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Abstract: Models and observations show that the Arctic is experiencing the most rapid 
changes in global near-surface air temperature. We developed novel EASE-grid Level 3 
(L3) land surface temperature (LST) products from Level 2 (L2) AATSR and MODIS data 
to provide weekly, monthly and annual LST means over the pan-Arctic region at various 
grid resolutions (1–25 km) for the past decade (2000–2010). In this paper, we provide: 
(1) a review of previous validation of MODIS/AATSR L2; (2) a description of the 
processing chain of L3 products; (3) an assessment of the 25 km products uncertainty, and; 
(4) a quantification of the bias introduced by over-representing clear-sky days in MODIS 
L3 products. In addition, we generated uncertainty maps by comparing L3 products with 
LST from passive microwave sensors (AMSR-E and SSM/I) and the North American 
Regional Reanalysis (NARR). Results show a close correspondence between MODIS and 
AATSR monthly products with a mean-difference (MD) of −1.1 K. Comparing L3 
products with NARR indicates a close agreement in summer and a systematic bias in 
winter, which is entirely negative with respect to MODIS L3 (MD: −3.6, Min: −6.8, Max: 
−1 K). Comparing monthly averaged MODIS L3 to NARR clear-sky to quantify  
over-representing clear-sky days indicates a decrease of winter and an increase of summer 
difference compared to NARR all-sky. Finally, we provide suggestions to improve LST 
retrieval over Arctic regions. 
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1. Introduction 

Land Surface Temperature (LST) is a key surface parameter needed to study energy and matter 
exchange near land surface [1,2]. The successful retrieval of sea surface temperature from thermal 
infrared (TIR) observations has led to the development of LST retrieval algorithms [3]. For example, 
the recent advancements of LST retrieval algorithms for the Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor aboard the Terra & Aqua satellites and the Advanced Along-Track 
Scanning Radiometer (AATSR) sensor on-board ENVISAT satellite, despite challenges related to 
variations in emissivity within pixels over heterogeneous landscapes [4]. The availability of  
satellite-derived LST allows for detecting changes in surface (skin) temperature on a regular basis  
(i.e., on weekly, monthly and annual time steps) [5] and for monitoring decadal trends [6,7].  

Evidence of increased near-surface air temperature in the Arctic, at almost twice the rate as the 
global average [8,9], emphasizes the importance of monitoring surface temperature of this vast and 
remote region from space. Although TIR data have been used to retrieve LST operationally [3,10], it 
has not been utilized widely to map/monitor LST in high latitude regions [11,12]. In addition to the 
relevance of monitoring LST in the context of Arctic climate change, there is a growing interest by the 
permafrost community to integrate gridded LST data into spatially-distributed permafrost models for 
basin-scale and Arctic-wide simulations in order to evaluate the impact of changes in LST on  
near-surface permafrost temperature and the thickness of the active layer [13]. There is also interest by 
the climate modeling community in evaluating climate model output of surface temperature with LST 
products derived from satellite remote sensing [14,15].  

Therefore, there is a clear need identified by both the permafrost and climate modeling communities 
for the production of LST datasets aggregated both spatially and temporally to meet these 
requirements [16]. Furthermore, international initiatives such as the newly established EarthTemp [17] 
are a further indication of the interest in acquiring temperature measurements on a regular basis for 
climate monitoring, including those retrieved from satellite remote sensing and their comparison with 
more conventional screen-height surface air temperature measurements from meteorological stations 
and atmospheric reanalysis data. 

One recently completed initiative is the European Space Agency (ESA) Data User Element (DUE) 
Permafrost project aimed at building an Earth Observation (EO) system to monitor permafrost 
regions [18]. Although permafrost is a subsurface phenomenon, LST was identified, in addition to 
surface soil moisture, freeze and thaw status, surface water, land cover and topography, as a proxy to 
monitor the near-surface thermal state of permafrost [18,19]. Based on a survey involving the 
International Permafrost Association [20], two critical scales for LST products, regional (1 km) and 
pan-Arctic (25 km) scales at weekly, monthly and annual intervals, were identified. Maximum and 
minimum temperatures, temperature amplitude, and the number of satellite observations used to 
calculate mean values were requested as ancillary data to provide an indication of the quality of the 
LST products. It was also suggested to develop a scheme for the validation of LST products over 
permafrost areas as most validation efforts of L2 MODIS or AATSR products have been conducted in 
mid-latitude regions over homogenous agricultural fields [21–23] or large lakes [1]. A few recent 
studies, conducted within the context of the DUE Permafrost project, have evaluated existing L2 and 
L3 MODIS products in selected regions of the Arctic [12,24–26]. Although these studies have been 
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useful in estimating the uncertainty of L2 and L3 MODIS (Collection 5) 1-km products, they were 
limited spatially to a few locations. 

