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Abstract: We evaluated the accuracy and sensitivity of six previously published 

reflectance based algorithms to retrieve Phycocyanin (PC) concentration in inland waters. 

We used field radiometric and pigment data obtained from two study sites located in the 

United States and Brazil. All the algorithms targeted the PC absorption feature observed in 

the water reflectance spectra between 600 and 625 nm. We evaluated the influence of 

chlorophyll-a (chl-a) absorption on the performance of these algorithms in two contrasting 

environments with very low and very high cyanobacteria content. All algorithms 

performed well in low to moderate PC concentrations and showed signs of saturation or 

decreased sensitivity for high PC concentration with a nonlinear trend. MM09 was found to 

be the most accurate algorithm overall with a RMSE of 15.675%. We also evaluated the 

use of these algorithms with the simulated spectral bands of two hyperspectral space borne 

sensors including Hyperion and Compact High-Resolution Imaging Spectrometer (CHRIS) 

and a hyperspectral air borne sensor, Hyperspectral Infrared Imager (HyspIRI). Results 

showed that the sensitivity for chl-a of PC retrieval algorithms for Hyperion simulated data 

were less noticable than using the spectral bands of CHRIS; HyspIRI results show that 

SC00 could be used for this sensor with low chl-a influence. This review of reflectance 
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based algorithms can be used to select the optimal approach in studies involving 

cyanobacteria monitoring through optical remote sensing techniques. 

Keywords: cyanobacteria; phycocyanin; chlorophyll-a; band ratio; remote sensing 

reflectance; hyperspectral sensors 

 

1. Introduction 

Cyanobacteria commonly known as blue-green (BG) algae are an important phytoplankton class [1] 

and have received increasing attention because of their occurrence in inland eutrophic waters around 

the world [2]. The abundant growth of cyanobacteria in aquatic systems creates problems for water 

resource managers and policy makers due to their capacity to produce toxins also known as 

“cyanotoxins”, which are a major concern for human health [3,4]. Some of the genera of these BG 

algae produce toxins which cause hepatotoxic, neurotoxic and dermatotoxic effects and general 

inhibition of protein synthesis in animals and humans [3]. One of the first cases of human fatalities 

associated with cyanobacteria and their toxins occurred in 1996 at Caruaru, PE, Brazil, where exposure 

through renal dialysis led to the death of approximately fifty patients [4]. Besides their toxic 

characteristic, Cyanobacterial Harmful Algal Blooms (CHABs) also degrade aquatic habitats due to 

their malodorousness [3,5] and the appearance of a scum layer or thick mat on the surface of water. 

Tropical aquatic systems such as Brazilian reservoirs are some of the most suitable places where 

BG algae can multiply very rapidly. It is because the temperature range (25–35 °C) required to achieve 

BG algae maximal specific rates of growth matches with the average temperature of these aquatic 

systems [6]. Several BG algae have confirmed their apparent high carbon affinities since they could 

maintain slow net growth even at pH > 10 [7]. Light and nutrient availability are also characteristics 

which promote CHABs [5]. These facts enhance the importance of monitoring BG algae presence in 

water supply and recreational reservoirs. However, traditional monitoring methods consist of collection 

of field samples, laboratory analysis, and manual cell counts. These methods are time-consuming, labor 

intensive and costly [8]. Efficient alternative methods should be developed in order to improve the 

monitoring of CHABs and remote sensing has been proved as a valuable tool for this application [9].  

For remote sensing techniques, phycocyanin (PC) which is a characteristic photosynthetic pigment 

in inland BG algae, has been used as a proxy due to its distinct optical characteristic (absorption peak 

at ~620 nm) [5,10–12]. Initially, cyanobacterial biomass was estimated mostly from chlorophyll-a 

(chl-a) concentration since it is the primary and dominant photosynthetic pigment in BG algae [13]. 

However, recent studies have documented that chl-a is not an accurate estimator of cyanobacterial 

biomass since it is common to almost all phytoplankton groups [14]. Therefore, recent studies have 

evaluated the utility of PC to estimate BG algae abundance, particularly when BG algae are associated 

with other non-harmful phytoplankton groups [15]. Most of the researchers have been exploiting the 

PC absorption feature between 615 and 630 nm to develop empirical and semi-analytical models to 

detect presence of BG algae in water bodies. However, Mishra et al. [5] proposed the use of a band at 

600 nm since it has less influence of chl-a absorption when compared to 620 nm and it also has a 

significant absorption component by PC. 
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Thus far, five different algorithms have been proposed for the quantification of BG by exploiting 

the PC absorption feature: a semi-empirical baseline algorithm (DE93) [16], a single reflectance band 

ratio algorithm (SC00) [17], a nested semi-empirical band ratio algorithm (SI05) [10], a new single 

reflectance band ratio algorithm (MI09) [5] and a three band algorithm (HU10) [11]. The baseline 

algorithm [16] adds reflectance at two wavelengths (600 and 648 nm) to draw a reference baseline, and 

subtracts the reflectance at 624 nm which is the absorption maximum of PC. The single reflectance 

ratio [17] uses a PC fluorescence peak of around 650 nm and the PC absorption peak around 625 nm. 

