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Abstract: Several studies have focused in the past on global land cover (LC) datasets 
harmonization and inter-comparison and have found significant inconsistencies. Despite 
the known discrepancies between existing products derived from medium resolution 
satellite sensor data, little emphasis has been placed on examining these disagreements to 
improve the overall classification accuracy of future land cover maps. This work evaluates 
the classification performance of a least square support vector machine (LS-SVM) 
algorithm with respect to areas of agreement and disagreement between two existing land 
cover maps. The approach involves the use of time series of Moderate-resolution Imaging 
Spectroradiometer (MODIS) 250-m Normalized Difference Vegetation Index (NDVI)  
(16-day composites) and gridded climatic indicators. LS-SVM is trained on reference 
samples obtained through visual interpretation of Google Earth (GE) high resolution 
imagery. The core of the training process is based on repeated random splits of the training 
dataset to select a small set of suitable support vectors optimizing class separability. A 
large number of independent validation samples spread over three contrasting regions in 
Europe (Eastern Austria, Macedonia and Southern France) are used to calculate 
classification accuracies for the LS-SVM NDVI-derived LC map and for two (globally 
available) LC products: GLC2000 and GlobCover. The LS-SVM LC map reported an 
overall accuracy of 70%. Classification accuracies ranged from 71% where GlobCover and 
GLC2000 agreed to 68% for areas of disagreement. Results indicate that existing LC 
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products are as accurate as the LS-SVM LC map in areas of agreement (with little margin 
for improvements), while classification accuracy is substantially better for the LS-SVM LC 
map in areas of disagreement. On average, the LS-SVM LC map was 14% and 18% more 
accurate compared to GlobCover and GLC2000, respectively. 

Keywords: multi-temporal classification; NDVI time series; Support Vector Machine; 
support vector optimization 

 

1. Introduction 

Reliable and regularly updated land use/land cover (LULC) maps at medium to coarse spatial 
resolution are required for various modeling and monitoring purposes. At continental to global scale, 
accurate LULC data are for example needed for modeling energy, water and carbon flux exchanges of 
terrestrial ecosystem components [1,2]. At regional scale, prominent applications range from 
vegetation dynamics and land change monitoring to urbanization and policy development [3–5].  

Available (global) LULC maps show large differences in the number and definitions of LULC 
classes depending on satellite data type, foreseen application as well as the specific objectives of the 
map developers [6]. For example, the Global Land Cover Map 2000 (GLC2000) [7] is based on 22 
land cover classes described through the United Nations (UN) Land Cover Classification System 
(LCCS) [8]. The GlobCover 2009 map [9] (Version 2.3 available for the year 2009), hereafter 
GlobCover, is also labeled according to the LCCS. However, a different cartographic and thematic 
aggregation is performed. The Moderate-resolution Imaging Spectroradiometer (MODIS) Land  
Cover Type product (MCD12Q1, version 5) [10] includes five different global classification systems, 
among which the 17-class system described through the International Geosphere Biosphere 
Programme (IGBP).  

For map production, usually spectral or spectro-temporal features are used with classifiers ranging 
from decision trees to parametric (maximum likelihood) classifiers. For example, GLC2000 was derived 
at 1-km spatial resolution using an unsupervised clustering approach and daily observations acquired 
between 1999 and 2000 from SPOT-VEGETATION. MODIS LC was derived at 500-m spatial 
resolution using a supervised decision tree classifier with yearly average of nadir BRDF-adjusted 
reflectance, enhanced vegetation index (EVI) and land surface temperature (LST) values. At 300-m 
spatial resolution, GlobCover was derived using supervised classification and unsupervised clustering 
of spectral and temporal information from bi-monthly composites of ENVISAT-MERIS acquisitions 
(reflectance and minimum and maximum NDVI values).  

Besides the mentioned differences regarding input features, compositing period, spatial resolution 
and classification algorithms, existing (global) LULC products also differ in map projection and 
reference time. These issues make an accuracy assessment and a map inter-comparison difficult. 
Generally, however, it is agreed that overall classification accuracies of global products are only in the 
range between ~65% and ~75% [6]. For example, GLC2000 demonstrated an overall accuracy of 
68.6% using stratified random sampling of Landsat data with 544 homogeneous samples points [7,11]. 
GlobCover was validated using various satellite data sources at fine spatial resolution (e.g., image data 



Remote Sens. 2012, 4 3145 
 

 

from Google Earth), temporal profiles and annual composites of medium and coarse resolution satellite 
data (such as ENVISAT-MERIS and SPOT-VEGETATION). The product achieved an overall 
accuracy weighted by the class area of 67.5% [9]. MODIS LC was validated using the training dataset 
with a 10-fold cross-validation analysis. This product reported an overall accuracy of 74.8%. However, 
a high variability in the class-specific accuracies was observed [10]. 

Over the last years, various studies have focused on datasets harmonization and inter-comparison 
and have found significant inconsistencies between existing products. For instance, [6] found that 
GLC2000, GlobCover (Version 2.1 for the year 2005) and MODIS LC (Version 5 IGBP) maps show 
large differences in the total surface classified as cropland and forest land cover. For the pair 
GlobCover-GLC2000, these differences were found as high as 28.4% of the average surface classified 
as cropland. Further results of map comparisons and relative quality assessment can be found  
in [6,11–14].  

Despite the known discrepancies between existing products [11], little emphasis has been placed on 
examining the disagreements between existing products. Such a focus could help improve the overall 
accuracy of future land cover products [15].  

With this study we present a preliminary analysis of MODIS 250-m NDVI (10 years of 16-day 
composites) time series data to derive LULC maps. We focus on six broad vegetation classes and one 
additional non-vegetated class (Urban/Built-up). The approach involves the use of a Least Square 
Support Vector Machine (LS-SVM) algorithm trained on reference samples obtained through visual 
interpretation of Google Earth (GE) high resolution imagery. The core of the LS-SVM training process 
is based on repeated random splits of the training dataset to select a small set of suitable support 
vectors optimizing class separability. Independent validation samples spread over three contrasting 
regions in Europe (Eastern Austria, Macedonia and Southern France) are used to assess the accuracy of 
the LS-SVM NDVI-derived classification and of two existing LC products: GLC2000 and GlobCover. 
The three regions of interest are characterized by different climatic conditions and patterns in land use 
and land cover.  

