointing offset has not been taken into 

account in this study.  

A summary over these parameters and their range is given in Table 1. 
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Table 1. Range of parameters used for simulations. 

Parameter Range 

Total tropospheric aerosol optical depth 0., 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3 

Solar zenith angle (°) 

Nadir Mode 

Glint Mode 

 

10, 20, 30, 40, 50, 60, 65, 70, 75, 80, 85 

10, 20, 30, 40, 50, 60, 65, 70, 75 

Surface type 
Ocean, vegetation, desert, snow/ice (only 

nadir), savannah 

Surface pressure (hPa) 1,000, 900, 800, 700 

To simulate the effect of the limited spectral resolution of the OCO-2 instrument, we have 

convolved the simulated, monochromatic spectra with a Gaussian-shaped ILS with resolving powers of 

18,000, 21,000 and 21,000 for the O2 A-band, the 1.61 μm CO2 band and the 2.06 μm CO2 band, 

respectively. For each band, we have assumed that the spectrum will be sampled by all 1,024 

detector pixels.  

The measurement noise has been calculated assuming a constant noise component plus one varying 

as the square root of incident intensity. As illustrated by Figure 1, the scene brightness shows large 

variations due to changing surface type. In addition, the intensity varies spectrally due to the presence 

of strong absorption lines. Consequently, the noise will change from spectrum to spectrum as well as 

within a spectrum. Continuum signal-to-noise values per spectral sample for SZA of 30° and AOD of 

0.1 are given in Table 2. 

Figure 1. Simulated spectra of the O2 A Band (top), the 1.61 micron CO2 band (middle) 

and the 2.06 micron CO2 band (bottom) for an AOD of 0.1 and a SZA of 30° for the 

spectral resolution of OCO-2 instrument. Shown is the spectrum for vegetation (solid line), 

desert (dotted line), snow/ice (dashed line), savannah (dash dotted line) and ocean (dash 

dot dotted line). 
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Table 2. Continuum Signal-to-Noise Ratio per spectral sample for the 3 OCO-2 channels 

for the different surface types (SZA = 30°; AOD = 0.1). 

Surface Type O2 A-Band 1.61 µm CO2 Band 2.06 μm CO2 Band 

Ocean 166 81 32 

Vegetation 814 440 166 

Desert 750 652 448 

Snow/ice 1,120 174 28 

Savannah 758 570 328 

Besides surface albedo, the intensity level, that will directly impact the signal-to-noise ratio, can 

also change substantially with variations in SZA and AOD. A comparison of the changes in continuum 

intensity at 0.757 micron with SZA and AOD for nadir and glint geometry for the 5 surface types is 

shown in Figure 2. In general, the intensity values resemble the reflectivity of the different surfaces,  

 

Figure 2. Continuum intensity at 0.757 micron of simulated spectra for nadir (A1–A5) and 

glint (B1–B4) mode for vegetation (A1/B1), desert (A2/B2), savannah (A3/B3) and ocean 

(A4/B4) and snow/ice (A5) surfaces. 

 

with very large values being found for snow/ice and low values for ocean in nadir mode. As expected, 

the continuum intensities decrease with increasing SZA due to the longer atmospheric path and the 

decreasing value of reflectivity. For SZA less than ~50°, there is little effect from aerosols for all land 

surfaces. A more pronounced aerosol effect is visible for ocean in nadir geometry for all SZAs due to 

the low ocean albedo of 1%. For ocean sunglint, we find a darkening of the scene with increasing 

aerosol for small SZAs. Furthermore, we can observe a pronounced aerosol effect in sunglint mode 

over land for large SZAs. The scattering angle in sunglint mode, which is given by approximately the 
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difference between 180
o
 and twice the SZA, becomes small and the strong forward scattering peak of 

the aerosol phase functions yields an increase in the observed intensity. Together with the spectra, we 

have also computed weighting functions for all state vector elements for nadir and sunglint mode, 

respectively (see section 2). The weighting functions are important quantities for the calculation of the 

retrieval error (5) and the averaging kernel (2 and 4) which will be discussed in the following section.  

4. Characterization of Single-Sounding Errors and Averaging Kernels 

4.1. XCO2 Retrieval Errors and Averaging Kernels as a Function of Key Parameters 

Given the a priori covariance matrix, the simulated weighting functions and the spectral noise, we 

can calculate the XCO2 retrieval errors (5) and the column averaging kernels (4) for each simulation. 

This method is often referred to as linear error analysis and it allows a fast assessment of the retrieval 

characteristics under the assumption that the retrieval has converged to the correct answer and that the 

forward model can adequately describe the measurement. It can be thought to give a ―best case‖ error 

estimate, since any systematic errors in the forward model, that can result from errors in spectroscopic 

parameters, uncertainties in instrument calibration or in the radiative transfer calculations in the 

forward model of the retrieval algorithm, must be added to it.  

The a priori covariance matrices used for this study are described in detail in [34] and they are only 

briefly summarized here. The a priori covariance matrix for CO2 has been constructed by assuming a 

root-mean-square (rms) variability of XCO2 of 12 ppm at the surface with a rapidly decreasing 

variability with height. The non-diagonal elements of the covariance matrix have been derived from 

aircraft observations at Carr, CO, USA. For H2O and temperature, we have used the observed 

variability at Park Falls in July. However, for temperature, we have imposed an increasing variability 

in the lower troposphere to 10 K at the surface. The assumed standard deviation for surface pressure is 

20 mbar. The variability of the total aerosol optical depth is ±0.15 with a decreasing variability from 

150% at the surface to 50% with altitude with a scale height of 2 km and a correlation length of 1 km. 

The uncertainty in mean albedo is formally set to a value of ±1, with a slope which implies a variation of 

±0.5 at each end of the spectral range. For ocean sunglint, an uncertainty for windspeed of 1 m/s is used. 

The values chosen for the a priori covariance matrix will influence to some extend the value for the 

retrieved XCO2 and its error estimates. Our approach is to choose a priori covariance matrices such that 

it only imposes a loose constraint on the state vector so that the XCO2 retrieval errors will be dominated 

by measurement noise [34]. In general, the measurement is overwhelmingly dominant for albedo, 

spectral dispersion, and surface pressure. For CO2, there is a small a priori influence at each altitude 

which mostly vanishes when calculating the column value XCO2. The temperature, water vapour, and 

aerosol profiles at lower altitudes are reasonably well determined by the measurement, but have a 

strong a priori influence at higher altitudes. It can be expected that minor modifications to the a priori 

covariance matrices will have a negligible effect on the inferred retrieval errors. The effect of 

substantial modification to the a priori covariance matrices, in particular choosing much more 

constraining matrices, will need to be studied elsewhere.  