The nested band ratio [10] algorithm was developed for the Medium Resolution Imaging Spectrometer 

(MERIS) sensor from the European Space Agency (ESA). To match the MERIS band configuration, it 

uses 620 nm as the PC absorption maximum and estimates PC concentrations from a semi-analytical 

inversion procedure using the 620 nm band. The model also addresses the chl-a influence at the PC 

absorption band (620 nm). The new single reflectance ratio [5] uses reflectance at 700 nm as reference, 

and targets PC absorption at 600 nm in order to minimize the chl-a interference. The three band 

algorithm [11] uses 725 nm as reference and targets the PC absorption by using the difference in the 

reflectance at 600 nm and 615 nm. 

All these algorithms were developed for eutrophic waters involving various study sites worldwide 

with different optical properties. DE93 used coefficients of inherent optical properties in 10 shallow 

eutrophic lakes in The Netherlands. SC00 dataset was obtained from a hypereutrophic lake, Carter 

Lake, in Nebraska, USA. SI05 was developed from datasets from two lakes in The Netherlands: Lake 

Loosdrecht and Lake Ijsselmeer. MI09 was developed in laboratory using two different laboratory 

cultured cyanobacterial species. HU10 was developed using data from two shallow eutrophic lakes in 

the United Kingdom. However, all these algorithms were developed for latitudes higher than 35° and 

they have not been validated for low latitude areas such as the tropical reservoir in Brazil used in this 

study. In this research, we have intensively reviewed the performance of the aforementioned algorithms 

using two unique datasets collected from a tropical reservoir in Brazil and aquaculture ponds in 

Mississippi, USA. The specific objectives of this research are: (1) to compare and evaluate the 

performance of the existing reflectance based PC algorithms in two different environmental settings with 

very high and very low concentrations of chl-a and PC, (2) to apply the existing PC algorithms to a 

synthetic dataset that was simulated using a Gaussian function as the spectral response function of 

Hyperion, Compact High-Resolution Imaging Spectrometer (CHRIS) and Hyperspectral Infrared Imager 

(HyspIRI), and (3) to examine the influence of chl-a on the performance of these algorithms.  

2. Materials and Methods 

2.1. Study Sites 

We collected field data from two study sites. The first dataset was acquired from the Funil 

Reservoir located in Itatiaia, RJ, Brazil during 2–5 April 2013, and the second dataset was collected 

from catfish aquaculture ponds located at the Thad Cochran National Warmwater Aquaculture Center, 

Stoneville, MS, USA during 13–16 July 2010 and 28–29 April 2011. A summary of study sites, the 

field campaigns and descriptive statistics of pigments and nutrient concentrations are shown in Table 1. 
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Funil Reservoir was constructed during the late 1960s by the damming of the Paraíba do Sul River 

in Southeast Brazil. This hydrographic basin connects three economically important Brazilian states 

including Minas Gerais, Rio de Janeiro, and São Paulo. It serves as the primary source of drinking 

water for domestic supply, irrigation, industrial self-supply systems, aquaculture, and hydroelectric 

power generation [18]. The reservoir receives waste from one of the main Brazilian industrial areas 

that has enhanced the eutrophication process in recent decades, consequently causing frequent and 

intense cyanobacterial blooms [19]. 

The water for all catfish aquacultures in northwest Mississippi comes from wells pumping the 

Mississippi River Alluvial Aquifer [12]. It is also known that commercial pond culture of channel 

catfish is practical only in regions with the proper temperature regime—around 25–30°C—for 

reproduction and rapid growth. According to Tucker [20], the region has the appropriate climatic 

condition, soil type and water supply for a successful pond culture of channel catfish. However, 

management practice such as addition of excessive nutrients in the form of commercial catfish food 

causes phytoplankton blooms dominated by cyanobacteria during warm periods. 

The datasets collected from the two study sites represent extreme range of chl-a and PC 

concentrations and are suitable for performance evaluations of the PC algorithms. For example, 

average PC in Funil Reservoir was found to be 14.52 (μg/L), whereas the catfish pond average PC 

reading was 241.51 (μg/L) (Table 1). Similar extremes were observed for chl-a as well (Table 1). The 

observed standard deviation among datasets was helpful in reviewing the performance of the above 

algorithms at very low and very high concentration ranges and also at a varying chl-a absorption range. 

Table 1. Summary statistics for chl-a and phycocyanin (PC) pigment concentrations at 

study sites. 