Two main research questions are addressed in this study:  

• Is it feasible to outperform overall classification accuracies of existing (global) land cover 
products (GLC2000 and GlobCover) using LS-SVM fed with MODIS NDVI time series and 
additional climatic indicators?  

• Are there any systematic patterns in classification performance (e.g., classification accuracy of the 
LS-SVM for samples where existing maps agree/disagree; class specific performance differences 
between LS-SVM and existing products)?  

In addition, the paper explores some key issues associated with the collection of reference data and 
the training of the classification algorithm. We investigate the possibility to minimize sampling efforts 
through guided sampling using ancillary information from intersection of two existing land cover 
products (GLC2000 and GlobCover). It will be shown that higher classification accuracy can be 
achieved using only points of agreement.  

The paper discusses these questions together with the results, and gives some recommendations to 
improve the accuracy of existing products, with a focus on areas of disagreement. 
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2. Materials and Methods 

2.1. Overview 

A methodology is described for producing reliable land cover maps focusing on broad (here seven) 
LC classes. Only a few broad LC classes were chosen (1) to provide a practical separation between 
managed vegetation and natural vegetation, and (2) to keep some flexibility and not preclude the 
possibility of comparisons with other LC schemes. The LC definitions used in this study and 
corresponding GlobCover and GLC2000 class codes are provided in Table 1.  

Table 1. Land Cover (LC) class codes and descriptions after aggregation of GlobCover 
and GLC2000 products. Water was not classified but taken from a water mask made for 
the Moderate-resolution Imaging Spectroradiometer (MODIS) satellite sensor data. 

Generalised Land 
Cover Class 

GlobCover 
Class 

GLC2000 
Class 

Description 

Cropland 11,14,20,30 23,16,17,18 Agriculture, managed vegetation, mosaic cropland/other vegetation 
Deciduous Forest 50,60 2,3 Close to open deciduous broadleaf trees cover 
Evergreen Forest 70,90 4 Close to open evergreen needleleaf trees cover 
Mixed Forest 100 6,9 Mixed broadleaf and needleleaf trees cover / other trees 
Shrub Cover 110,130,150 11,12,14 Shrub and sparse herbaceous or sparse shrub cover 
Grassland 120,140 13 Herbaceous vegetation, rangeland 
Urban/Built up 190 22 Urban, mixed urban or artificial land 

Multi-temporal datasets such as the MODIS product provide a cost-effective means to develop and 
to deliver regularly updated land cover products over large geographic regions [16–18]. Here we used 
as input features time series of 16-day NDVI composites from MODIS satellite sensor data 
(MOD13Q1) for the classification. For each of the 23 compositing periods, the average and the 
variance was derived from the full time series. The profile of average NDVI reflects the basic growth 
curves of different vegetation types. The variance reflects the class-specific reactivity to inter-annual 
changes in climatic driving variables (e.g., temperature, precipitation). Three climatic features were 
added to the NDVI-based features to facilitate large scale classifications with a common set of support 
vectors. The overall workflow is schematized in Figure 1. 

To reduce the efforts required for collecting ground truth information, reference data were derived 
through visual interpretation of high resolution images. For this purpose a Matlab (MathWorks) tool 
was developed making efficient use of GE data.  

For the classification a Least Square Support Vector Machine (LS-SVM) algorithm, developed by 
Suykens et al. [19], was implemented. LS-SVM represents a variant of the original SVM 
formulation [20] with similar classification performance, reduced complexity and enhanced processing 
power [21]. We selected a SVM-based algorithm, as this method is used in various remote sensing 
classification problems and achieves good accuracy compared to other classification algorithms  
(e.g., maximum likelihood, discriminant analysis or decision trees). A comprehensive review is 
available in [22]. The classification performance of SVM with MODIS time series was assessed 
in [23]. The authors investigated, among other issues, the impact of training samples size and 
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confirmed the superior generalization power even with small number of training samples (20 pixels per 
class). They also explored the variability in the overall accuracy using multiple randomly selected 
subsets of training samples, for a given training sample size.  

Figure 1. Workflow of the proposed land cover classification and validation process. The 
description of satellite data acquisition and pre-processing is reported in Box 1. Box 2 
presents the processing of the reference dataset and the comparison with GLC2000 and 
GlobCover.  

 

In our study, we trained the LS-SVM algorithm with repeated random splits of the training dataset 
to select a small set of suitable support vectors optimizing class separability [24,25]. 

For comparison of our LS-SVM LC map with existing land cover products, validation focused on an 
independent dataset not used during the training phase. Class-specific and overall classification 
accuracies were calculated. Special attention was paid to those samples, where existing maps disagreed. 

2.2. Satellite Data and Pre-Processing 

The data used in this study consisted of 16-day NDVI composites from MODIS/Terra with a 250-m 
pixel size. The MODIS 16-day NDVI composite is a Level 3 product (MOD13Q1), calculated from 
the Level 2 daily surface reflectance product (MOD09 series) [26]. Data were aggregated using the 
Constrained View angle-Maximum Value Composite (CV-MVC) compositing method in a 16-day 
interval [27].  

MODIS NDVI data spanning from February 2000 to mid-2011 were downloaded for three 
experimental test sites (Table 2). The test sites were selected to cover a variety of land cover types and 
climatic conditions in Europe.  