The XCO2 retrieval errors obtained are given in Figures 3 and 4 as a function of AOD, SZA, and 

viewing geometry (nadir/sunglint) for all surfaces and a surface pressure of 1,000 hPa. In nadir mode, 
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the lowest errors are found for savannah and desert surfaces, with values below 0.5 ppm for SZAs of 

less than 70°. With increasing SZA, the error increases up to 1.8 ppm for an SZA of 85°. The errors 

obtained for the vegetation type are only slightly larger, with values of up to 2.5 ppm for the largest 

SZAs. The retrieval errors obtained for these surfaces in glint mode for SZAs less than ~40° are 

similar to those obtained in the nadir mode. However, with increasing SZA the errors become 

significantly larger than for the nadir case. For savannah, desert and vegetation, the largest errors are 

found for a SZA of 75° with values of up to 1.5 ppm, which is roughly twice as large as in nadir mode. 

Figure 3. Simulated XCO2 retrieval error as a function of SZA and AOD for nadir 

simulations for the five different surface types and a surface pressure of 1,000 hPa. 

 

Figure 4. Simulated XCO2 retrieval error as a function of SZA and AOD for glint 

simulations for the four different surface types and a surface pressure of 1,000 hPa. 
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The low surface albedo of snow/ice in the SWIR bands results in substantially higher retrieval 

errors with values for nadir mode in the range of 1 ppm for small SZAs and up to 6 ppm with 

increasing SZA. 

Very large differences in retrieval errors between the two observations modes are found for the 

ocean surface. The albedo in nadir mode is low and accordingly the inferred errors are large with 

values ranging from 2.5 ppm for small SZAs up to 10 ppm for very large SZAs. As a result of the 

strong sunglint effect over the ocean in sunglint mode, the effective reflectivity is high and 

subsequently retrieval errors are low. The retrieval errors in ocean sunglint mode are between 0.3 and 

0.6 ppm for small SZAs, and decrease with increasing SZA to values as low as 0.15 ppm owing to the 

large increase in the reflectivity of the sunglint spot. 

XCO2 retrieval errors for nadir mode for a surface pressure of 800 hPa are shown in Figure 5. 

Overall, the XCO2 retrieval errors are very similar to those obtained for a surface pressure of 1,000 hPa. 

For very large SZAs, we find that retrieval errors tend to be smaller compared to 1,000 hPa surface 

pressure, which is most pronounced for ocean and snow/ice. A very similar behavior is observed for 

the glint mode (not shown), except that retrieval errors for ocean sunglint change very little with 

surface pressure. 

Figure 5. Simulated XCO2 retrieval error as a function of SZA and AOD for nadir 

simulations for the five different surface types and a surface pressure of 800 hPa. 

 

Figures 6–9 show the corresponding column averaging kernels for nadir and glint mode for a 

surface pressure of 1,000 hPa and for cases with no tropospheric aerosol and with an AOD of 0.3, 

which correspond to the minimum and maximum values of AOD included in this study. The averaging 

kernels for other values of AOD are in-between the cases shown. In nadir mode, the averaging kernels 

for the four land surface types for SZAs of up to 40° are all very similar, almost independent of the 

aerosol amount. They are close to unity throughout most of the troposphere and drop off with altitude 

to a value of ~0.7 for a pressure of around 300 hPa. When SZA is increased further, the nadir 
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averaging kernels for these four land types for conditions without aerosol are still close to unity near 

the surface, but they drop-off more quickly with altitude, which means that the retrieval loses 

sensitivity to this altitude range. In the cases with AOD of 0.3, the retrieval loses sensitivity near the 

surface with increasing SZA, and for very large SZAs we find a clear maximum of the averaging 

kernel in the mid-troposphere owing to the increasing influence of atmospheric scattering. The 

somewhat different behavior of the averaging kernels for the uppermost two layers is a result of a 

differing pressure thickness of these two layers compared to the other layers and we expect that the 

averaging kernels would show a smooth behavior for strictly equidistant pressure levels. 

Figure 6. Column averaging kernels (ak) for nadir simulations for different SZAs and the 

five different surface types with no tropospheric aerosol and a surface pressure of 1,000 hPa. 

 

Figure 7. Column averaging kernels (ak) for nadir simulations for different SZAs and the 

five different surface types for an AOD of 0.3 and a surface pressure of 1,000 hPa. 
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Figure 8. Column averaging kernels (ak) for glint simulations for different SZAs and the 

four different surface types with no tropospheric aerosol and a surface pressure of 1,000 hPa. 

 

Figure 9. Column averaging kernels (ak) for glint simulations for different SZAs and the 

four different surface types for an AOD of 0.3 and a surface pressure of 1,000 hPa. 

 

In sunglint mode, the averaging kernels for the land surfaces and aerosol-free conditions are almost 

identical to the nadir kernels for SZAs up to 40°–50°. With increasing SZA, the averaging kernels for 

vegetation remain similar to those in nadir mode, whereas for desert and savannah, a maximum of the 

kernels at ~500 hPa is found. For AOD of 0.3, the averaging kernels over land are similar to the nadir 

kernels only for very small SZAs. The averaging kernels become peaked with increasing SZA with a 

maximum being found between 500 and 700 hPa. 

As for the retrieval errors, there is a large difference in the averaging kernels between nadir and 

glint mode for ocean surfaces. For small SZAs and aerosol-free conditions, the ocean averaging 

kernels for nadir and sunglint mode resemble the averaging kernels for land surfaces. However, the 
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values of the nadir averaging kernels substantially decrease with increasing SZA at all altitudes. In the 

case of AOD of 0.3, the averaging kernels show a distinct maximum at around 500 hPa even for small 

SZAs, which becomes more pronounced with increasing SZA. In contrast, the values of the sunglint 

averaging kernel become large with increasing SZA and they have values close to unity up to 200 hPa 

for a SZA of 75°. Owing to the large effective reflectivity of the ocean surface in sunglint mode, the 

averaging kernels are practically insensitive to the aerosol loading. 

The nadir averaging kernels for 800 hPa surface pressure for cases with no tropospheric aerosol and 

with an AOD of 0.3 are shown in Figures 10 and 11. As for the XCO2 retrieval errors, the averaging 

kernels for 800 hPa surface pressure are overall similar to those for 1,000 hPa surface pressure. The 

surface is now located at a lower value for the surface pressure and the averaging kernels appear 

squeezed compared to those for 1,000 hPa surface pressure. We also find that smaller values for the 

averaging kernels are smaller for very large SZAs, especially for ocean and snow/ice surfaces. 

In summary, the retrieval errors and averaging kernels will substantially vary as a function of 

geophysical parameters such as surface type or SZA and with observation mode. In nadir mode, the 

largest retrieval errors are found for large SZAs and dark surfaces such as ocean and snow/ice. In glint 

mode, the retrieval errors for vegetation, desert and savannah for small and moderate SZAs are similar 

to those found for nadir mode. The lowest retrieval errors are found over ocean in sunglint mode due to 

the high specular reflection of the ocean surface. Overall, we find that the effect of aerosols on the 

retrieval error in nadir and sunglint mode is relatively small except for large SZAs and/or over dark 

surfaces. 