Through ESA’s DUE Permafrost project, we developed novel LST L3 products using readily 
available L2 AATSR and MODIS unprojected products [27]. The new L3 products span over the past 
decade (2000–2010) and are produced at the pan-Arctic scale, above 50 degrees north, on weekly, 
monthly and annual time steps. The specific objectives of this paper are to: (1) provide a brief review 
of the validation of L2 MODIS /AATSR products from previous investigations; (2) provide a 
description of the processing chain developed to produce L3 pan-Arctic products with a critical 
analysis of the aggregation method used; (3) describe the spatial and temporal bias patterns associated 
with the new L3 MODIS and AATSR pan-Arctic products at a 25-km grid resolution through an 
intercomparison with available near surface temperature geophysical products, and; (4) quantify the 
temperature bias of using only clear-sky observations to produce pan-Arctic LST products  
from MODIS. 

2. Accuracy of Retrieved LST from MODIS 

MODIS sensors were launched on 18 December 1999 and 4 May 2002 onboard of NASA’s Terra 
and Aqua satellites, respectively. The Terra satellite descends at the equator around 10:30 am, while 
Aqua’s descending time is lagged by three hours [28]. Level 2 LST of MODIS 
(MOD11_L2/MYD11_L2) Collection 5 is retrieved from clear-sky pixels by considering the 
differential atmospheric absorption in two TIR channels (31 and 32) for images obtained at the same 
time [29]. The algorithm coefficients, which describe the relation between top-of-the-atmosphere 
brightness temperature and LST, are estimated by interpolating look-up table values. Band emissivity 
is assigned to various land cover classes as given in the MOD12Q1 product and with the aid of 
emissivity libraries [30]. LST retrieval from MODIS brightness temperature channels (MOD021KM) 
requires other products namely, MODIS cloud mask (MOD35_L2) to define clear-sky pixels, MODIS 
atmospheric profile (MOD07_L2) to determine the coefficients of the split window algorithm, MODIS 
landcover (MOD12Q1), and the MODIS snow cover (MOD10_L2) products to assign emissivity 
values to pixels. A complete description is given in [31,32].  

The reported accuracy of L2 MODIS LST varies between validation methods [32–34], land cover 
type, and the observation periods (Table 1). MODIS-derived LST product MOD11 (Collection 5), 
which is used in this project, has been validated using a radiance-based approach in the mid and south 
US states. The bias of L2 MODIS LST observations from LST estimates obtained with a radiative 
transfer model ranged from −0.8 to 0.1 K, with a general tendency of underestimation of LST values 
from MODIS [33]. 

Recently, more attention has been given to the validation of L2 and L3 MODIS products at high 
latitudes. For example, a temperature-based validation was conducted to assess the bias in weekly 
average L2 MODIS LST at two high Arctic tundra sites; one on Svalbard, Norway [25], and another one 
at a polygon tundra site in northern Siberia, Russia [24]. In these two studies, L2 MODIS products were 
validated against thermal images taken using a video camera mounted on a 10-m mast. In summer, the 
bias was found to be ±2 K at the Svalbard site and less than −0.5 to +2 K at the northern Siberia site. The 
bias was mostly attributed to a combination of a warm positive bias due to overrepresentation of warm 
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clear-sky days and erroneously cold MODIS observations due to the presence of undetected clouds. 
However, in winter, Westermann et al. [26] concluded a systematic negative bias of −3 K (from −6 to 
−1.5 K), which was attributed to overrepresentation of cold clear-sky days in winter in addition to 
contamination by undetected cold top-of-the-cloud temperatures. 

Table 1. Summary of accuracy assessment of L2 MODIS land surface temperature (LST) 
products (Collection 5) using the operational generalized split window algorithm. 

MODIS 
Products 

Location Bias [K] Validation Method Source 

L2 TERRA  
& AQUA 

California & 
Tibet Plateau 

ME < 1 
RMSE < 0.7 

Radiative transfer model [33] 

L2 TERRA 
Rice field, 

Valencia, Spain 

ME = −0.29 
SD = 0.06 

RMSE = 0.67 

Comparison with LST 
radiometer 

[34] 

L2 TERRA 
Rice field, 

Valencia, Spain 

ME = 0.24 
SD = 0.58 

RMSE = 0.63 
Radiative transfer model [34] 

L2 TERRA  
& AQUA 

Mixed broad leaf forest, Hainich forest, 
Germany 

ME = −0.3 
SD = 0.5 

RMSE = 0.59 
Radiative transfer model [34] 

L2 TERRA  
& AQUA 

Wet polygon tundra, 
Northern Siberia 

ME (weekly) 
Min = −0.5 
Max = +2 

Comparison with 
thermal camera 

[24] 

L2 TERRA  
& AQUA 

Variable moisture 
tundra, Svalbard 

ME (weekly) = ±2 
Comparison with thermal 

camera 
[25] 

L2 TERRA  
& AQUA 

Variable moisture 
tundra, Svalbard 

ME = −3 
Min = −6 

Max = −1.5 

Comparison with LST 
radiometer 

[26] 

L3 TERRA  
& AQUA 

Various land cover types, Northern 
Quebec and the North Slope of Alaska 

Correlation 
coefficient = 0.97 

ME = 1.8 

Comparison with 2-m 
height air temperature 

[12] 

ME: mean error, SD: standard deviation, RMSE: root mean square error , Min: minimum error and Max: 
maximum error. 