Box 2. Reference dataset and validation  Box 1. Satellite data acquisition and pre-processing 

Acquisition of 16-day 
NDVI composite data 

(MOD13Q1, Collection 5) 
from 2000 to 2011 

Reprojection and sub-
setting of the three study 

areas 

NDVI time series filtering. 
Generation of clean data 

from 2001-2010 
(230 observations) 

Calculation of average and 
variance of NDVI over the 

10-year period 
(46 observations) 

Harmonisation of GLC2000/GlobCover 
legends and generalisation to seven broad 

LC classes 

Extraction of land cover class labels for 
GLC2000 and GlobCover  

Integration of 3 climatic 
indicators: 
1. Annual Mean Temperature 
2. Mean Diurnal Temperature Range 
3. Precipitation of Warmest Quarter 

Input features for 
classification  
(49 features) 

Visual interpretation of randomly 
stratified points based on high spatial 

resolution Google Earth data 

Reference dataset 
Stratified random splitting in training 

and validation dataset

Differentiation between points of 
agreement and disagreement 

Comparison with GLC2000 and GlobCover 

Evaluation of the overall accuracy for the 
points of agreement and disagreement 
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Table 2. Summary of the experimental test sites. The data used in this study consisted of 
16-day Normalized Difference Vegetation Index (NDVI) composites for three test sites 
(2001 to 2010), from which averages and variances were calculated for each 16-day 
interval. Additionally, three climatic variables were used in the LC classification. Their 
respective average values are indicated.  

Test Site 
Lat./Lon. Extension MODIS 

Image 
Frame 

Annual Mean 
Temperature 

(°C) 

Mean 
Diurnal 

Range (°C) 

Precipitation of 
Warmest Quarter 

(mm) 
(Scene Centre) (km2) 

Eastern 
Austria 

48°52'6"N/18°13'44"E 107,400 h18v04 8.2 9.2 258 

Macedonia 41°39'21"N/21°46'7"E 54,500 h18v04 9.7 10.2 137 
Southern 
France 

44°21'32"N/3°57'46"E 34,455 h19v04 10.3 9.8 186 

MOD13Q1 image frames (here h18v04 and h19v04) were reprojected from the Sinusoidal to UTM 
projection with map datum WGS 84. This coordinate transformation was achieved using the MODIS 
data Reprojection Tool (MRT) with nearest neighbor resampling. The sub-setting of the three test sites 
was performed on the reprojected data. Images were consequently stacked to produce the time series 
dataset. One important requirement for multi-temporal analysis is the co-registration of the various 
acquisitions in the time series. According to the MODIS team, the geolocation accuracy is 
approximately 50 m at nadir [28]. Taking into account both nadir and off-nadir pixels, [17] reported an 
error of about 113 m that is considered acceptable for the purpose of the analysis. 

To fill data gaps, and to remove undesired effects of undetected clouds and poor atmospheric 
conditions, the time series data were filtered. The generation of the filtered dataset was based on a 
smoothing technique described in [29]. Data smoothing was achieved continuously from year 2000 to 
2011. The employed Whittaker smoother [30] balances fidelity to the observations with the roughness of 
the smoothed curve. The algorithm is extremely fast, gives continuous control over smoothness with 
only one parameter, and interpolates automatically missing data. For further details the reader is referred 
to [29,31,32]. An example of NDVI time series before and after the filtering is presented in Figure 2. 

The filtered time series consisted of 230 NDVI data values (10 years of data, 23 acquisitions per 
year, 1 observation every 16 days) from the start of 2001 to the end of 2010 (first and last complete 
year). The 230 NDVI data values were summarized to provide 16-day inter-annual averages (n = 23) 
and the corresponding variances (n = 23) for the period 2001–2010. The final NDVI dataset used in 
our study thus consisted of 46 observations representing the inter-annual averages and variances. A 
positive effect of using multi-annual data was shown by [33] where the effect of data compositing and 
length of the observation period on the LC accuracy was investigated.  

As a consequence of the multi-annual data compositing, changes in land use and land cover may be 
expected to produce artefacts in the inter-annual averages (and variances) of the NDVI values. In this 
study, we assumed that LULC changes would have only a minimal impact on our European dataset. 
The rate of land cover changes for 36 European countries was estimated by [34] being 1.3% of the 
total land surface for the period 2000–2006, with average annual change rates of 0.08% for Austria, 
0.14% for Macedonia and 0.11% for France.  
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Figure 2. Example of NDVI time series before (a) and after (b) filtering. Data smoothing 
was achieved continuously from year 2000 to 2011 using the Whittaker smoother (λ = 15). 
For the classification only data from 2001 to the end of 2010 was used and is shown  
in the graphs.  

 
(a) 

 
(b) 

Three climatic indicators were included as LS-SVM input features so that the classifier receives 
information concerning the respective climatic conditions of each sample: the Annual Mean 
Temperature, the Mean Diurnal Temperature Range, and the Precipitation of Warmest Quarter 
calculated at 1-km spatial resolution. These three indicators were selected from the global climate 
layers of the WorldClim [35] dataset summarizing annual and seasonal trends of monthly temperature 
and rainfall values. Temperature and precipitation are important drivers of crop/vegetation growth and 
phenology. They are thus responsible for inter-annual and spatial variability of NDVI profiles. 

The data values of the 49 features dataset were normalized using the standard score and constituted 
the input for the multi-temporal land cover (LS-SVM) classification. 

2.3. Reference Dataset 

Reference LC information is required to train the LS-SVM, and to determine the quality of the 
established map in the accuracy assessment process. Visual interpretation of high spatial resolution 
images represents a time- and cost-saving alternative to traditional field surveys for ground truthing, 
and the only practical solution at regional and global scales [36,37]. For this purpose, a software 
toolbox was developed under Matlab to assist the display of satellite images available in GE and to add 
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The final dataset (ntot = 1,159) was randomly split into two sub-samples (training and validation). 
For the optimization of the LS-SVM algorithm, only the training samples were used. The validation 
samples were used only for the classification performance assessment. Accuracy measures were 
calculated for different levels of pixel homogeneity: (1) first for medium to high homogeneity levels  
(n = 362), and (2) subsequently including all levels of pixel homogeneity (n = 567) . 