Figure 10. Column averaging kernels (ak) for nadir simulations for different SZAs and the 

five different surface types with no tropospheric aerosol and a surface pressure of 800 hPa. 
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Figure 11. Column averaging kernels (ak) for nadir simulations for different SZAs and the 

five different surface types for an AOD of 0.3 and a surface pressure of 800 hPa. 

 

Nadir column averaging kernels tend to remain close to unity throughout most of the troposphere 

except for large SZAs and over dark surfaces. For large AODs and SZAs, the averaging kernels tend to 

show a peak in the mid-troposphere. This behavior is even more pronounced for averaging kernels in 

glint mode over land. The averaging kernel in sunglint mode over the ocean shows values close to 

unity almost independent of the aerosol loading. It should be noted that the shape of the averaging 

kernels for scenarios with a significant aerosol loading will depend somewhat on the assumed aerosol 

profile and the aerosol type, as is discussed in more detail in section 4.2. Because retrieval errors and 

averaging kernels depend on the observing geometry, surface type, AOD, and other conditions, which 

can vary substantially along the ground track, it is essential to use scene-dependent information about 

averaging kernels and errors for each sounding when estimating surface fluxes from satellite 

measurements using inversion or data assimilation methods. 

4.2. Sensitivity to Other Parameters 

The characterization of single-sounding retrieval errors given in section 4.1 has been inferred for a 

range of values for surface type, aerosol loading, surface pressure and SZA, while H2O, CO2 and 

temperature profiles, the shape of the aerosol extinction profile, and the aerosol type have remained 

constant. In addition, the windspeed for the ocean sunglint mode has been constant. To assess the 

impact of these assumptions on averaging kernels and XCO2 error estimates, we have carried out a 

series of sensitivity studies for nadir mode over vegetation and sunglint mode over the ocean for SZAs 

of 20° and 70° and AODs of 0.05 and 0.3. 

For each of the above scenarios, the following sensitivity runs have been carried out: (1) add 

10 ppm to the CO2 vmr profile below 550 hPa, (2) double H2O vmr below 550 hPa, (3) subtract 10 K 

from temperature profile below 550 hPa, (4) replace aerosol optical properties with those of type 5b 
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from Kahn et al. [48], (5) replace aerosol extinction profile with a Gaussian shaped profile with 2 km 

width at (a) 3 km peak altitude or (b) 10 km peak altitude, and (6) add 3m/s to the windspeed for 

sunglint mode over the ocean. 

As can be seen in the comparison of the nadir XCO2 retrieval errors that are shown in the left panel 

of Figure 12, only the case with AOD of 0.05 and SZA of 70° shows a significant variability (>20%) 

in XCO2 error, with the aerosol-related parameters being the most important followed by water vapour. 

CO2 and temperature profile differences seem not to cause any noteworthy variations in XCO2 errors. 

For the cases with low SZA and AOD, rather little impact of aerosol-related parameters is expected, as 

most of the light will come from the dominant surface-reflectance contribution. It is somewhat 

surprising that for large SZA it is the low AOD case that shows the larger variability of the XCO2 error. 

However, in this case, the number of photons being reflected by the surface as well as being scattered 

in the atmosphere is small. Thus, the weighting between the reflected and scattered contributions will 

be strongly sensitive to small changes in aerosol scenario which will then alter the retrieval error. 

Figure 12. XCO2 retrieval error obtained by the sensitivity studies for nadir mode over 

vegetation and sunglint mode over the ocean for SZAs of 20° and 70° and AODs of 0.05 

and 0.3. The ‗Default‘ scenarios refer to the simulations described in section 4.1. The 

sensitivity tests represent the following scenarios: (1) add 10 ppm to the CO2 vmr profile 

below 550 hPa (‗CO2‘), (2) double the H2O vmr below 550 hPa (‗H2O‘), (3) subtract 10 K 

from temperature profile below 550 hPa (‗Temp‘), (4) replace aerosol optical properties 

with those of type 5b from Kahn et al. [48] (‗Aero Type‘), (5) replace default aerosol 

extinction profile with a Gaussian shaped profile with 2 km width at (a) 3 km peak altitude 

(‗Aero Prof1‘) or (b) 10 km peak altitude (‗Aero Prof2‘), and (6) add 3m/s to the 

windspeed for sunglint mode over the ocean (‗Windspeed‘). 

 

For the sunglint cases (right panel in Figure 12), we find the opposite behavior as for the nadir 

cases, with the case of SZA of 70° and AOD of 0.05 showing the smallest variability. As discussed 

earlier, the reflectance of ocean sunglint increases greatly with increasing SZA: for a SZA of 70° the 

surface signal is very strong, so that the aerosol-related parameters only impact our error estimates for 

large AODs. Indeed, for an AOD of 0.3 we find a change in the error estimate of more than 30% with 

the aerosol profile. For small SZAs, the surface contribution is smaller and aerosol-related parameters 

cause some variability in the retrieval errors even for small AODs.  
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For the sunglint study, windspeed is included as an additional parameter. Increasing the windspeed 

will lower the direct reflectance of the surface and thus tend to increase the retrieval error. As shown 

by Figure 12, for low SZA and low AOD windspeed can cause large variations of almost 30% and is 

an important parameter, in addition to the aerosol-related parameters. 

The averaging kernels for two cases (SZA = 20°/AOD = 0.05 and SZA = 70°/AOD = 0.3) for both 

nadir and glint mode are shown in Figure 13. With the exception of the high aerosol scenario (‗Aero 

Prof2‘), the averaging kernels for all other scenarios are all very similar to the default case. For the 

cases with high SZA and high AOD, windspeed and other aerosol-related parameters also result in 

some small variations in the averaging kernels.  

Figure 13. Column averaging kernels obtained by the sensitivity studies for nadir mode 

over conifer and sunglint mode over ocean for SZAs of 20
o
 and 70

o
 and AODs of 0.05 and 

0.3. The labeling is as in Figure 12. 

 

This sensitivity study has shown that assumptions about aerosol-related parameters in section 4.1 

have the most influence on the XCO2 error estimates and averaging kernels. The assumed height of an 

aerosol layer is the most critical parameter and our error estimates can be wrong by more than 20% in 

the presence of a very high aerosol layer (e.g., cirrus clouds). Such an aerosol layer will also 

significantly change the shape of the averaging kernel. Thus, it is important that the retrieval 

algorithms applied to SWIR spectra acquired by satellites have the ability to adjust aerosol amount and 

vertical distribution. For OCO-2, the aerosol information is derived from the O2 A-band and the strong 

CO2 band at 2.06 µm (e.g., [31]). Also, this emphasizes again the importance of using scene-dependent 

averaging kernels and error estimates. Other parameters such as CO2, temperature, H2O or aerosol type 

have less impact on the averaging kernels and the XCO2 retrieval error. For the sunglint mode, 

windspeed is also an important parameter, which can change the XCO2 errors by an amount similar to 

that of the aerosol height. 
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5. Global Distribution of XCO2 Errors  

The XCO2 retrieval errors calculated across a range of parameters can now be used to construct the 

spatio-temporal distribution of these errors on a global scale for the nadir and sunglint observations 

modes. This will require information about spatio-temporal distribution of SZA, AOD, surface type 

and surface pressure. The SZA can be directly calculated for a given location and time as determined 

by the orbit geometry. For AOD, we have generated a climatology that is described in the next section, 

together with the assumptions that have been made for surface type and pressure. The resulting global 

XCO2 error distribution for individual OCO-2 soundings will then be discussed in the following section.  