3. Accuracy of Retrieved LST from AATSR 

ENVISAT is a sun synchronous satellite that descends at the equator at 10:00 am local time. 
Launched in March 2002, the satellite has a revisit period of two days at 70° latitude [35]. The satellite 
stopped operating in April 2012 even if it exceeded its life expectancy. AATSR is part of the payload 
of ENVISAT. This sensor is a multi channel radiometer that images the earth surface in the thermal 
infrared wavelength at 1 km spatial resolution. AATSR is a continuation of the ATSR-1 and ATSR-2 
sensors to monitor sea surface temperature (SST) from space. LST from AATSR brightness 
temperature data is derived operationally using a nadir split-window algorithm [3].  

The split window algorithm coefficients are determined by regression of simulated datasets for each 
land cover class as given in Coll et al. [23]. The coefficients are retrieved for two scenarios, full 
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coverage and bare surface and the values for any intermediate surface coverage are interpolated. The 
land cover type is derived from the Dorman and Sellers [36] land cover map at 0.5 degree resolution, 
which influences the accuracy of the retrieved LST values [22]. Recently, Zeller et al. [37] showed that 
using the GlobCover biome map (300 m resolution) aggregated to a 1-km pixel dimension improves 
LST estimates. Emissivity is implicitly included in the retrieval algorithm and depends on the quality 
of the BIOME map classes and the vegetation cover fraction maps. 

The accuracy of AATSR retrieved LST has been evaluated mostly at low latitudes and over 
homogeneous regions (Table 2). L2 AATSR observations were found to suffer from biases. For 
example, Noyes et al. [38] found that the operational L2 AATSR product tends to be warmer (colder) 
in summer (winter). A comparison of AATSR LST with average radiometric temperature measured in 
situ (corrected for emissivity and incoming long wave radiation) over flat homogenous rice crop fields 
of summer 2002–2004 in Valencia, Spain, revealed that the operational LST product has an average 
bias of 3 K [23]. 

Adjusting land cover type and vegetation cover fraction to correct for misclassification, due to the 
utilization of the current coarse resolution land cover map (0.5 degree), improved the average bias to 
−0.9 K with a standard deviation of 0.9 K, while using an emissivity-dependent split window 
algorithm gave the most accurate results with an average bias of 0.3 K and a standard deviation of 0.9 
K [23]. Similar results have been obtained over a longer period, 2002–2008, in the same study area [39]. 
Results indicate that the operational L2 AATSR 1-km product overestimates LST by 2 to 5 K when 
compared to ground radiometer measurements. A sensitivity analysis conducted by Coll et al. [1] 
indicated that misclassification of land cover is the main source of bias in the L2 AATSR product, 
followed by uncertainty in vegetation cover fraction. For example, changing vegetation cover fraction 
by ±10% resulted in an LST bias ranging from ±0.4 to ±1.2 K depending on the land cover class. 
Finally, a change of emissivity of 0.005 was found to cause LST to vary by ±1 K [1]. 

4. Data and Methods 

4.1. Pan-Arctic LST Products Development 

The L3 pan-Arctic products (referred to here onward as UW-L3) are generated from AATSR 
unprojected, ATS_NR_2P available through ESA’s online archive MERCI [40]. Some L2 AATSR 
(ATS_NR_2P) products were found to suffer from an error consist of a sequence of identical 
temperature regions. These images were identified and excluded from the final products calculation. In 
addition, images that have less than 100 pixels were excluded and flagged as “insufficient” data files. 
The UW-L3 products of MODIS are generated using Collection 5 L2 data acquired by both the Terra 
(MOD11_L2.5) and Aqua (MYD11_L2.5) satellites (Terra only 2000–2002; Terra and Aqua,  
2002–2010) [41]. Although, MODIS quality information indicates the probability of “unseen” thin 
clouds, we decided to include all MODIS observations that labeled clear sky by MODIS cloud mask. 
The spatial averaging over 25 km pixels (625 L2 observations per scan) during a month is likely to 
counterbalance the effect of MODIS cloud mask failures. However, we did evaluate this assumption 
using the MODIS products of year 2009. 
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Table 2. Summary of accuracy assessment of L2 AATSR LST products using different 
retrieval algorithms. 