Figure 4. Illustration of different levels of pixel homogeneities. Examples are provided for 
Deciduous Forest (a), Deciduous Forest mixed with Evergreen Forest (b) and Urban mixed 
with Deciduous Forest and Cropland (c) LC classes as interpreted in the high resolution 
Google Earth images. (a) high homogeneity, (b) medium homogeneity, and (c) low 
homogeneity.  

 
(a) (b) (c) 

2.4. Comparison with Existing LC Products 

The classification performance of the LS-SVM was compared to two existing LC products 
(GLC2000 and GlobCover). The LC class codes were extracted based on the exact location of the 
reference dataset points for GLC2000 (1-km pixel size). For GlobCover (300-m pixel size) a 3 × 3 
neighborhood majority rule was used. In case where no class met the majority threshold, the center 
value was taken. A prerequisite to compare land cover data from existing LC products is the 
harmonization of the different classification legends. Processing aspects and recommendations for LC 
harmonization are described in [38]. Although GLC2000 and GlobCover are based on different mixed 
unit definitions and LC legends, both consider 22 LC classes according to the United Nations (UN) 
Land Cover Classification System (LCCS) [8]. Various methodologies have been proposed to aggregate 
and compare LC maps obtained from different satellite sensor data and mapping projects [37]. In our 
study, the LC legends of GLC2000 and GlobCover were first cross-related using a crisp approach [12]. 
This permits comparing class descriptions between the two mapping projects. Subsequently, the LC 
classes of the two legends were translated to a third system and thematically aggregated into seven LC 
classes (see Table 1). This yields two new LC maps with harmonized legends (Figure 5). After 
harmonization and aggregation of legends, the areas of agreement (‘agr.’) and of disagreement (‘dis.’) 
between the two recoded LC products were derived. The distribution and the number of samples in the 
training and validation datasets are provided in Figure 6 and in Figure 7, respectively. 
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Figure 5. GLC2000 and GlobCover maps after legend aggregation for the three test sites.  
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Figure 6. Distribution of LC data for the training (left) and validation (right) dataset. The 
randomized division of reference samples into training (n = 592) and validation data  
(n = 567) was done by class. 

 

Figure 7. The reference dataset was divided into training and validation subset. The total 
number of points and the corresponding agreement (‘agr’) and disagreement (‘dis’) are 
provided for each subset. The accuracy assessment stage distinguished between two 
validation datasets; one including the points with low homogeneity and one excluding 
these points.  

 

2.5. Classification Algorithm and Training Strategy 

The image classification was performed by a non-linear SVM classifier [20]. The algorithm uses a 
kernel function to transform the training samples from the input space to a feature space of higher 
dimension. This results in a linearly separable dataset—normally non-linearly separable in the original 
input space—that can be separated by a linear classifier [39]. In this high-dimensional space, the 
algorithm finds an optimal separating hyperplane between two classes of training samples. The optimal 
hyperplane is constructed by maximizing the distance (margin) to the closest data points from the 
plane. The orientation of the plane is determined only by the training points that lie on the class 
boundaries, the so-called ‘support vectors’ [40].  

SVMs are intrinsically binary classifiers and different strategies have been proposed to solve the 
multi-class problem [41,42]. However, various studies found that the performance of one approach 
compared to another depends on the dataset used and on the specific classification problem [43]. In 
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this study, the multi-class classification problem was decomposed into multiple binary classifications 
using the one-against-one coding scheme, which provides good accuracy and is usually more suitable 
for practical use [44] compared to other coding schemes. This approach was also selected in similar 
studies dealing with land cover classification [45]. Regarding SVM algorithm and kernel function 
settings, we used a Least Square-SVM (LS-SVM) classifier with a Radial Basis Function (RBF) 
kernel. LS-SVM is a particular case of SVMs proposed by Suykens and Vandewalle [19,46]. The 
original formulation was revised to use a set of linear equations instead of quadratic programming 
problems and therefore to reduce the complexity and to improve the computing power [21]. The 
algorithm has two tuning parameters, namely the regularization parameter and the scaling factor of the 
kernel function. For the purpose of our study, the two tuning parameters and the optimum set of 
support vectors were optimized concurrently in a computational loop (5,000 iterations). In a first step, 
the training dataset was randomly split into subsets of training (candidate support vectors) and testing 
datasets. Based on these candidate support vectors (subset of training samples), a model optimization 
was performed to identify the best performing parameter combination for our classification problem. 
For this purpose, we used a grid-search method, as recommended by [47]. Each parameter combination 
was checked using a leave-one-out cross-validation, and the parameter pair with best cross-validation 
accuracy was selected. For each split, the LS-SVM model was optimized with the candidate support 
vectors, and the overall accuracy and the classification rate were assessed using the testing dataset. The 
number of candidate support vectors (80) was given by the minimum number of samples that each 
class has in the training set. This optimization was repeated 5,000 times using random splits of the 
training dataset into multiple subsets of training (candidate support vectors) and testing datasets. The 
best LS-SVM model of the 5,000 iterations was selected based on the highest overall accuracy and 
classification rate and it was applied to the independent validation dataset. Since random splitting was 
applied, some samples may never be selected, whereas others may be selected more than once. The 
schematization of the training, testing and validation process is presented in Figure 8. With this 
approach, we selected the most informative training samples that were likely to be good support 
vectors for the entire study region. The importance of small but informative training samples was also 
highlighted in previous studies dealing with intelligent selection of reference data for SVM 
classification in the spectral domain [24,25].  

2.6. Accuracy Assessment and Accuracy Target 

The classification performance evaluation was based on common statistical measures [48] derived 
from the classification error matrix. Only the validation dataset was used for this purpose. The selected 
statistical measures included the Overall Accuracy (OA), the Producer’s Accuracy (PA), the User’s 
Accuracy (UA), and the Cohen’s Kappa coefficient (κ). The two-side confidence intervals (CI) for the 
OA were calculated at 95% confidence level using the normal approximation method [49] with the 
continuity correction.  