  Funil Reservoir Catfish Ponds 

Surface Area (km2) 40 0.004–0.03 

Mean depth (m) 20 1.1 

Time frame of field campaigns (years) 2013 2010–2011 

Total samples 16 23 

Chl-a (μg/L) 

Maximum 52.78 831.35 

Minimum 4.92 59.79 

Range 47.86 771.56 

Average 19.49 230.2 

Standard Deviation 14.79 176.16 

PC (μg/L) 

Maximum 35.95 857.08 

Minimum 9.16 68.13 

Range 26.79 788.95 

Average 14.52 241.51 

Standard Deviation 7.70 215.72 

Total Nitrogen (μg/L) 
Maximum 

Minimum 

1,620 

100 

8,000 [12] 

4,000 [12] 

Total Phosphorus (μg/L) 
Maximum 

Minimum 

37.77 

16.46 

500 [12] 

800 [12] 
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2.2. Remote Sensing Reflectance  

Field radiometric measurements in the Funil Reservoir, Brazil were acquired during 2–5 April , 2013. 

Radiance and irradiance measurements were carried out using the RAMSES hyperspectral radiometers 

(TriOS GmbH, Oldenburg, Germany). Measurements were acquired in the visible and near-infrared 

range of the spectrum (360–900 nm) with 3.3 nm spectral resolution (0.3 nm accuracy). Six sensors 

were used, two irradiance and four radiance sensors, acquiring data simultaneously. The two irradiance 

sensors centered at nominal (excluding effects of wave motion) viewing zenith angle (θv) of 90° 

pointed upward (for downwelling irradiance, Ed) and downward (for upwelling irradiance, Eu) 

directions. A radiance sensor was also pointed downward to measure the upwelling radiance (Lu). 

These three measures were collected above and below (below the air-water interface, 1m, 2m and 3m) 

the water surface. On the top of the boat, a radiometer with an optical fiber and cosine diffuser 

(yielding a hemispherical field of view, FOV), pointed upward to acquire the incident spectral 

irradiance (Es). The other two radiometers with a 7° FOV were also on the top of the boat and were 

centered at nominal θv of 40° in two different directions: upward for the sky radiance (Ls) and 

downward direction for the radiance received by the sensor pointed at the water surface (Lw). 

For the catfish ponds, a dual sensor-system with two inter-calibrated Ocean Optics 

spectroradiometers (Ocean Optics Inc., Dunedin, FL, USA) were used to acquire remote sensing 

reflectance (Rrs) data in the range 400–900 nm with a sampling interval of 0.3 nm. The first radiometer 

was equipped with a 25° FOV optical fiber pointed downward to measure the upwelling radiance just 

below the air-water interface, expressed in digital numbers (DNLu(λ)). The second radiometer was 

equipped with an optical fiber and cosine diffuser (yielding a 180° FOV), pointed upward to acquire 

above surface downwelling irradiance, also expressed in digital numbers (DNEd(λ)). The inter-

calibration of the radiometers was accomplished by measuring the upwelling radiance of a white 

Spectralon reflectance standard (Labsphere, Inc., North Sutton, NH, USA) simultaneously with 

incident irradiance. The two radiometers were inter-calibrated immediately before and after 

measurements in each sampling site. 

Rrs for the optical measures was calculated based on Mobley [21]. For Funil Reservoir, Rrs was 

calculated based on Equation 1 and for catfish ponds based on Equation 2. ܴ௥௦(ߣ) = (ߣ)ௗܧଶ݊(ߣ)௨ܮݐ (ߣ)௜ܨ  (1) 

where, t is the transmittance at the air-water interface (0.98); n is the refractive index of water (1.34); 

and Fi (λ) is the spectral immersion coefficient [22]. 

ܴ௥௦(ߣ) = 	 ܦݐ ௅ܰ௨(ߣ)ܦ ாܰௗ,௥௘௙(ߣ)ߩ௥௘௙(ߣ)݊ଶܦ ாܰௗ(ߣ)ܦ ௅ܰ௨,௥௘௙(ߣ) ߨ (ߣ)௜ܨ  (2) 

where, DNLu,ref and DNEd,ref are digital numbers representing upwelling radiance and downwelling 

irradiance over the white Spectralon panel; ρref is the irradiance reflectance of the Spectralon panel. 

The spectral immersion coefficient for each sensor was derived by following Equation (3) [22]. ܨ௜(ߣ) = ݊௪(ߣ)(݊௪(ߣ) + ݊௚(ߣ))ଶ(1 − ݊௚(ߣ))ଶ  (3) 
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where, nw is the wavelength-dependent refractive index of freshwater and can be estimated using 

Equation (4) [23]. ng is the corresponding index of the glass window of the radiance sensor. 

݊௪(ߣ) = 1.325147 + ߣ6.6096 − 137.1924  (4) 

At both study sites, for each sample point, multiple reflectance measurements were acquired and for 

which the average spectrum was calculated by using either Equation (1) or (2). The spectra of Rrs were 

resampled at 1 nm for further analysis. A synthetic dataset was also created by resampling Rrs 

measurements matching Hyperion and CHRIS bandwidths using a Gaussian function as the spectral 

response functions of both sensors. 