Location Algorithm Bias[K] Validation Method Source 

Homogenous rice field, 
Valencia, Spain 

Operational split window 
algorithm 

ME = 3 
Comparison with 
LST radiometer 

[23] 
Operational algorithm 

(vegetation fraction corrected) 
ME = −0.9 
SD = 0.9 

Comparison with LST 
radiometer 

Emissivity dependent retrieval 
algorithm 

ME = 0.3 
SD = 0.9 

 

Comparison with 
LST radiometer 

Mixed land cover 
(bare soil, wheat crop ) 
Marrakech, Morocco 

Operational algorithm daytime 
ME = −1 
SD = 0.07 

Radiative transfer model 
[22] 

Operational algorithm nighttime 
ME = −1.74 
SD = 0.02 

Radiative transfer model 

Mixed land cover, 
Marrakech, Morocco 

Split window with nadir view 1.1 ≤ RMSE ≤ 1.7 
Comparison with a 

reconstructed LST image* 

[21] 
Split window with forward view 1.6 ≤ RMSE ≤ 2.4 

Comparison with a 
reconstructed LST image 

Dual angle algorithm channel 11 0.6 ≤ RMSE ≤ 1.3 
Comparison with a 

reconstructed LST image 

Dual angle algorithm channel 12 0.9 ≤ RMSE ≤ 1.6 
Comparison with a 

reconstructed LST image 

Homogenous rice field, 
Valencia, Spain 

Operational algorithm 
ME = 3.5 
SD = 0.6 

Comparison with LST 
radiometer 

[34] 
Operational algorithm 
(Land cover adjusted) 

ME = 0.16 
SD = 0.51 

Comparison with LST 
radiometer 

Homogenous rice field, 
Valencia, Spain 

Operational split window 
algorithm 

Overestimated 
+2 to +5 

Long-term  
accuracy assessment 

[39] Split window algorithm 
(land cover corrected) 

RMSE = ±0.5 to 
±1.1 

Long-term  
accuracy assessment 

Emissivity dependent SW 
algorithm 

RMSE = ±0.4 to 
±0.6 

Long-term  
accuracy assessment 

*Comparison with a reconstructed LST using a classified LANDSAT image and radiometric temperature for 
each class. ME: mean error, SD: standard deviation and RMSE: root mean square error. 

We selected the Northern Hemisphere EASE-grid, Lambert’s Equal Area Azimuthal projection, 
based on a sphere datum with a radius of 6,371.228 km, as the standard projection for the UW-L3 
products. This projection was selected to match ESA’s GlobSnow archive [42], snow and ice datasets 
available from the National Snow and Ice Data Center (NSIDC) [43] and DUE Permafrost 
products [18], therefore, facilitating future combined use of snow and ice products with UW-L3 LST 
products over the Arctic. The initial grid was assigned a 1-km spacing similar to the observation 
intervals of L2 AATSR and MODIS products. Bilinear interpolation was used to interpolate irregular 
L2 observations to the center of the EASE-grid pixels (Figure 1). Local time for each EASE-grid pixel 
is calculated using UTC acquisition time and longitude extracted from the Annotation Data Set (ADS) 
information in the case of AATSR data, and from file name in case of the L2 MODIS products. This 
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method is limited to an accuracy of ±15 minutes, which is sufficient for the creation of weekly and 
monthly products.  

Figure 1. Flow diagram of the processing chain used to produce pan-Arctic LST L3 
products from original L2 un-projected LST 1-km products. 

 

The pan-Arctic UW-L3 products are generated through aggregation of interpolated L2 1-km data 
into a 25-km EASE grid. In the current version of the processing chain, spatial aggregation requires a 
minimum of 32 1-km observations (5% of total observations), which was found to be reasonable for 
estimating a clear-sky LST mean. Pixels with less than 32 1-km observations are discarded (assigned a 
“no data” value). Valid aggregated pixels are separated into either a day-time bin (from 6 am to 6 pm 
local time) or a night-time bin (from 6 pm to 6 am of the next day). The definition of day and night is 
not determined by the solar angle (i.e., number of hours of daylight and darkness). Day (night) LST 
mean, is calculated as an arithmetic average of all pixels that fall in the day (night) bin during the week 
or month of interest. The final LST products are created by calculating a mid-range (balanced) mean of 
the day and night bins for the time period of interest in order to ensure that the calculated LST values 
are not biased towards the time period of the day with the greatest number of observations. Day 
average, night average, daily average and the number of clear-sky L2 observations (counts) are 
recorded in separate images for the period of interest (Figure 1). 