The performance of the LS-SVM classifier for the entire validation dataset is reported and 
distinguishing between ‘agr.’ and ‘dis.’ validation samples. Similarly, we report the accuracy of 
GlobCover and GLC2000. In benchmarking the LS-SVM performance, we refer to the classification 
accuracy achieved with GlobCover and GLC2000. We report the increase/decrease of the OA of  
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LS-SVM classifier as percentage of the OA for GlobCover and for GLC2000. The statistical 
significance of the differences between the pairs LS-SVM-GlobCover and LS-SVM-GLC2000 was 
evaluated with the McNemar’s test with the continuity correction [50].  

Figure 8. The schematization of the LS-SVM training, testing and validation process. The 
best set of support vectors was selected using an iterative approach with repeated random 
splits of the training data into multiple training and testing subsets. For each iteration, the 
LS-SVM was trained with the candidate support vectors (training subset), and the accuracy 
and classification rate were assessed using the testing subset. The best LS-SVM model was 
selected from the 5,000 candidate models according to the highest overall accuracy and the 
best classification rate. This model was applied to the validation dataset for accuracy 
assessment. 

 

3. Results 

3.1. Accuracy Assessment for Medium and High Homogeneity Samples 

A first accuracy assessment was performed using only those samples qualified as medium to high 
homogeneity. Thus, the 205 low homogeneity samples (nagr = 96 and ndis = 109) were excluded  
(Figure 7). The error matrices and accuracy measures for LS-SVM, GlobCover and GLC2000 are 
presented in Table 3 for the corresponding validation dataset (ntot = 362).  

LS-SVM achieved an overall accuracy (OA) of 70% (95% C.I.: 65%–75%) and an overall κ of 
0.63; GlobCover and GLC2000 reported an OA of 61% (95% C.I.: 56%–66%) and of 59% (95% C.I.: 
54%–64%), respectively. From these figures we calculated the percentage of increase or decrease of 
the overall accuracy of LS-SVM with respect to GlobCover and GLC2000. In this comparison, LS-SVM 
resulted 14% and 18% more accurate than GlobCover and GLC2000 respectively. According to the 
two-tailed P-value, differences are considered to be extremely statistically significant (p < 0.001). 
Table 4 shows a summary of the percentage of increase/decrease of the overall accuracy for LS-SVM 
with respect to GlobCover and GLC2000. An example of the three maps is provided in Figure 9 for a 
subset in test site 1. 
  

Select best LS-SVM model based 
on highest overall accuracy and 

classification rate 

Accuracy assessment with and 
without low homogeneity samples 

Repeated random splits (5000) of 
the training data into training and 

testing subsets 

LS-SVM optimisation and testing: 
Calculation of the overall accuracy 

and classification rate 
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LS-SVM model to the 

independent validation dataset 

Training data 
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Table 3. Error matrices and statistical measures for LS-SVM, GlobCover and GLC2000. 
Validation dataset excluding points of low spatial homogeneity (ntot = 362). The error 
matrix was summarized based on the statistical measures: Producer’s Accuracy (PA), 
User’s Accuracy (UA), Overall Accuracy (OA) and the Cohen’s Kappa coefficient (κ). The 
visual interpretation of GE imagery was considered the ground truth (Reference).  

   Reference  ∑ P.A. U.A.    C D E M S G U 

L
S-

SV
M

  

Cropland (C) 88 3 4 0 11 8 0 114 81% 77% 
Deciduous Forest (D) 3 49 2 9 2 3 0 68 75% 72% 
Evergreen Forest (E) 2 4 28 19 0 0 0 53 68% 53% 

Mixed Forest (M) 2 6 7 33 0 0 0 48 53% 69% 
Shrub Cover (S) 9 1 0 1 17 3 1 32 53% 53% 

Grassland (G) 2 2 0 0 0 14 0 18 50% 78% 
Urban (U) 3 0 0 0 2 0 24 29 96% 83% 

  ∑ 109 65 41 62 32 28 25 362 O.A.: 70% 
                   κ: 63% 

C D E M S G U ∑ P.A. U.A. 

G
lo

bC
ov

er
 

Cropland (C) 74 8 2 3 8 7 2 104 68% 71% 
Deciduous Forest (D) 3 29 5 12 1 1 0 51 45% 57% 
Evergreen Forest (E) 3 3 26 11 0 2 0 45 63% 58% 

Mixed Forest (M) 0 9 6 35 3 1 0 54 56% 65% 
Shrub Cover (S) 23 3 2 0 19 1 0 48 59% 40% 

Grassland (G) 6 13 0 1 0 16 0 36 57% 44% 
Urban (U) 0 0 0 0 1 0 23 24 92% 96% 

  ∑ 109 65 41 62 32 28 25 362 O.A.: 61% 
                   κ: 53% 

C D E M S G U ∑ P.A. U.A. 

G
L

C
 2

00
0 

Cropland (C) 95 15 7 2 14 13 5 151 87% 63% 
Deciduous Forest (D) 9 34 3 12 3 5 0 66 52% 52% 
Evergreen Forest (E) 1 5 22 19 1 2 1 51 54% 43% 

Mixed Forest (M) 1 7 4 27 4 0 0 43 44% 63% 
Shrub Cover (S) 2 3 5 2 10 0 1 23 31% 43% 

Grassland (G) 1 1 0 0 0 8 0 10 29% 80% 
Urban (U) 0 0 0 0 0 0 18 18 72% 100% 

  ∑ 109 65 41 62 32 28 25 362 O.A.: 59% 
                   κ: 20% 

Table 4. Summary table for validation data excluding points of low spatial homogeneity; 
the top part of the table shows the percentage of increase/decrease of overall accuracy 
(OA) for LS-SVM with respect to GlobCover and GLC2000. The bottom part of the table 
shows statistical significance of differences of the results based on the McNemar’s test  
(P-value and Chi-square) with the continuity correction. NS = Non-Significant result and  
S = Significant result at the 95% confidence level.  