2.3. Limnological Parameters 

2.3.1. Chlorophyll-a 

For the Brazilian dataset, water samples were collected from the subsurface, approximately 10 cm 

below the water surface, and were kept at cool temperatures until delivery to the laboratory for analysis 

with the duplicates. The method of chl-a analysis consisted of filtering the collected samples using 

GF/F filters (Whatman, 0.7 μm pore size) and then extracting the samples from the filters using 90% 

acetone and measuring the absorbance in a Varian Cary 50 Conc UV-VIS spectrophotometer (Agilent 

Technologies, Santa Clara, CA, USA) [24]. Concentration of chl-a from the spectrophotometric 

absorbance data was calculated using the equation from Lorenzen [25]. 

For the North American ponds, the chl-a concentrations were analyzed from the water samples 

collected in 1 L Niskin bottles and immediately filtered onto GF/F filters (Whatman, 0.7 μm pore size) 

under low vacuum (<12.7 cm of Mercury). Samples were extracted in triplicates using acetone 

extraction procedure and concentrations were measured using HPLC following the Environmental 

Protection Agency (EPA) method 447 [26]. 

2.3.2. Phycocyanin  

During the Brazilian field campaign in April 2013, an in situ fluorometer called FluoroProbe  

(bbe Moldeanke, GmbH), was used to measure temperature and phytoplankton concentrations. The 

FluoroProbe data was used to distinguish phytoplankton into four groups: (1) Chlorophyta, (2) PC-rich 

Cyanobacteria, (3) Diatoms, and (4) Cryptophyta. All data were time stamped and archived on a field 

handheld personal computer. To measure PC concentration, we used a fluorometer (Turner Designs, 

model 10-AU-005) with a PC optical kit which uses the excitation and emission wavelengths at 600 nm 

and 640 nm, respectively. 

During catfish pond field campaigns, water samples were filtered immediately after collection 

through 0.2 μm nucleopore membrane filters (Millipore) under low vacuum. The filters were stored in a 

15 mL falcon tube frozen at −80 °C until analysis at the laboratory. For the analysis, filters were 

transferred to 50 ml polycarbonate centrifuge tubes in order to reach ambient room temperature, and then 

suspended in 5 mL of 50 mM phosphate buffer. Samples were homogenized using a sonicator [27] and 

an ice-bath was used to avoid the destruction of pigments from localized heating. The tip of the 



Remote Sens. 2013, 5 4780 

 

 

sonicator was rinsed twice with 5 mL of 50 mM phosphate buffer each time and the rinse was 

collected in the centrifuge tube. Samples were centrifuged at 5 °C, 27,200 g for 25 min. This process 

was repeated one more time using the same settings. The supernatant was collected and absorbance 

was measured using a Perkin Elmer lambda 850 spectrophotometer (Perkin Elmer Inc., Waltham, MA, 

USA). Concentration of PC was calculated using the equation from Bennett and Bogorad [28]. 

2.4. Model Calibration and Validation 

Three sets of calibration and validations were performed including one on the Funil Reservoir’s 

data, one on the Catfish Pond’s data, and the third on a mixed dataset. As the Funil Reservoir and 

Catfish Pond datasets have significantly different concentration ranges (Table 1), a third dataset was 

created by mixing the two and then randomly dividing into two datasets, one to be used for calibration 

(60%) and the other for validation (40%). Models were calibrated using the hyperspectral Rrs and the 

formulas listed in Table 2. For each model and each dataset, a linear calibration curve was set between 

the model values and the PC concentration. We did not use the best fit functions, which were mainly 

non-linear functions, to avoid an out of range calibration/validation problem because the range of PC 

concentration in both datasets was extreme without any overlap (Table 1). 

Table 2. Summary of Rrs based bio-optical models used in our study for predicting PC 

concentration. 

Name Reference Model 

DE93 Dekker [16] ܲܥ ∝ ൣ൫ܴ௥௦(600) + ܴ௥௦(648)൯ − ܴ௥௦(624)൧ 
SC00 Schalles & Yacobi [17] ܲܥ ∝ ܴ௥௦(650) ܴ௥௦(625)⁄  

SI05 Simis et al. [10]* ܲܥ ∝ ܴ௥௦(709) ܴ௥௦(620)⁄  

MI09 Mishra et al. [5] ܲܥ ∝ ܴ௥௦(700) ܴ௥௦(600)⁄  

SM12 Mishra [29] ܲܥ ∝ ܴ௥௦(709) ܴ௥௦(600)⁄  

MM09 Modified Mishra et al. [5]** ܲܥ ∝ ܴ௥௦(724) ܴ௥௦(600)⁄  

HU10 Hunter et al. [11] ܲܥ ∝ ൣ൫ܴ௥௦ିଵ(615) − ܴ௥௦ିଵ(600)൯ ∙ ܴ௥௦(725)൧ 
Notes: * Ratio has been adopted from Simis et al. [10] in their nested semi-analytical algorithm. ** MM09 is the slightly 

modified version of MM09. 

A cross-validation procedure was adopted, if any, by developing linear calibration using one dataset 

and validating with the two remaining datasets (Table 3). Validations were analyzed by plotting PC 

Measured versus PC Predicted.  

Table 3. Summary of calibration and validation datasets used in the study. 