The calendar month is used for calculating monthly UW-L3 products. For the weekly products, a 
sliding window (average of seven days) consisting of the date of interest and the six previous days is 
used. This follows the same convention adopted by the GlobSnow project for the creation of 25-km 
weekly snow water equivalent (SWE) products. The mean annual surface temperature (MAST) is then 
calculated as the average of the twelve UW-L3 monthly mean products per year for  
computational efficiency. 
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4.2. Quality Assessment of the UW-L3 25-km Pan-Arctic Products 

Validating coarse-resolution (km to tens of km) pan-Arctic products is a challenging task [44]. 
Ground-based LST measurements are limited spatially. In addition, up-scaling of ground 
measurements (e.g., thermal radiometer measurements) is also challenging due to surface 
heterogeneity and the number of temperature instruments that can be deployed in remote high-latitude 
regions. An alternate approach for the evaluation of coarse resolution satellite products is through 
intercomparison with existing products of the same or similar physical quantities [45,46]. Uncertainty 
in UW-L3 pan-Arctic (monthly and annual) products was therefore estimated by intercomparing  
UW-L3 of AATSR and MODIS to each other and against existing surface and near-surface 
temperature products derived from the Advanced Microwave Scanning Radiometer for EOS  
(AMSR-E), the Special Sensor Microwave/Imager (SSM/I), and from North American Regional 
Reanalysis (NARR). Products (summarized in Table 3) were projected to the exact EASE-grid 
projection with 25-km spacing to match that of the UW-L3 products. Interpolation of NARR 32-km 
data to the 25-km EASE-grid resulted in some contaminated pixels along shorelines of oceans and that 
of large lakes. A binary mask was therefore applied to remove all pixels within 25-km of  
the shorelines.  

Table 3. Summary of coarse resolution datasets. 

Sensor Type Product 
Pixel 

Size 

Temporal 

Resolution 

Reported 

Accuracy  
Advantages  Source 

AMSRE 

18.7/23.8 Ghz  

H/V modes 

Passive 

microwave 

Near surface 

temperature (Ta)  
25 km 

Daily during 

snow free period 
1 to 3.5 K 

Measuring under 

clear and cloudy sky 
[47,48] 

SSM/I 37 GHz 

H/V modes  

Passive 

microwave 

Land surface 

temperature 

(LST)  

25 km 
Daily during 

snow free period 

+0.05 °K 

±1.85 °K 

Measuring under 

clear and cloudy sky 
[49] 

NARR  
Atmospheric 

reanalysis 

0 height air 

temperature 

(LST) 

32 km Daily  
Positive bias  

+1 K [49] 

Continuous year 

around 
[50,51] 

4.3. Estimating Bias Introduced by Considering only Clear-Sky Observations 

In order to explore the effect of including only clear-sky LST observations in the generation of  
UW-L3 products, in contrast to AMSR-E Ta, SSM/I and NAAR products that include all-sky (clear- 
and cloudy-sky) observations, we first identified cloudy-sky observations at daily intervals in UW-L3 
using the original cloud flags of L2 MODIS. The identified cloudy days were then used to produce a 
mask and applied to LST products from passive microwave (AMSR-E and SSM/I) and reanalysis 
(NARR) products to create clear-sky only monthly averages of these products.  

4.4. Statistical Estimation of Bias 

UW-L3 weekly, monthly and annual products were evaluated against the AMSR-E Ta, SSM/I, and 
NARR temperature datasets by calculating the mean difference (MD) and root-mean-square-difference 



Remote Sens. 2012, 4 3841 
 
(RMSD) statistics. MD is an uncertainty measure that takes into account the direction of the difference, 
whether positive or negative, while RMSD is a measure that is sensitive to outliers and considers the 
magnitude of the difference without considering the sign. Both uncertainty measures were calculated 
by averaging the difference obtained at all pixels between the different datasets on corresponding time 
periods. We deliberately use the term difference rather than error to indicate that each dataset contains 
its own level of error. We prefer to reserve the term “error” as used when validating satellite-derived 
LST with LST measured with a thermal radiometer deployed in the field. Such values are reported in 
Tables 1 and 2, and reported in corresponding Sections 2 and 3 for MODIS and AATSR, respectively. 
Differences of UW-L3 products with AMSR-E Ta, SSM/I and NARR were calculated over North 
America above 50 degrees latitude, while comparison between UW-L3 of MODIS and AATSR 
products was possible for all pixels included in the entire Arctic region. 

5. Results and Discussion 

5.1. UW-L3 Products  

Examples of UW-L3 products are presented in Figure 2. Corresponding UW-L3 products of 
AATSR and MODIS were found to follow similar LST patterns. Yet, LST products of MODIS were 
more spatially and temporally complete than those of AATSR (Figure 2) because the number of L2 
MODIS observations is approximately 10-fold that of AATSR. MODIS sensors have the advantages of 
being onboard of two satellite platforms, Aqua and Terra, in addition to having a larger swath than 
AATSR. Although at the moment the density of AATSR is low, in the future, the SLSTR (Sea and 
Land Surface Temperature Radiometer), which is a successor of AATSR, is to be included on the 
payload of the twin Sentinel-3 satellites. The satellite pair will enable a short revisit time of less than 
one day, which will restore the ratio between MODIS and AATSR / SLSTR observations.  