% Increase/Decrease OA of LS-SVM with Respect to:  
  Total Agreement Disagreement 
GlobCover 14% −5% 68% 
GLC2000 18% 89% 

McNemar’s Test 
  P-value  
GlobCover P < 0.001 (S)  P > 0.05 (NS) P < 0.001 (S)  
GLC2000 P < 0.001 (S) P < 0.001 (S)  
  Chi-square (df = 1) 
GlobCover 7.46 

0.68 
22.72 

GLC2000 9.69 27.48 
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Figure 9. Examples of GlobCover, GLC2000 and LS-SVM maps for a small region 
between the cities of Vienna (Austria), Bratislava (Slovakia) and Brno (Czech Republic). 

 
In details, Cropland in LS-SVM reported a very high producer’s accuracy, indicating a good 

identification for all points visually interpreted as this class (Table 3); errors in the user’s accuracy 
were often due to confusion with Shrub Cover. This result indicates that LS-SVM produces an 
overestimation of Cropland class with a commission error of 23%. A similar trend was observed in 
GLC2000, with lower user’s accuracies due to an additional confusion of Cropland with Deciduous 
Forest and Grassland classes. In contrast, GlobCover presented a higher omission error (32%) due to 
confusion with Shrub Cover. The poor producer’s accuracy of Cropland in the GlobCover product was 
due to confusion with Deciduous Forest, Shrub Cover and Grassland. Amongst the three products, 
LS-SVM and GLC2000 gave the best results for the Cropland class. 

For all LC products, Shrub Cover and Grassland were the two most difficult classes to identify with a 
producer’s accuracy ranging from 29% (GLC2000) to 59% (GlobCover) and a user’s accuracy ranging 
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way the forest was interpreted by the visual interpreter. For instance, in the validation of GlobCover 
many forest points were often assigned directly to Mixed Forest class since leaf type and the leaf 
phenology information were not available [9]. A similar explanation was provided by [11] for the 
validation of GLC2000. A visual assessment showed that confusion between Deciduous Forest and 
Mixed Forest classes is also occurring in the LS-SVM LC map. For instance, a detailed analysis of the 
region presented in Figure 9 indicated that the Deciduous Forest areas located West of Vienna and 
North of Bratislava were confused with Mixed Forest. 

Regarding Urban/Built-up class, all three LC products provided a good accuracy, with GlobCover 
achieving the best results. GLC2000 produced an omission error of 28% due to confusion of this class 
with Cropland.  

3.2. Accuracy Assessment for All Levels of Pixel Homogeneity 

A second accuracy assessment was undertaken considering all levels of pixel homogeneity  
(ntot = 567) (Figure 7). In this case, the LS-SVM gave an OA of 63% (compared to 70% considering 
only medium-high homogeneity samples). Overall, the LS-SVM map was 10% and 24% more 
accurate compared to GlobCover and GLC2000, respectively.  

The three LC products reported a similar overall accuracy (OAagr of 64% for LS-SVM and 68% for 
GlobCover and GLC2000) where GlobCover and GLC2000 maps agreed. In the case of disagreement, 
GlobCover reported an OAdis of 43% whereas GLC2000 showed significantly lower classification 
accuracy (OAdis of 29%). LS-SVM gave for those samples an overall agreement (OAdis) of 61%. A 
visual assessment indicated that the significantly lower performance of GLC2000 is probably caused 
by differences between the spatial resolutions of the LC map (1-km pixel size) and the spatial 
reference used for the visual interpretation (about 250-m). Due to this difference, two or more LC 
types could correspond to the same GLC2000 pixel (mixed pixel problem). This issue was expected to 
be more pronounced in areas with low homogeneity. This was the main reason for restricting the 
analysis in the previous section to samples of medium to high homogeneity. 

3.3. Accuracy Assessment for Agreement and Disagreement Samples 

To further investigate systematic patterns in classification performance, we evaluated the overall 
accuracy of the LS-SVM for samples where existing maps (GlobCover and GLC2000) agree or 
disagree. For this detailed analysis we considered only medium and high homogeneity samples  
(nagr = 215 and ndis = 147).  

Error matrices and statistical measures are presented in Table 5 for the samples in agreement. The 
overall accuracy was 71% (95% C.I.: 65%–77%) for LS-SVM and 75% (95% C.I.: 69%–81%) for 
GlobCover/GLC2000. The error was more uniformly distributed among all LC classes, with Cropland, 
Deciduous Forest and Urban being classes with best accuracies. Percentage differences between  
LS-SVM and the combination of GlobCover/GLC2000 are not considered statistically significant 
(p > 0.05) (see Table 4). Interestingly, where all three maps agreed (n = 144) we found an overall 
classification accuracy of 88%. 
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Table 5. Error matrices and statistical measures for LS-SVM and GlobCover/GLC2000 for 
the agreement data points (nagr = 215).  

   Reference  ∑ P.A. U.A.    C D E M S G U 

L
S-

SV
M

  

Cropland (C) 59 3 3 0 3 4 0 72 81% 82% 
Deciduous Forest (D) 3 23 2 4 2 1 0 35 70% 66% 
Evergreen Forest (E) 1 2 18 10 0 0 0 31 67% 58% 

Mixed Forest (M) 2 4 4 22 0 0 0 32 59% 69% 
Shrub Cover (S) 6 0 0 1 7 2 1 17 54% 41% 

Grassland (G) 0 1 0 0 0 7 0 8 50% 88% 
Urban (U) 2 0 0 0 1 0 17 20 94% 85% 

  ∑ 73 33 27 37 13 14 18 215 O.A.: 71% 
                   κ: 64% 
   C D E M S G U ∑ P.A. U.A. 

G
lo

bC
ov

er
/ 

G
L

C
20

00
  

Cropland (C) 69 5 1 1 4 5 1 86 95% 80% 
Deciduous Forest (D) 2 21 3 7 0 1 0 34 64% 62% 
Evergreen Forest (E) 1 1 18 7 0 1 0 28 67% 64% 

Mixed Forest (M) 0 6 3 22 2 0 0 33 59% 67% 
Shrub Cover (S) 1 0 2 0 7 0 0 10 54% 70% 

Grassland (G) 0 0 0 0 0 7 0 7 50% 100% 
Urban (U) 0 0 0 0 0 0 17 17 94% 100% 

  ∑ 73 33 27 37 13 14 18 215 O.A.: 75% 
                   κ: 49% 

Table 6. Error matrices and statistical measures for LS-SVM and GlobCover/GLC2000 for 
the disagreement data points (ndis = 147). 