5.1. Aerosol and Surface Climatology 

We assembled a climatology for AOD for the months of January, April, July and October from the 

MODIS/Aqua daily L3 product for a 5 year period from 2002 to 2006. The MODIS product gives 

AOD at 660 nm together with the Angstrom coefficient on a 1° × 1° grid, which has been used to infer 

AOD for our reference wavelength of 760 nm. For each of the 4 months and 1° × 1° grid squares, we 

have obtained roughly 150 values for AOD from which the probability density function for the four 

AOD bins [0.0, 0.1], [0.1, 0.2], [0.2, 0.3] and [0.3, inf.] have been calculated. The ability of MODIS to 

quantify the aerosol optical depth over bright surfaces, such as desert or snow/ice, is limited and often 

no value is reported in the MODIS data file. To fill such data gaps, we have taken AOD from 

observations by MISR, a multiple-viewing aerosol/cloud instrument, for desert regions and from 

model calculations of the NCAR Community Climate Model (CCM3) for snow/ice regions. The MISR 

Level 3 aerosol product reports AOD at 550 nm and we assumed an Angstrom coefficient of 0.6 to 

extrapolate to 760 nm. AOD from CCM3 is given for 630 nm and here we have used an Angstrom 

coefficient of 1.3 to extrapolate. The Angstrom coefficients have been roughly estimated from MODIS 

observations in the proximity of the snow/ice and desert regions. For simplicity, we have used monthly 

mean values from MISR and CCM3. To obtain a probability distribution, we have assumed a Gaussian 

distribution with a FWHM of 70% of the optical depth, a value that has been estimated from the 

probability distribution based on the daily MODIS data. Thus, the probability density distribution for 

snow/ice and desert surface will be not very accurate.  

The AOD probability density function for the 4 AOD bins and the monthly averaged AOD for the 

month of July are shown in Figure 14. 

The mean AOD given in panel A of Figure 14 demonstrates that a large fraction of the globe has a 

small AOD, with average values less than 0.2 with a high probability for AODs of less than 0.1 (panel 

B). Larger values are found for highly polluted regions such as India or China, for the Sahara desert, as 

well as for Tropical Africa, which is in the peak of its biomass burning season in July. The probability 

density functions shown in panels B to E indicate that these areas have a very low probability for AOD 

being less than 0.3 and the probability for AOD exceeding 0.3 can approach 100% for some regions. 

For the OCO-2 mission, soundings with AOD > 0.3 will not be operationally retrieved, so that few if 

any soundings might be available for such regions. It should be mentioned that optically thin ice 

clouds, which are frequently present in the tropical region [52,53] and which can have an impact on 

the retrieval characteristics (see section 4.2), are not included in this aerosol probability distribution. 
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Figure 14. Mean AOD (panel A) and probability density functions (panels B–D) for July. 

The probability density function is given for the bins [0, 0.1], [0.1, 0.2], [0.2, 0.3] and 

[0.3, inf.] in panels B, C, D, and E, respectively. 

 

For surface type, we assembled a static, global map based on the Community Land Model 3.0 

(CLM3.0) plant functional types, which has been reduced to the 5 types: ocean, snow/ice, savannah, 

vegetation and desert [5]. The surface types from CLM 3.0 are specified on a 0.5° × 0.5° grid, which 

has been converted here to a 1° × 1° grid. For mixed land/ocean grids, the land type has been chosen 

for nadir geometry and vice versa for the glint geometry. 

To account for changes in surface pressure due to variations of the surface elevation, we constructed 

a static, global surface pressure map from the GTOPO30 global digital elevation model. The surface 

elevations provided by GTOPO30 (at a horizontal grid spacing of 30 arc seconds) have been converted 

into surface pressure using the hydrostatic equation with a scale height of 7.5 km, which has then been 

averaged over the 1° × 1° grid cells. This surface pressure map will represent the average surface 

pressure for each grid cell. Surface pressure variations due to weather patterns are not taken into 

account. 

5.2. Spatio-Temporal Distribution of XCO2 Retrieval Errors 

Using the aerosol and surface climatologies, we mapped the calculated retrieval errors in space and 

time to infer their spatio-temporal distribution. These spatio-temporal distributions have been inferred 

by making a series of assumptions that have been discussed in the previous section and that are again 

summarized here: (a) a constant vertical aerosol profile shape and aerosol type has been assumed; (b) a 

constant atmospheric profile for mid-latitude summer conditions has been used; (c) thin cirrus clouds 

have been omitted; (d) a constant windspeed for ocean sunglint has been used; (e) Lambertian albedo 
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for snow/ice has been assumed and (f) spatially and temporally coherent systematic bias in the 

retrieved XCO2 have been not included. Results presented in section 4.2 indicate that assumptions (a) to 

(e) can change the estimated XCO2 retrieval errors by up to 30% for some geophysical conditions. Also, 

since spatial and temporal coherent systematic biases (f) in retrieved XCO2 are not included, these error 

estimates will only be a good description of the true retrieval errors once such systematic biases are 

eliminated. Such systematic bias can be due to uncertainties in the spectroscopic parameters and 

instrument calibration or deficiencies in the physics of the forward model of the retrieval algorithm. 

Regional scale systematic bias as small as a few tenths of a ppm can have detrimental effects on the 

retrieval of surface sources and sinks from space-based observations. It will therefore be of critical 

importance to minimize such biases by rigorous validation and/or by bias-correction schemes in the 

flux inversion itself. However, a characterization of such systematic error sources is beyond the scope 

of this paper and needs to be addressed by future studies.  

To obtain the spatio-temporal distribution of retrieval error for each OCO-2 sounding we first 

linearly interpolated the pre-calculated retrieval errors for all AOD values for the surface type for each 

1° × 1° grid cell to the associated surface pressure and the SZA representing that sounding for the 15th 

of each month. Then an AOD-weighted mean retrieval error was calculated using the aerosol 

probability distribution function for each grid cell. No retrieval error was been calculated if the SZAs 

exceeds 85° for nadir soundings and 75° for glint soundings, or if the probability for AOD larger than 

0.3 equals unity. For glint mode, we have also excluded areas with snow/ice surfaces. For high 

mountain areas, such as the Himalayas, there can be surface pressure values lower than the lower limit 

of 700 hPa used for pre-calculating XCO2 errors. We have extrapolated the pre-calculated retrieval 

errors down to values of 650 hPa; no values for the retrieval error will be given for surface pressures 

smaller than this value. It is to be noted that surface pressure variations due to weather patterns are not 

taken into account here and the retrieval errors represent mean conditions for a single location and 

month.  