The maximum count of L2 MODIS observations was found in the April to October period. 
Unexpectedly, this period is known to have the highest cloud cover in the high and low Arctic [52]. 
The minimum count occurred during the period from October to March (Figure 3), which is 
characterized by the existence of snow on ground. Despite the high cloud fraction during the snow-free 
period (June–August), clouds can be easily detected during summer because of the large difference in 
reflectance between land and cloud. In contrast, snow-cover interferes with the cloud masks [53,54] 
and causes more L2 observations to be rejected, and therefore the total number of observations to drop. 

AATSR observations were found to drop significantly during the snow-free period, suggesting that 
AATSR cloud mask tends to reject more observations in summer (Figure 3). The total number of L2 
AATSR observations increased during the year 2006 compared to the average number of L2 
observation found between years 2005–2009. The most likely cause of the “false” clear-sky 
observations was the development of a thin coating film on the visible channel calibration. This thin 
film caused a drift and poor performance of the sensor and higher probability of cloud contamination 
during that year [55]. 

A sudden drop in LST was identified around 60°N in Eurasia and North America during the cold 
months, particularly evident during the months of December and January (Figure 4). The drop in LST 
was found to correspond to a significant loss of available L2 MODIS observations [56]. This problem 
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Figure 5. (a) Mean-difference (MD) and root-mean-square-difference (RMSD) between 
UW-L3 monthly LST of MODIS and AATSR data, outliers are not plotted for clarity; 
(b) bias (MD and RMSD) between UW-L3 weekly LST of MODIS and AATSR data 
during year 2008; outliers (DOY 35, 184 & 185) are excluded and replaced by interpolated 
values for clarity. 

 

Differences between monthly UW-L3 of MODIS and NARR LST (all-sky) show an average MD of 
−3.6 K (Min: −6.8 K, Max: −1.0 K) and an average RMSD of 4.8 K (Min: 2.5 K, Max: 7.7 K). The 
results of comparing mean annual LST products estimated from MODIS and NARR over North 
America indicated similar bias range with a MD of -3.6 K (Min: −4.2 K, Max: −3.1 K) and a RMSD of 
4.2 K (Min: 3.7 K, Max: 4.6 K). The average bias between MODIS and NARR is entirely negative. In 
contrast, the observed bias between monthly UW-L3 of AATSR products and NARR had positive and 
negative magnitudes with a MD of −2.5 K (Min: −5.8 K, Max: 2.4 K) and a RMSD of 5.1 K (Min: 2.9, 
Max: 7.2 K). The positive difference during summer (AATSR warmer) could be traced to 
overestimating LST by L2 AATSR observations [38].  

The bias between monthly UW-L3 of MODIS and AATSR products and NARR (all-sky), depicted 
in Figure 6, is systematic during the period 2000–2010 with a maximum difference around mid-winter 
and a minimum around July/August of every year. However, the maximum cloud coverage during the 
warm period (June–August) corresponds to the minimum difference. Remarkably, the systematic bias 
pattern is opposite to the interannual variation of cloud cover at high latitudes (see Figure 3). The 
observed negative difference during the cold months (snow on ground season) suggests that the 
admixing of top-of-the-cloud temperatures influences the winter LST estimates more than the summer. 
The reported bias is not absolute. The accuracy of LST (NARR) is influenced by how accurate the land 
surface scheme utilized in NARR captures energy partition in higher latitudes. In addition, the number 
of assimilated weather stations in higher latitudes is smaller than in mid latitudes. For example, it has 
been reported that NARR data tend to be warmer than LST derived from SSM/I data [49].  
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Figure 6. MD and RMSD between monthly UW-L3 of MODIS and AATSR against monthly 
0-m height surface temperature of NARR (all-sky average) for the 2000–2010 period. 

 

5.3. The Bias towards Clear-Sky Observations 

Different sources of bias could influence UWL3 products. We will discuss two major types of 
errors: the bias towards clear-sky average and the erroneous observations of undetected clouds. The 
bias towards clear-sky days will result in a warmer (colder) LST average during winter (summer) than 
the average LST for all-sky conditions (true LST mean). The cloud cover increases LST during winter 
by re-emitting long-wave radiation to the earth’s surface, while decreasing LST during summer by 
blocking direct solar radiation (increasing reflection back to space). In contrast, the bias introduced by 
erroneous observations of undetected clouds will always result in a negative offset of average LST 
because top-of-the-cloud temperatures are much colder than that of the land surface regardless of  
the season. 