    Reference  ∑ P.A. U.A.     C D E M S G U 

L
S-

SV
M

  

Cropland (C) 29 0 1 0 8 4 0 42 81% 69% 
Deciduous Forest (D) 0 26 0 5 0 2 0 33 81% 79% 
Evergreen Forest (E) 1 2 10 9 0 0 0 22 71% 45% 

Mixed Forest (M) 0 2 3 11 0 0 0 16 44% 69% 
Shrub Cover (S) 3 1 0 0 10 1 0 15 53% 67% 

Grassland (G) 2 1 0 0 0 7 0 10 50% 70% 
Urban (U) 1 0 0 0 1 0 7 9 100% 78% 

  ∑ 36 32 14 25 19 14 7 147 O.A.: 68% 
                    κ: 61% 
    C D E M S G U ∑ P.A. U.A. 

G
lo

bC
ov

er
 

Cropland (C) 5 3 1 2 4 2 1 18 14% 28% 
Deciduous Forest (D) 1 8 2 5 1 0 0 17 25% 47% 
Evergreen Forest (E) 2 2 8 4 0 1 0 17 57% 47% 

Mixed Forest (M) 0 3 3 13 1 1 0 21 52% 62% 
Shrub Cover (S) 22 3 0 0 12 1 0 38 63% 32% 

Grassland (G) 6 13 0 1 0 9 0 29 64% 31% 
Urban (U) 0 0 0 0 1 0 6 7 86% 86% 

  ∑ 36 32 14 25 19 14 7 147 O.A.: 41% 
                    κ: 32% 
    C D E M S G U ∑ P.A. U.A. 

G
L

C
 2

00
0 

Cropland (C) 26 10 6 1 10 8 4 65 72% 40% 
Deciduous Forest (D) 7 13 0 5 3 4 0 32 41% 41% 
Evergreen Forest (E) 0 4 4 12 1 1 1 23 29% 17% 

Mixed Forest (M) 1 1 1 5 2 0 0 10 20% 50% 
Shrub Cover (S) 1 3 3 2 3 0 1 13 16% 23% 

Grassland (G) 1 1 0 0 0 1 0 3 7% 33% 
Urban (U) 0 0 0 0 0 0 1 1 14% 100% 

  ∑ 36 32 14 25 19 14 7 147 O.A.: 36% 
                    κ: 20% 
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Table 6 reports the classification performance results for the disagreement data samples (ndis = 147). 
It was not surprising that the overall accuracy decreased for this portion of the dataset. Nevertheless, 
LS-SVM still achieved an overall accuracy of 68% (95% C.I.: 60%–76%) while GlobCover and 
GLC2000 reported an overall accuracy of only 41% (95% C.I.: 33%–50%) and 36% (95% C.I.:  
28%–44%), respectively. Compared to the validation dataset without the discrimination between 
agreement and disagreement, LM-SVM only showed a modest reduction in overall classification 
accuracy (from 70% to 68%). On the contrary, dramatic drops in overall classification accuracies were 
noted for GlobCover and GLC2000. For example, in the case of GlobCover, the overall classification 
accuracies dropped from 61% (Table 3) to 41% (Table 6). 

Calculating the percentage of increase/decrease of the overall accuracy for the map pairs, we found 
that LS-SVM was 68% and 89% more accurate for the disagreement dataset compared to GlobCover 
and GLC2000, respectively. According to the two-tailed P-value (p < 0.001), differences are 
considered to be extremely statistically significant. A summary of the results is presented in Table 4. 

4. Discussion 

The results presented here demonstrate that there is a high potential in using LS-SVM fed with 
MODIS 250-m NDVI (16-day composites) and gridded climatic indicators for land cover classification. 
LS-SVM NDVI-derived LC maps achieved an overall accuracy of 70% and an overall κ of 0.63. 
Although the overall accuracy is below the 85% target, commonly referred as a minimum level for 
satellite-based LC product (70% per class accuracy) [51], our findings are comparable to those of 
previous studies dealing with similar LC classes [17,52,53]. Foody [54] suggested that a practical and 
realistic accuracy target should be defined for each particular application. For instance, in [53] the author 
reviewed several LC classification based on remotely sensed data and reported a mean overall accuracy 
of 76.19% (standard deviation = 15.59%) and a mean κ of 0.65 (standard deviation = 0.19) with about 
eight LC classes. Our results are in line with the output of this review paper. When comparing our results 
to the accuracy achieved by GlobCover and GLC2000 aggregated to seven LC classes, we observed that 
LS-SVM LC map clearly outperforms these two (global) land cover products. 

According to our findings, we summarize the results as follows: 

• Previous studies were often focused on the comparison of various LC datasets, to assess their 
strengths and weaknesses and to make the users and map developers aware of specific mapping 
problems [13]. Herold et al. [11] highlighted that a significant improvement in our global land 
cover mapping capacities can be achieved with a better accuracy for the areas of spatial 
disagreement among existing LC products. We attempted to achieve this improvement focusing 
especially on those areas where existing maps disagree. Our experimental results demonstrate that 
in the case of the LS-SVM LC classification, the accuracy of data points for areas of disagreement 
was notably improved up to 68% (considering a similar minimum mapping unit, such as LS-SVM 
at 250 m and GlobCover at 300 m) (see Table 4). On the contrary, an improvement for agreement 
points was difficult to achieve, confirming that currently available LC products are already 
relatively accurate in areas of agreement (71–75% in our assessment). Interestingly, data points  
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(n = 144) that resulted in agreement in the three datasets (LS-SVM, GlobCover and GLC2000) 
achieved an overall accuracy of 88%.  