The inferred distribution of retrieval errors for single soundings for January, April, July and 

October for nadir and glint observation are shown in Figures 15 and 16. 

As expected, the most prominent feature for nadir geometry is the large difference of the retrieval 

errors between ocean (and snow/ice) and land surfaces owing to their largely different surface albedo 

values. There is also a substantial increase of the errors with increasing SZA that is most pronounced 

over ocean. Furthermore, the effects of topography can be observed, with somewhat smaller errors 

being found for higher altitudes. The variability of the retrieval errors as a result of varying aerosol 

loadings is relatively small. As shown in Figure 14, large aerosol loadings are mostly observed in 

Tropics and Sub-tropics where the SZAs are typically small, so that the retrieval errors only weakly 

depend on the aerosol amount (see Figures 3 and 5). 
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Figure 15. Distribution of the XCO2 retrieval errors for single soundings in nadir mode for 

January (A), April (B), July (C) and October (D). Data is only shown for SZAs less than 

85° and for areas with a surface pressure larger than 650 hPa. It is to be noted that several 

assumptions have been made when inferring the distribution of the XCO2 retrieval errors as 

discussed in the text, most notably not included is the effect of thin cirrus clouds on the 

XCO2 retrieval errors and any spatially and temporally coherent systematic bias. 

 

Figure 16. Distribution of the XCO2 retrieval errors for single soundings in glint mode for 

January (A), April (B), July (C) and October (D). Data is only shown for SZAs less than 

75°, snow/ice free conditions and for areas with a surface pressure larger than 650 hPa. It is 

to be noted that several assumptions have been made when inferring the distribution of the 

XCO2 retrieval errors as discussed in the text, most notably not included is the effect of thin 

cirrus clouds on the XCO2 retrieval errors and any spatially and temporally coherent 

systematic bias. 

 

Overall, we find that retrieval errors over land are typically well below 1 ppm for moderate SZAs, 

but can increase up to 2.5 ppm for very large SZAs. Over ocean and snow/ice, the retrieval errors are 

typically around 3–4 ppm and can exceed 10 ppm for very large SZAs.  

In glint mode, the retrieval errors for land and ocean become similar in magnitude and they 

typically are in the range of 0.5–1 ppm. The errors over land are slightly larger in glint mode than 
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those observed for nadir mode. As already discussed in section 4, errors for ocean sunglint decrease 

with increasing SZA, which is the opposite behavior to that found over land.  

6. Cloud Climatology and Number of Cloud-Free OCO-2 Soundings 

XCO2 will only be retrieved from OCO-2 soundings for scenes which are sufficiently cloud-free to 

minimize potential biases introduced by clouds. The number of soundings that can be retrieved for a 

given location and time will thus be determined by the sampling strategy of the satellite instrument and 

the occurrence of clouds. In the case of the OCO-2 instrument, eight soundings are recorded along a 

10-km wide nadir cross-track swath at 3.0 Hz, yielding up to 24 soundings per second and up to 

400 soundings per degree of latitude along an orbit track. To reduce the data volume, only four out of 

the eight cross-track soundings will be transmitted to the ground station and be available for the users. 

It is planned to fly OCO-2 in the EOS Afternoon Constellation (A-Train) with a 705 km  

sun-synchronous orbit and equator crossing time between 1:21 pm and 1:30 pm. The A-Train orbit has 

a 16-day ground track repeat cycle, which allows for complete global XCO2 coverage twice per month, 

with 1.5 longitude offsets (~150 km horizontal separation at the equator) between nearby revisits.  

We simulated the OCO-2 orbit using the orbital parameters of the Aqua satellite, which has an 

equator overpass only a few minutes after the OCO-2 satellite. For nadir mode, it has been assumed 

that the position of the ground pixel falls along the satellite ground track position. In glint mode, the 

position of the pixel has been inferred by searching for the glint spot for a given satellite position. The 

observations for all orbits for the months of January, April, July and October with SZAs less than 85° 

or 75° for nadir or glint mode, respectively, have been added up and binned into 1° × 1° bins. As 

mentioned above, it is planned to offset the pointing of OCO-2 from the true glint spot to avoid 

saturation of the detectors, which has been neglected here. 

The number of cloud-free scenes will depend on the size of the ground pixel size of the instrument 

and the atmospheric path [32,24]. Using the MODIS cloud mask for one day in November, 

Miller et al. [32] estimated that for nadir observations approximately 25% of all soundings are  

cloud-free for when averaged over the globe for the size of the OCO-2 ground-pixel of 3 km
2
. Similar 

results have been found by Breon et al. [52], who analyzed GLAS data for an eight week period in 

autumn of 2003. They have determined that the global fraction of clear-sky scenes with scattering 

optical depth of less than 0.01 is ~15% with an additional ~20% of scenes having total cloud and 

aerosol optical depth of less than 0.2, the approximate threshold for which accurate XCO2 retrievals 

should be possible [31,54,55]. 

We analyzed 5 years of global MODIS data for January, April, July and October to infer the 

distribution of the cloud-free fraction. Our analysis uses the monthly mean cloud mask product, which 

gives the fraction of observed cloud-free scenes for a pixel size of 1 km
2
. Using the relation between 

cloud fraction and the size of the ground pixel given in Figure 13 in Miller et al. [32], we have 

transferred this cloud-fraction from MODIS to the OCO-2 ground pixel size. 

The observation strategy of OCO-2 will result in a changing ground pixel size during the course of 

an orbit. OCO-2 will acquire glint and nadir observations with the spectrometer slit oriented 

perpendicular to the principal plane defined by the sun, surface footprint and the instrument aperture. 

This approach was adopted to minimize biases associated with polarization of the scene. The 
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instantaneous field of view (IFOV) of OCO-2 is approx 1.29 × 0.1 km
2
 and is moved along the orbit 

track for the duration of the measurement of 1/3 second, which yields a nadir ground pixel with an area 

between 1.29 × 2.26 km
2
 if the sun is in flight direction and 0.1 × 3.55 km

2
 if the sun is perpendicular. 

For the glint mode, there will be an additional increase of the IFOV due to the non-zero viewing angle 

A cloud will impose a significant disturbance not only when it obstructs the field of view of the 

instrument, but also if it interferes with the incoming solar light, causing cloud shadows. Furthermore, 

clouds in the proximity of the measurement that do not directly obstruct the incoming solar light or the 

field of view can still influence the measurement by enhancing the illumination of the apparently 

cloud-free scene (e.g., [56]). Here, we have assumed that a cloud imposes a significant disturbance 

when it is located anywhere between the direction of the incoming solar beam and the viewing 

direction of the instrument, thus the effective area sensitive to clouds could be larger than the ground 

pixel size itself, depending on the cloud altitude. In this study, we have assumed a cloud height of 

5 km which results in an effective area for a SZA of 75° around 18.5 × 2.26 km
2
 if the sun is in flight 

direction. For glint mode, the length of the ground pixel in the direction of the sun will then double 

when assuming that the SZA approximately equals the viewing angle. 