Calibration Validation 

Mixed dataset (n = 23) 

Catfish Ponds 

Funil Reservoir 

Mixed dataset (n = 16) 

Funil Reservoir 
Catfish Ponds 

Mixed dataset (n = 16) 

Catfish Ponds 
Funil Reservoir 

Mixed dataset (n = 16) 
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2.5. Error Analysis 

Error analysis was performed by comparing measured and predicted PC concentrations. Bias, Mean 

Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) were used to 

evaluate model performance and were calculated according to Table 4. 

Table 4. Summary of error estimators used in our study. 

Estimator Formulas 

Bias ݏܽ݅ܤ = 1݊෍(ݕ௜ − ௜)௡ݔ
௜ୀଵ

MAE ܧܣܯ = 1݊෍|ݕ௜ − ௜|௡ݔ
௜ୀଵ

MSE ܧܵܯ = 1݊෍(ݕ௜ − ௜)ଶ௡ݔ
௜ୀଵ

RMSE ܴܧܵܯ = ܧܵܯ√
Note: where yi and xi are the measured and predicted PC concentration in ith sample. 

2.6. Sensitivity Analysis 

Sensitivity analysis was carried out for the models with the lowest errors and the best validation plots 

for the simulated data representing the hyperspectral satellite sensors. This analysis was performed to 

study chl-a interference on the aforementioned PC detection algorithms. The sensitivity analysis was 

realized using the values derived from PC detection algorithms (Table 2), chl-a, and PC concentrations. 

Surface plots were generated using these three parameters. They were analyzed according to the slope in 

each axes and the color scale of the surface which represents the PC detection algorithms. 

3. Results and Discussion 

3.1. Reflectance Characteristics 

The major spectral characteristic features of pigments such as chl-a and PC can be noticed in the Rrs 

spectra of Funil Reservoir and catfish ponds (Figure 1). The green peak in water spectra at 

approximately 550 nm is commonly due to the scattering from algal cells and relatively low absorption 

by chl-a [30]. However, in our datasets the green peak is slightly displaced for the two sites, at 560 nm 

for catfish ponds and at 570 nm for the Brazilian reservoir, due to the difference in chl-a concentration 

range at each site. In aquatic systems with very high chl-a concentrations such as the catfish ponds, the 

spectra tend to be similar to the spectral response of vegetation. The spectral troughs near 620–625 nm 

and 670–675 nm appear because of strong absorption by PC and chl-a, respectively [17,31]. The peak 

at 643–650 nm appears because of the prominent absorption on both sides at 624 nm and 670 nm and 

also because of the phycocyanin fluorescence maximum of around 640–660 nm [17]. The main 

difference in the spectral shape between the two study sites occurred at the peak near 700 nm, which 

appears due to the strong absorption on either side, by chl-a at 670 nm and by water at 740 nm [5]. 
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However, the magnitudes of the Rrs at 700 nm in the catfish ponds data are significantly higher than 

that that of Funil Reservoir because of the difference in chl-a concentration (Table 1). 

Figure 1. Rrs spectra acquired from Mississippi’s Catfish Ponds (red) and Funil Reservoir (blue). 

 
As shown in Table 1, chl-a concentration in Funil Reservoir varied within 4.92–52.78 μg/L, while 

in the catfish ponds, it was between 59.79 and 1,376.57 μg/L. PC:chl-a ratio varied from 0.44 to 1.90 

(average = 0.91) in Funil site and between 0.30 and 3.28 (average = 1.22) in the catfish ponds. Strong 

dependency was found between chl-a and PC concentration in both datasets with R2 of 0.89 and 0.84 

for Funil Reservoir and catfish ponds, respectively (Figure 2). It corroborates with the fact that the 

algal community was mostly dominated by cyanobacterial biomass. Species identification was 

performed using microscopy and the results showed that the most abundant cyanobacteria species at the 

Funil Reservoir study site was Microcystis aeruginosa and Planktothrix agardhii for the catfish ponds. 

Microcystis aeruginosa is one of the most common species of cyanobacteria worldwide [31].  

Figure 2. Correlation between chl-a and PC concentrations in both study sites. 
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3.2. Bio-Optical Models 

To analyze the relationship between PC concentrations and several bio-optical models (see Table 2), 

we used three datasets to calibrate the models. We used a modification of MI09 proposed by Mishra [29] 

referred to as SM12. SM12 targeted PC absorption at 600 nm and used the reflectance peak at 709nm. 

We also proposed a modification of MI09 using the reflectance peak at 724 nm which is referred to as 

MM09. All seven models were calibrated using a linear trend between model values and measured PC 

concentrations. Funil dataset calibration showed the best result with SM12 (R2 = 0.909). For catfish 

ponds dataset, the best R2 was found with SI05 (R2 = 0.748). The mixed dataset showed the lowest R2 

among all during model calibrations and its best result was found with SI05 (R2 = 0.684) (Table 5). 