The results (Figure 7) clearly show that contamination with top-of-the-cloud temperatures (as 
indicated by applying a conservative quality control filter) is reduced in monthly LST averages, but it 
is not the main source of bias. Using a less restrictive quality control filter resulted in a negative bias 
between 0.5 and 1 K (relative to NARR). The bias towards clear-sky days contributed much more to 
the overall error, as can be seen by comparing the left and right panels of Figure 7. Adding to that, the 
summer bias between MODIS and NARR all-sky (Figure 7(b)) was found to be less than the summer 
bias between MODIS and NARR clear-sky (Figure 7(a)), likely because the positive summer bias 
(toward warm clear-sky days) countered the apparent negative bias during the warm months. 
Remarkably, the sinusoidal bias structure dominates the bias curves in both left and right figures 
indicating that the source of that oscillating bias is independent from errors resulting from the  
top-of-the-cloud admixing and from the bias towards clear-sky days. With regard to the spatial 
structure of error, the patterns of bias between MODIS and NARR (clear-sky vs. all-sky) during the 
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analyzed, followed by the bias patterns between LST of SSM/I and NARR. However, the close 
resemblance between the SSM/I and NARR products is expected given the fact that diurnal 
temperature cycle of hourly NARR data was used to normalize the SSM/I measurements, see details in 
Royer and Poirier [49]. The bias (MD) patterns between UW-L3 of MODIS LST and NARR indicate 
that MODIS is colder by −2 to −4 K. Apart from that, comparing monthly near-surface air temperature 
of AMSR-E Ta with NARR shows a significant positive bias in mountainous regions. The  
high-altitude bias can be attributed to the coarse resolution of passive microwave, which does not 
resolve areas with complex topography. A negative bias (monthly AMSR-E Ta is colder than NARR) 
was observed at north latitudes. This negative bias was limited to the month of July and did not show 
up in the month of August (data is not presented). Melting of snow and ice, which still continues to 
happen at high latitudes between July and August, could interfere with passive microwave signals [59].  

Figure 10. Bias maps derived from intercomparison between monthly UW-L3 of MODIS 
and clear-sky only monthly average of SSM/I, AMSR-E Ta and NARR temperature for the 
month of July 2007. SSM/I and MODIS were found to have the least contrasting bias zones 
when compared to reanalysis. 
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Spatially averaged bias (RMSD) between satellite LST products (UW-L3, SSM/I and AMSR-E) 
during mid-summer (July and August 2007) were found to be less than RMSD between the satellite 
products (SSM/I, AMSR-E and MODIS) and NARR, indicating a higher agreement between satellite 
products than the reanalysis (Table 4). Comparing spatially averaged bias between MODIS and  
clear-sky/all-sky monthly-averaged datasets during summer time indicates a background MD of −1.3 
K and a RMSD of 2.9 K for comparison with clear-sky products and a MD of −1 K and a RMSD of 
2.7 K for comparison with all-sky products. The background error indicates that overrepresentation of 
clear-sky days, did not add much bias to the summer UW-L3 estimates. 

Table 4. Summary of bias statistics during the snow-free period (July and August 2007) 
between MODIS and other products for clear-sky and all-sky conditions. 

 
MODIS-SSM/I MODIS-AMSR-E MODIS-NARR SSM/I-AMSR-E SSM/I-NARR AMSRE-NARR 

MD 
[K] 

RMSD 
[±K] 

MD 
[K] 

RMSD 
[±K] 

MD 
[K] 

RMSD 
[±K] 

MD 
[K] 

RMSD 
[±K] 

MD 
[K] 

RMSD 
[±K] 

MD 
[K] 

RMSD 
[±K] 

Clear-sky −0.89 2.56 −1.06 2.55 −2.16 3.38 −0.19 2.38 −1.65 2.98 −1.65 3.46 

All-sky −0.31 2.28 −0.58 2.46 −1.61 3.2 −0.56 2.33 −1.69 2.74 −1.38 3.24 

Mean annual surface temperature (MAST) is an important variable in studying different cryospheric 
systems such as permafrost. We derived uncertainty maps over North America showing that a RMSD 
of 4 K exist between UW-L3 of MODIS and NARR, while UW-L3 of AATSR differed from NARR 
by a RMSD of 3.5 K between, which is higher than the bias between the MAST of both sensors, 2.1 K 
for the period 2005–2009 (Table 5).  

Table 5. Difference between mean annual surface temperature (MAST) estimated from 
monthly UW-L3 of MODIS and AATSR LST, and NARR 0-m surface temperature over 
North America. 