Using the effective pixel size, the cloud fraction from MODIS, and the number of soundings from 

the orbit geometry, the number of cloud free OCO-2 soundings for each 1° × 1° bin has been 

calculated assuming that OCO-2 acquires 4 cross track pixels. For OCO-2, XCO2 is not routinely 

retrieved from soundings with AOD > 0.3 and consequently we have also reduced the cloud free 

fraction to exclude regions with AOD > 0.3. Also excluded are snow/ice regions, as these are 

problematic regions for MODIS cloud detection. 

Figures 17 and 18 show the spatial distribution of cloud-free scenes obtained for nadir and glint 

mode for the months of January, April, July and October. The observed spatio-temporal distribution of 

cloud-free OCO-2 soundings follows closely typical large-scale cloud patterns, with a small number of 

cloud-free soundings being found for the cloudy mid- to high-latitude region. For high latitudes, the 

number of clear scenes is even more reduced owing to the large SZA for this region and the 

subsequently larger effective pixel, but as suggested by this study, it should still be possible to find 

some cloud free soundings within this region. The largest fraction of clear scenes is found in the region 

between 30°N and 30°S with values exceeding 30%. A large variability in the clear sky frequency of 

this region is imposed by the frequent presence of cirrus clouds and large aerosol amounts, which can 

result in periods with very few or no cloud-free soundings for some regions such as India. Scenes 

classified as clear can still include very thin cirrus clouds that are frequently observed in the Tropics. 

The spatial distribution of XCO2 errors shown in section 5.1 does not include such thin cirrus clouds 

which can have an impact on the XCO2 errors and the averaging kernels as discussed in section 4.2. 

Globally, we find that 18.7%, 20.2%, 20.7% and 19.9% of all soundings are clear in nadir mode for 

January, April, July and October, respectively. For glint mode, the global fraction of clear scenes is 

19.1%, 19.1%, 20.7%, 18.2%. 
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Figure 17. Fraction of cloud-free scenes for nadir observations for January (A), April (B), 

July (C) and October (D). 

 

Figure 18. Fraction of cloud-free scenes for glint observations for January (A), April (B), 

July (C) and October (D). 

 

The spatio-temporal distribution of cloud-free soundings for nadir and glint modes are relatively 

similar with typically smaller values being found for glint mode especially for high latitudes due to the 

larger effective area. The differences between nadir and glint maps may be somewhat exaggerated at 

the highest latitudes due to neglecting of the pointing offset of OCO-2. The globally-averaged  

cloud-free fraction for glint mode is not necessarily smaller than for nadir mode. In glint mode, the 

instrument points towards the sun so that the number of observations for lower, less cloudy latitudes is 

increased whereas the number of observations in high, cloudy latitudes is decreased Furthermore, we 

have assumed a SZA cutoff for glint mode of 75°, so that less of the cloudy high-latitudes are 

observed.  

7. Summary and Discussion 

We have studied the global characteristics of XCO2 retrievals from shortwave infrared satellite 

observations of the Orbiting Carbon Observatory-2 (OCO-2) mission, which is scheduled for launch in 
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early 2013. To this end, we have calculated XCO2 retrieval errors and averaging kernels across a range 

of surface types, surface pressures, solar zenith angles (SZAs) and aerosol optical depths (AODs), for 

nadir and sunglint observation modes using the instrumental and orbital characteristics of OCO-2 

which have then been mapped in space and time using climatologies for surface pressure, surface type, 

AOD probability and SZA.  

The XCO2 retrieval errors and the column averaging kernels have been calculated from the a priori 

covariance matrix, the simulated weighting functions and the spectral noise by means of linear error 

analysis which assumes that the retrieval has converged to the correct answer and that the forward 

model can adequately describe the measurement. Thus, the inferred errors represent a ―best case‖ error 

estimate, since any uncorrected systematic biases will have to be added to it. 

We have made several assumptions when calculating XCO2 retrieval errors and the column 

averaging kernels: (a) a constant vertical aerosol profile shape and aerosol type has been assumed; (b) 

a constant atmospheric profile for mid-latitude summer conditions has been used; (c) thin cirrus cloud 

have been not been included; (d) constant windspeed for ocean sunglint has been used; (e) Lambertian 

albedo for snow/ice surfaces has been assumed and (f) spatially and temporally coherent systematic 

biases have been not included. The effect of assumptions (a) to (e) have been assessed by a sensitivity 

study which has shown that aerosol profile and the aerosol type are the most critical parameters for the 

error estimates. For cases with aerosol layers (or cirrus clouds) in the upper troposphere, our error 

estimates can be wrong by 20–30% and the shape of the averaging kernels can significantly change. In 

sunglint mode, the assumed constant windspeed can introduce further uncertainties in our estimates, in 

particular for low SZA and low AOD. Thus, extending our scheme for the calculation of XCO2 retrieval 

errors and averaging kernels to include also variable windspeed and aerosol profiles as well as thin 

cirrus clouds would lead to some improvements in the characterization of the XCO2 retrieval, but it 

would also increase the volume and complexity of the dataset. 

We have calculated single-sounding retrieval errors and averaging kernels for nadir and sunglint 

mode for AODs between 0 and 0.3, for five surface types and surface pressures between 700 and 1000 

hPa and for SZAs between 10° and 85° and 75° for nadir and sunglint mode, respectively  

(Figures 3–5; a subset of the XCO2 retrieval errors is also given in Tables 3–7). We find that retrieval 

errors are typically less than 1 ppm for single soundings over most land surfaces for nadir or glint 

mode for small to moderate SZAs and increase to roughly 3 ppm for large SZAs. For ocean and 

snow/ice surfaces, the retrieval errors are substantially larger with values as large as 10 ppm for single 

soundings. The smallest single sounding errors are observed for ocean sunglint mode, with values as 

small as 0.15 ppm for a SZA of 75°. 

In addition to high precision a large near-surface sensitivity of the XCO2 retrieval is required when 

using space-based data to constrain surface fluxes. For small to moderate SZAs, the column averaging 

kernels (Figures 6–11) are typically close to unity throughout most of the troposphere with the largest 

values being observed near the surface which means that the retrieval captures the whole tropospheric 

column. With increased SZA, we find that the averaging kernels tend to show increased values in the 

middle troposphere and decreased values near the surface owing to the increased contribution of 

atmospheric scattering. This is most pronounced for large AODs, large SZAs and sunglint mode over 

land where we find values near the surface of around 0.5 so that these soundings will contain reduced 

information on surface fluxes. How much this effect will impact surface flux inversions from OCO-2 
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soundings is not clear, but it can be expected to be relatively small as high AOD loads are mostly 

observed in Tropics/Sub-tropics (Figure 14) where SZAs tend to be small. In sunglint mode over 

ocean, such a behavior is not observed and the averaging kernels remain close to unity for all SZAs 

and AODs.  