These models presented similar results for the Adjusted R2 confirming consistency in their 

performance. Calibration analysis also showed the slope (X1) and p-value for each model. DE93 and 

SC00 showed the highest values for slope in all the datasets. Although HU10 showed low values for its 

slope in the three datasets, it showed high p-values for Funil (0.179) and Catfish ponds (0.261) 

datasets. One of the reasons behind the poor calibration results observed for DE93 and HU10 could be 

the specular reflection from water under wavy conditions that generally gets suppressed in a band ratio 

algorithm did not get cancelled out due to the band architecture of these two algorithms [30]. The 

specular reflection occurs mainly due to the wind which generates waves controlling the brightness of 

most water pixels. Funil Reservoir is more vulnerable to wind compared to catfish ponds and the 

combinations of single bands used in DE93 and HU10 were not able to suppress the brightness 

variations due to wave disturbances. Another reason could be the choice of spectral bands used in both 

algorithms, since DE93 have more influence from the 648nm band which is contaminated by chl-a [5] 

and HU10 is mainly influenced by 724 nm band which is a chl-a reflectance peak. For accuracy 

assessment, models were validated by applying the linear regression equations to the other datasets 

(Figures 3–5). The scatter plots show the estimated PC versus the measured PC concentration. 

Although some models produced very high R2 during the calibration with one dataset, they did not 

perform well on other datasets. For example, SM12 which produced the highest R2 (0.909) during 

calibration, showed that it is not a good estimator for PC concentration during validation. The poor 

validation results could be due to the difference in the range of PC concentration at two study sites. 

However, the use of the mixed dataset calibration improved the validation for Funil and catfish 

datasets (Figures 4 and 5). 

Table 5. Coefficients of determination (R2) derived from model calibrations using the three 

datasets for all seven models. 

Model R2 Adj. R2 X1 p-value 

Funil Dataset 
DE93 0.088 0.023 –664.535 0.2654 

SC00 0.745 0.727 181.122 >0.0001 

SI05 0.793 0.779 41.196 >0.0001 

MI09 0.807 0.794 50.836 >0.0001 

SM12 0.909 0.902 35.638 >0.0001 

MM09 0.414 0.372 62.656 0.0072 

HU10 0.125 0.062 –3.841 0.1798 
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Table 5. Cont. 

Model R2 Adj. R2 X1 p-value 

Catfish Ponds Dataset 
DE93 0.617 0.599 1381.323 >0.0001 

SC00 0.338 0.306 1622.554 0.0036 

SI05 0.748 0.736 274.873 >0.0001 

MI09 0.170 0.131 268.015 0.0504 

SM12 0.591 0.572 344.990 >0.0001 

MM09 0.731 0.718 270.868 >0.0001 

HU10 0.060 0.015 –12.285 0.2611 

Mixed Dataset 
DE93 0.051 0.006 5966.595 0.3016 

SC00 0.518 0.495 1303.031 0.0001 

SI05 0.684 0.669 132.365 >0.0001 

MI09 0.547 0.525 198.107 0.0001 

SM12 0.640 0.623 155.970 >0.0001 

MM09 0.673 0.658 136.692 >0.0001 

HU10 0.466 0.441 –13.919 0.0003 

Validations for the Funil Reservoir dataset used two calibrations: the Mixed and Catfish Ponds 

calibrations (Figure 4). The mixed dataset calibration showed a poor accuracy for all the models tested. 

The catfish ponds calibrations also performed very poorly on Funil’s dataset; however, HU10 

produced the lowest value for the slope and showed a linear behavior. The poor performance of the bio 

optical models is due to the fact that linear models were chosen for the individual calibrations with 

Funil and catfish ponds data instead of the best-fit models, which are clearly non-linear mainly at high 

PC concentrations.  

The use of three different datasets showing low, high and mixed ranges of PC concentrations 

allowed us to analyze which calibration is more accurate for different environments. For a low PC 

concentration environment, the calibration using HU10 and the mix dataset (wide range) produced the 

best validation result. For a high PC concentration environment, mix dataset calibrations also produced 

some of the best results with SI05 and MM09 models due to its wide range. Mixed dataset calibration 

also showed the best validation plots for the rest of the 40% of the mixed data using MM09. 

However, if we observe the validation plots for the catfish ponds dataset in Figure 5, it is possible to 

notice a cloud of points in the region of low PC concentration. This cloud of points does not have a 

linearity which also contributes to the poor validation results. The reason for this non-linear behavior 

of the scatter plot could be attributed to the dominant species of cyanobacteria in the catfish ponds, the 

Planktothrix agardhii. Post et al. [32] described that this species can significantly increase the content 

of chl-a, thus varying the irradiance. At sampling points with low PC in the catfish ponds, the PC to 

chl-a ratio (Table 6) were also lower due to high values of chl-a. Thus, the high chl-a concentration for 

the points with low PC concentration, due to the specific characteristics of Planktothrix agardhii, 

could have been the reason for the cloud of points and interference in the PC estimation. 
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Figure 3. Validation of the models in the mixed dataset using calibrations from (1) Mixed 

dataset, (2) Funil Reservoir dataset, and (3) Catfish Ponds dataset. 
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Figure 4. Validation for Funil Reservoir dataset using calibrations from (1) Mixed dataset 

and (3) Catfish Ponds dataset. 
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Figure 5. Validation for Catfish Pond dataset using calibrations from (1) Mixed dataset 

and (2) Funil Reservoir dataset. 