Year 
(MODIS-NARR) (AATSR-NARR) (MODIS-AATSR) 

MD [K] RMSD [K] MD [K] RMSD [K] MD [K] RMSD [K] 

2005 −3.84 4.41 −2.33 3.56 −1.8 2.78 

2006 −3.6 4.14 −3.61 4 0.1 1.63 

2007 −3.9 4.4 −2.07 3.19 −1.48 2.22 

2008 −4.16 4.61 −2.24 3.41 −1.46 2.22 

2009 −3.71 4.17 −2.55 3.36 −0.89 1.77 

The distribution of bias in MAST (MODIS/AATSR-NARR) indicates an association with cold 
temperature, dry climate and snow-covered conditions (Figure 11). Warm regions with relatively high 
atmospheric humidity and temperature on average (i.e., Western North America) were found to deviate 
by 0 to −2 K on annual basis, with NARR being warmer. Regions which experience colder and dryer 
atmosphere during the Arctic winter had a negative bias reaching between −4 to −6 K (see medium 
blue in Figure 11). Regions, which maintain dry and cold atmosphere year around (i.e., high Canadian 
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Arctic and central Greenland), were found to deviate the most from NARR, with bias that could reach 
below −6 K.  

Figure 11. Mean annual surface temperature (MAST) calculated from monthly 0-m height 
surface temperature of NARR and MODIS/AATSR LST and difference between NAAR and 
MODIS/AATSR calculated MAST (2005–2009). For AATSR, any pixel found to have more 
than two missing months during one year was discarded from the calculation of MAST. 

 

Knowing the exact atmospheric column properties (i.e., water vapor concentration and air 
temperature) is crucial to estimate the empirical regression coefficients (used in the split window 
algorithms) that relate LST to brightness temperature recorded by the TIR sensor. However, the 
number of Arctic radiosonde profiles available for the regression analysis in MODIS and AATSR 
retrieval libraries are relatively low. In addition, studies on SST retrieval have shown that split window 
algorithms, sometimes, perform poorly in high latitudes. During winter, ice fog and ice clouds, which 
are difficult to detect, interfere with IR absorption and emission [60]. Therefore, we speculate that 
misestimating Arctic atmosphere properties (by using atmospheric profiles from lower latitudes with 
relatively higher temperature and water vapor concentration) could result in the high negative bias 
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observed during the winter. This hypothesis is consistent with the minimum bias observed during the 
Arctic summer because the atmosphere starts to get warmer and the water vapor reaches a higher level 
compared to the winter. However, a careful testing of this hypothesis is beyond the scope and focus of 
this paper. 

6. Conclusions 

Novel pan-Arctic Land Surface Temperature (LST) products were aggregated from Level 2 (L2) 
unprojected observations of AATSR and MODIS, separately. The new products (UW-L3) were binned 
on a 25 km Ease-grid at weekly, monthly and annual intervals, thereby meeting the requirements of the 
permafrost and the regional climate modeling communities. An intercomparison was conducted 
between UW-L3 products and skin temperature derived from passive microwave data (AMSR-E and 
SSM/I) and derived from the North American Regional Reanalysis (NARR) to assess products 
uncertainty. Results indicate that UW-L3 products are closely related to all datasets during the summer 
months with a Mean Difference (MD) of −1 K and a Root Mean Square Difference (RMSD) of 2.7 K, 
averaged over all geographic locations above 50 degrees north. Since other datasets represent land 
temperature under all weather conditions, the observed difference is partially caused by biases in 
original datasets and by interpolation and aggregation of UW-L3. 

A systematic winter difference was found between UW-L3 of MODIS/AATSR and monthly 
average skin temperature derived from NARR. The bias increased gradually from summer to winter 
months and reached a maximum RMSD value in the middle of the Arctic winter (7.7 K for MODIS 
and 7.2 K and for AATSR products). One should not consider reported bias as absolute. It is 
recognized that NARR performance in the Arctic is influenced by the number of assimilated weather 
stations, which is relatively small at high latitudes. Nevertheless, the winter bias was attributed to the 
inclination of UW-L3 of MODIS towards clear-sky observations and admixing with top-of-the-cloud 
temperatures. Furthermore, we speculate that the difference between winter and summer bias range 
could be caused by a reduction in the efficiency of the split window algorithm (of both AATSR and 
MODIS) at high latitudes during Arctic winter. A careful test of this hypothesis is beyond the scope of 
this study. Finally, we present the following four topics, based on our reported results here that merit 
further investigation to improve the quality of LST products from AATSR and MODIS over  
the Arctic: 

(1). The impact of the improvement in the upcoming MODIS Collection 6 LST products in 
relation to the identified artifact at 60 degrees North need to be quantified and compared to 
current products from Collection 5. 

(2). The bias between UW-L3 LST products at 1-km and ground-based station measurements of 
both near-surface air temperature and radiometric LST measurements is unknown. Further 
studies are needed to quantify the magnitude and various sources of uncertainty of the 1-km 
products. 

(3). The quality of cloud masks used in L2 MODIS and AATSR LST products is a topic that 
merits further investigation. The influence of polar darkness and snow cover on the quality 
of the operational cloud mask needs to be studied and more robust algorithms need to be 
developed. 
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(4). Further studies are needed to assess the performance of operational split window algorithms 
for both AATSR and MODIS at high latitudes during the Arctic winter. 
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