Table 3. Calculated XCO2 retrieval error in ppm for nadir and glint mode for the vegetation 

surface for a subset of AODs and SZAs for 1000 (800) hPa surface pressure.  

AOD/SZA 

(°) 

Nadir Mode Glint Mode 

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 

10 
0.447 

(0.445) 

0.457 

(0.473) 

0.463 

(0.476) 

0.465 

(0.474) 

0.439 

(0.451) 

0.450 

(0.481) 

0.456 

(0.450) 

0.427 

(0.479) 

30 
0.473 

(0.467) 

0.481 

(0.495) 

0.486 

(0.498) 

0.487 

(0.495) 

0.491 

(0.513) 

0.480 

(0.495) 

0.477 

(0.486) 

0.472 

(0.470) 

50 
0.572 

(0.521) 

0.547 

(0.532) 

0.537 

(0.529) 

0.525 

(0.523) 

0.617 

(0.590) 

0.548 

(0.541) 

0.468 

(0.494) 

0.443 

(0.461) 

70 
0.727 

(0.592) 

0.748 

(0.579) 

0.630 

(0.565) 

0.565 

(0.553) 

0.705 

(0.762) 

0.471 

(0.450) 

0.837 

(0.480) 

1.118 

(0.569) 

80/75 
0.769 

(0.755) 

0.708 

(0.715) 

0.796 

(0.774) 

0.959 

(0.832) 

1.375 

(0.973) 

0.646 

(0.469) 

0.906 

(0.458) 

1.023 

(0.484) 

85 
1.147 

(1.064)  

2.023 

(1.888)  

2.478 

(2.137)  

2.160 

(1.762) 

- - - - 

Table 4. Calculated XCO2 retrieval error in ppm for nadir and glint mode for the desert 

surface for a subset of AODs and SZAs for 1000 (800) hPa surface pressure.  

AOD/SZA 

(°) 

Nadir Mode Glint Mode 

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 

10 
0.301 

(0.296) 

0.290 

(0.305) 

0.283 

(0.308) 

0.283 

(0.309) 

0.295 

(0.301) 

0.280 

(0.304) 

0.281 

(0.303) 

0.276 

(0.313) 

30 
0.310 

(0.309) 

0.300 

(0.322) 

0.298 

(0.325) 

0.305 

(0.325 

0.310 

(0.327) 

0.301 

(0.325) 

0.308 

(0.328) 

0.319 

(0.325) 

50 
0.356 

(0.352) 

0.345 

(0.361) 

0.359 

(0.359) 

0.372 

(0.356) 

0.524 

(0.426) 

0.636 

(0.426) 

0.618 

(0.402) 

0.556 

(0.371) 

70 
0.596 

(0.521) 

0.701 

(0.465) 

0.623 

(0.440) 

0.569 

(0.445) 

0.975 

(0.846) 

0.766 

(0.729) 

0.971 

(0.823) 

1.123 

(0.899) 

80/75 
0.750 

(0.707) 

0.909 

(0.684) 

1.035 

(0.874) 

1.085 

(0.976) 

1.306 

(1.052) 

0.891 

(0.757) 

1.034 

(0.755) 

1.088 

(0.745) 

85 
1.242 

(1.136) 

1.420 

(1.556) 

1.427 

(1.485) 

1.359 

(1.386) 

- - - - 
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Table 5. Calculated XCO2 retrieval error in ppm for nadir and glint mode for the savannah 

surface for a subset of AODs and SZAs for 1,000 (800) hPa surface pressure.  

AOD/SZA 

(°) 

Nadir Mode Glint Mode 

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 

10 
0.342 

(0.338) 

0.337 

(0.355) 

0.335 

(0.358) 

0.336 

(0.357) 

0.335 

(0.346) 

0.329 

(0.356) 

0.332 

(0.347) 

0.319 

(0.362) 

30 
0.357 

(0.355) 

0.353 

(0.374) 

0.354 

(0.377) 

0.357 

(0.376) 

0.366 

(0.383) 

0.355 

(0.377) 

0.355 

(0.376) 

0.355 

(0.369) 

50 
0.429 

(0.404) 

0.407 

(0.413) 

0.410 

(0.410) 

0.412 

(0.405) 

0.530 

(0.473) 

0.585 

(0.461) 

0.539 

(0.428) 

0.474 

(0.393) 

70 
0.630 

(0.551) 

0.708 

(0.505) 

0.619 

(0.477) 

0.561 

(0.472) 

1.029 

(0.809) 

0.846 

(0.718) 

1.051 

(0.762) 

1.118 

(0.819) 

80/75 
0.769 

(0.725) 

0.920 

(0.689) 

1.128 

(0.885) 

1.253 

(1.020) 

1.570 

(1.067) 

1.068 

(0.672) 

0.958 

(0.547) 

0.897 

(0.533) 

85 
1.380 

(1.156) 

1.697 

(1.803) 

1.729 

(1.774) 

1.523 

(1.592) - - - - 

Table 6. Calculated XCO2 retrieval error in ppm for nadir and glint mode for the ocean 

surface for a subset of AODs and SZAs for 1,000 (800) hPa surface pressure.  

AOD/SZA 

(°) 

Nadir Mode Glint Mode 

0.0 0.1 0.2 0.3 0.0 0.1 0.2 0.3 

10 
3.435 

(2.882) 

3.126 

(2.397) 

2.839 

(2.121) 

2.579 

(1.914) 

0.464 

(0.421) 

0.466 

(0.445) 

0.530 

(0.431) 

0.620 

(0.460) 

30 
3.296 

(2.879) 

3.055 

(2.425) 

2.787 

(2.125) 

2.528 

(1.912) 

0.364 

(0.359) 

0.391 

(0.363) 

0.421 

(0.369) 

0.460 

(0.374) 

50 
3.738 

(3.395) 

3.416 

(2.829) 

3.024 

(2.364) 

2.652 

(2.049) 

0.241 

(0.251) 

0.273 

(0.256) 

0.312 

(0.262) 

0.365 

(0.271) 

70 
4.847 

(4.580) 

4.153 

(3.461) 

3.346 

(2.602) 

2.668 

(2.147) 

0.163 

(0.176) 

0.176 

(0.178) 

0.231 

(0.189) 

0.304 

(0.212) 

80/75 
6.180 

(5.529) 

6.411 

(3.899) 

5.517 

(2.839) 

4.138 

(2.384) 

0.149 

(0.161) 

0.169 

(0.166) 

0.227 

(0.182) 

0.285 

(0.210) 

85 
7.899 

(6.288) 

8.781 

(5.311) 

6.774 

(3.972) 

5.033 

(3.185) 
- - - - 

Table 7. Calculated XCO2 retrieval error in ppm for nadir mode for the snow/ice surface for 

a subset of AODs and SZAs for 1,000 (800) hPa surface pressure.  