 



Remote Sens. 2013, 5 4788 

 

 

Table 6. PC and Chl-a ratio for the Catfish Ponds dataset. 

PC Chl-a PC:Chl-a 

68.13 228.26 0.30 

77.19 229.25 0.33 

83.19 59.79 1.39 

84.88 205.60 0.41 

92.24 117.40 0.78 

105.75 131.05 0.80 

114.50 94.03 1.22 

116.82 109.26 1.07 

118.79 360.01 0.33 

119.02 152.50 0.78 

119.61 130.43 0.91 

136.44 101.40 1.34 

159.31 332.38 0.48 

173.54 117.42 1.48 

191.12 198.50 0.96 

203.17 164.30 1.23 

234.32 149.61 1.56 

301.60 210.83 1.43 

352.66 155.54 2.26 

550.96 168.22 3.27 

639.02 539.73 1.18 

655.33 507.70 1.29 

857.08 831.35 1.03 

Table 7 shows the error analysis for all models and for the three validation datasets. For the mixed 

dataset, the best results were obtained by using MM09 in the Mixed and Funil’s calibrations, with an 

RMSE of 15.675% and 23.985%, respectively. The best catfish ponds calibration for the mixed dataset 

used SC00 algorithm and had a RMSE of 18.179%. The lowest errors in Funil dataset were found 

using HU10 model with a RMSE of 221.63% and 40.92% for catfish ponds and mixed calibrations, 

respectively. It showed that the errors decreased by the use of mixed calibration, enhancing the 

importance of using a large range of PC concentrations for the calibration of these models. These 

results also showed that the catfish ponds’ calibration mostly overestimates the PC prediction values. 

On the other hand, for the catfish ponds dataset, it was observed that the models which were calibrated 

with low PC range perform better when compared to the opposite (predicting low PC concentration 

from calibrations with high PC concentration). This could be due to the fact that mostly the non-

linearity or signs of saturation during calibration were observed at high PC concentrations. Overall, 

results showed that the MM09 was the best model for the Funil and Mixed datasets with a RMSE of 

23.985% and 15.675%, respectively. These results also confirmed that it is possible to improve the 

accuracy of these models since the validation results (Figures 3–5) showed that there is still some 

residual interference at the PC absorption region. The interference was observed for data points where 

the PC concentration was zero but the bio-optical models produced a significant value. Interference 

from CDOM absorption is not an issue for the spectral range used in these models; therefore, the 
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residual scattering from algal pigments and TSS are the potential interference factors at these 

wavelengths. 

Table 7. Error analysis for the linear calibrations for each model and dataset (shaded areas 

represent the lowest errors). 