• Only a few previous studies have independently evaluated the accuracy of LC products where 
existing maps agree/disagree [11,14]. These studies and our findings confirm that the 
classification accuracy of areas of agreement is systematically higher compared to areas where 
two (or more) maps disagree.  

• Distinguishing between points of agreement and disagreement proved also helpful in the LS-SVM 
training process. Although not shown in this study, the iterative selection of support vectors drawn 
only from the agreement portion provided higher accuracy compared to the selection from the 
disagreement portion only. In the latter case, the LS-SVM achieved an OA of 73% (support 
vectors selected from the agreement portion only) vs. 67% (support vectors selected from the 
disagreement portion only) for the entire testing dataset. The OA was 70% (Table 3) when no 
distinction between agreement and disagreement is done in the training process. Our experimental 
results suggest that available LC products can be used to derive agreement/disagreement maps. 
These maps can be used as a kind of prior knowledge in classification projects to minimize and 
optimize sampling efforts through guided sampling in areas of agreement. Probably, points of 
agreement are also less prone to possible mis-assignments in the visual interpretation. 

• We observe a clear relationship between accuracy, agreement/disagreement and pixel homogeneity. 
Considering, for example, the results of our visual interpretation for the entire reference dataset (ntot 
= 1159) we notice a prevalence of cases in agreement compared to disagreement (434 vs. 307) for 
high and medium homogeneity levels. On the contrary, at low homogeneity level we observe fewer 
cases in agreement compared with disagreement (195 vs. 223).  

• Large differences in the classification accuracy were also observed in respect to the confidence of 
interpretation. For examples, LS-SVM LC map achieved an OA of 63% for all levels of pixel 
homogeneity and confidence of interpretation (n = 567). This accuracy decreased to 47% when we 
considered ‘Less sure’ (n = 113) samples only; it increased to 62% and to 80% for ‘Quite sure’  
(n = 328) and for ‘Sure’ (n = 126) samples, respectively. The impact of removing those samples 
that were flagged as ‘Unsure’ (76 in the reference dataset, 49 in the validation dataset) was not 
statistically significant. This confirms that classification accuracy is strongly related to the 
confidence of interpretation and possibly to the uncertainties in the reference dataset. 

• A more detailed analysis of the classification accuracy extended to low homogeneity samples was 
limited by the differences between the spatial resolutions of GLC2000 and the spatial reference 
used for the visual interpretation. Due to this difference, two or more LC types could correspond 
to the same GLC2000 pixel. Hence, any direct comparison disfavors the GLC2000 dataset for 
those pixels. Including low homogeneity levels, the classification accuracy for LS-SVM was 
improved up to 40% (vs. 68% only for medium and high homogeneity samples) compared with 
GlobCover at 300 m. This aspect requires further investigation to confirm trends in disagreement 
at various levels of pixel homogeneity.  

• The inclusion of the three climatic features contributed to reduce the standard deviation of the OA 
within the LS-SVM optimization step (5,000 iterations) and increased the classification rate (less 
unclassified pixels) (not shown). Together this stabilized the classification results. In this study, 
however, the improvement in overall accuracy was not statistically significant compared to not 
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including climatic features (not shown). The contribution of climatic data may have a higher 
impact when working over (climatically) more diverse/larger areas, as otherwise phenological 
shifts may lead to mis-classifications. 

5. Conclusions and Recommendations 

This work evaluated the land cover (LC) classification performance of a least square support vector 
machine (LS-SVM) algorithm using Moderate-resolution Imaging Spectroradiometer (MODIS) 250 m 
Normalized Difference Vegetation Index (NDVI) time series. The classification performance was 
compared to the overall accuracies of two existing LC products (GlobCover and GLC2000). In 
particular, results were evaluated with respect to points in agreement and disagreement between 
GlobCover and GLC2000 using a harmonized legend with seven land cover classes. This disjoint 
analysis was performed to evaluate possible improvements in classification accuracy where existing 
maps are inconsistent (disagree).  

The LS-SVM NDVI-derived LC map achieved an overall accuracy of 70% and it resulted 14% and 
18% more accurate compared to GlobCover and GLC2000, respectively. The LS-SVM map was as 
accurate as existing LC maps in points of agreement (71–75% in our assessment), while classification 
accuracy was significantly improved (from 36–41% to 68%) in points of disagreement. This 
improvement was as high as 68% considering a similar minimum mapping unit such as LS-SVM at 
250-m and GlobCover at 300-m. Results showed that there is a high potential to significantly improve 
the accuracy for areas where existing products disagree. Within our 3 test sites, areas of disagreement 
represent roughly 35% of the total area. This opens new possibilities to revise existing LC maps  
(e.g., by focusing on areas of disagreement). 

Additionally, we investigated the possibility to reduce the effort for visual interpretation. This can 
be done by selecting and interpreting only points of agreement. Points of disagreement could be 
excluded a-priori from the visual interpretation and from the training dataset because these points can 
be considered of low quality and little help for classification. In training the classification algorithm, 
one can exclusively rely on training samples extracted over points of agreement, thus reducing the 
effort required for visual interpretation (saving man power and time). In future studies, sampling effort 
can thus be reduced focusing only on areas of agreement. 

Given the currently available global datasets, the users of LC products should in our opinion focus 
on combining existing maps and identify areas of agreement and disagreement. The accuracy of areas 
of spatial disagreement could then be improved based for example on the methodology proposed in 
this study. The proposed methodology can be easily generalized to different legend definitions or 
levels of land cover detail. This will help maximizing the overall accuracy of the resulting final land 
cover map as confirmed by our study.  

Similar to several other studies [6,12,13,15], our work confirmed that there is no clear preference of 
one LC product compared to others. A selection will always have to be based on a specific purpose or 
application. Steps to further improve the accuracy of land cover maps include, for instance, ensembles 
of different algorithms for map production based on multi-source datasets [55]. Subsequently, these 
maps can be combined and synthetized in one product based on decision fusion rules [56,57]. 
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