AOD/SZA (°) 
Nadir Mode 

0.0 0.1 0.2 0.3 

10 1.076 (1.132) 1.051 (1.156) 1.036 (1.166) 1.029 (1.163) 

30 1.145 (1.193) 1.104 (1.214) 1.084 (1.221) 1.077 (1.216) 

50 1.271 (1.335) 1.220 (1.329) 1.210 (1.320) 1.226 (1.304) 

70 1.593 (1.655) 1.716 (1.591) 1.899 (1.562) 2.049 (1.537) 

80/75 2.927 (2.500) 3.081 (2.299) 3.281 (2.094) 3.406 (1.986) 

85 4.441 (3.480) 4.564 (3.579) 5.189 (3.158) 5.778 (2.765) 
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As expected from the calculated XCO2 retrievals errors, the spatio-temporal distribution of the 

calculated single sounding errors shows values well below 1 ppm for most land areas which increase 

up to 2.5 ppm for very large SZAs (Figures 15 and 16). Specifically, the potential of OCO-2 to 

improve surface flux estimates for terrestrial ecosystems is demonstrated by the observed smooth 

distribution of retrieval errors for key regions such as the Tropics or the southern-hemispheric  

sub-tropics which are poorly observed by surface networks. However, the error estimates for the 

Tropics can somewhat change when including thin cirrus clouds in the calculation of retrieval errors. 

OCO-2 should also provide XCO2 retrievals with high precision over boreal regions during summer 

months when SZAs are moderate, except for region with snow covered surfaces where retrieval errors 

would significantly increase.  

Much large single sounding random errors are found for nadir observations over dark snow/ice and 

ocean surfaces. While individual retrievals might be of limited value, OCO-2 collects hundreds of 

retrievals per degree of latitude along its orbit track, and it might be possible to average these 

observations to reduce the random error on scales relevant to flux inversion models. The limitation of 

nadir observations is overcome to a large part by OCO-2‘s glint mode which is well suited for 

providing precise XCO2 retrievals over most of the areas where nadir observations perform very poorly. 

The estimated precision of the ocean sunglint observations is highest for large SZAs, i.e., for  

high-latitudes, and thus they provide the potential for precise CO2 retrievals over areas such as the 

Southern Ocean, which are of great interest for the ocean carbon cycle [57]. A caveat is that sunglint 

observations at high latitudes with a large SZA have a very long path through the atmosphere (because 

the instrument is pointing to the surface at an angle) and therefore obstructions by clouds are 

very likely. 

Glint mode observations over snow/ice surface are not included in this study. Especially, wet, 

melting snow tends to show a water-like sunglint effect which should lead to small retrieval errors. 

Such retrievals can be of interest for the determination of clean background conditions and they might 

warrant a further, more detailed study in the future taking into account BRDF treatment of the surface 

reflectance. 

We find that, globally, between ~18% and ~21% of all OCO-2 observations should be cloud-free 

(Figures 17 and 18) and that, with very few exceptions for regions with high and persistent aerosol 

loading, some cloud free observation can be found for a 16 day repeat cycle even over very cloudy 

areas such as the Southern Ocean. For temporal or spatial ensemble averages of XCO2 retrievals, it can 

be expected that random errors would be further reduce with the number of cloud-free retrievals.  

The theoretical XCO2 retrieval error estimates fulfill the OCO-2 requirement to measure XCO2 with 

1–2 ppm (0.3–0.5%) precision already for single-soundings almost everywhere when combing nadir 

and sunglint soundings and averaging soundings can further reduces these random errors. However, 

these results represent the theoretical ‗best‘ possible precision that have been inferred by making a 

series of assumptions as discussed above. Observed variations of a spatial or temporal ensemble of 

XCO2 retrievals from measured spectra will typically exceed such theoretical estimates. Small 

variations in geophysical conditions, such as aerosol distribution or surface albedo, or in instrumental 

conditions, will lead to scatter in retrieved XCO2 in addition to scatter due to measurement noise. Such 

variations are expected to result in a certain level of correlations between retrievals leading to a 

reduced error reduction for the errors of the ensemble mean.  
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Furthermore, our XCO2 retrieval errors do not include systematic biases which can result from errors 

in spectroscopic parameters, uncertainties in instrument calibration or deficiencies in the radiative 

transfer calculations in the forward model of the retrieval algorithm. Multiple studies have 

demonstrated that surface flux inversion are already sensitive to systematic biases in the range of a few 

tenths of a ppm [5-7,32] and the benefit of OCO-2 observations for improving surface fluxes will 

depend critically on whether it will be possible to successfully identify, characterize and eliminate such 

biases by careful validation of the space-based retrievals and by bias-correction methods in the flux 

inversion schemes.  

8. Conclusion 

We have analyzed the theoretical retrieval precision and sensitivity of XCO2 retrievals from  

space-based observations of the forthcoming NASA Orbiting Carbon Observatory-2 (OCO-2) mission 

which is scheduled for launch early 2013. Specifically, we have studied the characteristics of OCO-2 

soundings and their measurement uncertainties, given by an analysis of the OCO ―full-physics‖ 

forward model for different surface types, aerosol loadings, surface pressures and solar zenith angles.  

These simulations have been carried out for a mid-latitude summer atmospheric profile, a given 

aerosol type and vertical distribution, a constant windspeed for ocean sunglint and by excluding the 

presence of thin cirrus clouds and we have analyzed the impact of these assumptions on averaging 

kernels and XCO2 retrieval errors. The spatio-temporal distribution of the OCO-2 measurement errors 

and the expected number of cloud-free OCO-2 soundings has been obtained from the aerosol and cloud 

statistics derived from MODIS and MISR.  

We have shown that a measurement strategy combining nadir observations over land with glint 

observations over ocean, as has been adopted for the OCO-2 mission, yields theoretical estimates for 

the single sounding XCO2 retrieval errors in the range of 1 ppm or less almost globally. The vertical 

sensitivity, which is given by the averaging kernels, is high throughout most of the troposphere with 

the highest values being typically found near the surface which shows that OCO-2 soundings should be 

well suited to constrain surface fluxes. For large SZAs and AODs, the near-surface sensitivity is 

reduced due to an increased contribution from atmospheric scattering.  

We show that XCO2 retrieval errors and averaging kernels can vary substantially from scene to scene 

and between observations modes which needs to be taken into account when ingesting OCO-2 

retrievals into data assimilation/inverse models by using scene-dependent information about averaging 

kernel and errors that will be provided in the OCO-2 data product.  

We have inferred that roughly 20% of all OCO-2 soundings will be cloud-free and we expect to 

find some cloud-free OCO-2 soundings for most regions except for a few regions with very persistent 

large AODs values mostly in South East Asia and Africa. 

Potential spatially and temporally coherent systematic biases in the XCO2 retrieval have not been 

included in our study and they would need to be added to the presented XCO2 retrieval errors. 

Undetected, systematic biases, in particular if persistent on regional scales, can have a significant 

impact on surface flux estimates already for values of the order of a few tenths of ppm and to identify 

and correct such XCO2 biases will be one of the key challenges for the OCO-2 mission. 
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