Mixed Dataset  

Mixed Calibration 

Estimator D93 SC00 S05 M09 SM12 MM09 H10 

Bias 27.884 55.119 30.472 36.709 34.287 36.062 43.176 

MAE 156.034 100.247 84.726 111.710 95.558 79.642 111.087 

MSE 59,821.765 31,009.467 18,507.809 39,371.406 25,612.029 17,665.301 43,296.194 

RMSE 244.585 176.095 136.043 198.422 160.038 132.911 208.077 

RMSE(%) 28.845 20.768 16.044 23.401 18.874 15.675 24.540 

Funil Reservoir Calibration 

Bias 171.474 145.279 109.744 124.394 125.551 90.375 125.742 

MAE 173.428 147.109 112.190 125.891 125.922 96.090 127.198 

MSE 86,109.276 72,634.933 52,200.685 65,289.794 62,249.894 41,362.024 66,594.099 

RMSE 293.444 269.509 228.475 255.519 249.499 203.377 258.058 

RMSE(%) 34.607 31.785 26.945 30.135 29.425 23.985 30.434 

Catfish Ponds Calibration 

Bias 3,103.557 6.313 128.852 43.635 138.474 123.386 1.175 

MAE 3,103.557 105.260 154.526 125.628 174.409 147.100 140.362 

MSE 9,688,859.449 23,761.486 36,958.560 38,411.144 46,590.750 30,953.637 42,369.837 

RMSE 3,112.693 154.148 192.246 195.988 215.849 175.936 205.839 

RMSE(%) 367.097 18.179 22.673 23.114 25.456 20.749 24.276 

Funil Reservoir Dataset 

Catfish Ponds Calibration 

Bias 2,939.150 −57.184 279.993 52.170 275.038 250.650 −58.610 

MAE 2,939.150 62.948 279.993 55.642 275.038 250.650 58.610 

MSE 8,638,835.017 6,338.247 79,998.696 3,682.608 79,783.183 63,125.493 3,526.687 

RMSE 2,939.190 79.613 282.840 60.684 282.459 251.248 59.386 

RMSE(%) 10,969.226 297.121 1,055.577 226.478 1,054.154 937.672 221.632 

Mixed Calibration 

Bias –83.570 −24.276 22.903 3.636 11.262 23.130 –3.393 

MAE 83.570 34.342 25.841 16.831 23.490 23.768 5.927 

MSE 7,115.514 2,301.443 767.377 426.762 746.925 604.059 114.377 

RMSE 84.354 47.973 27.702 20.658 27.330 24.578 10.695 

RMSE(%) 314.812 179.039 103.384 77.098 101.997 91.725 39.913 

Catfish Ponds Dataset 

Funil Reservoir Calibration 

Bias 5,040.604 207.704 150.849 173.707 174.972 116.461 174.222 

MAE 5,040.604 207.704 151.761 173.707 174.972 126.505 174.222 

MSE 25,606,599.392 86,365.614 59,637.746 73,992.014 71,760.882 46,177.712 75,424.552 

RMSE 5,060.296 293.880 244.208 272.015 267.882 214.890 274.635 

RMSE(%) 641.398 37.250 30.954 34.478 33.954 27.238 34.810 
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Table 7. Cont. 

Catfish Ponds Dataset 

Mixed Calibration 

Bias –13613.808 64.019 5.273 22.999 10.620 8.999 32.391 

MAE 13613.808 128.858 104.186 128.950 115.237 104.689 140.536 

MSE 185,669,971.223 35,529.975 21,105.169 39,685.667 27,393.270 20,938.331 44,856.741 

RMSE 13,626.077 188.494 145.276 199.213 165.509 144.701 211.794 

RMSE(%) 1727.120 23.892 18.414 25.250 20.978 18.341 26.845 

3.3. Sensitivity Analysis 

Sensitivity analyses were performed using the mixed dataset due to its overall strong performance 

and wide PC concentration range. Some of the best performing models including SC00, SI05, MI09 

and MM09 were used to analyze their sensitivity to chl-a (Figure 6). The color scale is based on 

individual model outputs. Figure 6A showed that SC00 was insensitive to both chl-a and PC, and 

therefore, is not suitable to retrieve PC accurately although it was almost insensitive to chl-a. SI05 on 

the other hand showed (Figure 6B) to be a good estimator for PC concentration because of its high 

sensitivity to PC. However, it also showed a high sensitivity to chl-a (Figure 6B). In contrast, MI09 

showed high sensitivity to PC and low sensitivity to chl-a corroborating with the fact that the chl-a effect 

on MI09 band ratio is comparatively less than other models as previously shown in Mishra et al. [5] 

(Figure 6C). MI09 was developed to avoid the residual chl-a absorption at the widely used PC 

absorption maxima, i.e., at 620 nm. This was accomplished by moving the PC sensitive band to 600 

nm instead of using 620 nm in the band ratio model. MM09, a modified MI09, showed high sensitivity 

to both PC and chl-a similar to SIO5 (Figure 6D).  

Figure 6. Sensitivity analysis showing the interference of chl-a on the performance of 

(A) SC00, (B) SI05, (C) MI09, and (D) MM09. 
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These results showed that, overall, MI09 has the least interference from chl-a and can be used to 

accurately monitor BG in widely varying water bodies. Although MI09 was developed using a dataset 

collected from a series of controlled laboratory experiments with two cyanobacteria species 

(Synechocystis sp. and Anabaena sp.) [5], our review shows that it still serves as the most accurate 

algorithm to be used in natural environments. To confirm the results of the sensitivity analysis, a linear 

regression between these models and chl-a concentration was conducted. The results of the regression 

showed that SC00 and MI09 were the models without a significant dependency on chl-a concentration 

with R2 of 0.42 and 0.38, respectively. On the other hand to the contrary, SI05 and MM09 showed a 

significant dependency on chl-a with a R2 of 0.65 and 0.66, respectively (results not shown). This 

analysis also revealed that MI09 can be used in semi-analytical algorithms to solve for PC absorption 

at 600 nm which can be safely assigned to PC without chl-a interference.  

3.4. Sensor Analysis 

The increasing demand for monitoring water quality in lakes and reservoirs used for water supply 

increases the necessity to develop accurate satellite PC products. However, most of the commonly 

used multispectral satellite sensors do not have the desired PC prediction band at 600 or 620 nm. The 

absence of specific narrow bands in multispectral sensors to target and highlight specific biophysical and 

biochemical parameters could be surpassed with hyperspectral sensors [33]. Reflectance products from 

hyperspectral satellite sensors such as Hyperion and CHRIS onboard Earth Observation 1 (EO-1), 

Project for On-Board Autonomy (PROBA), and the future sensor HyspIRI, which is being designed 

using contiguous bands with a spatial resolution of 60 m and spectral resolution of 10 nm, can be used 

to develop PC products and map spatial distribution of cyanobacteria in inland and coastal waters. The 

use of simulated HyspIRI bands for any hyperspectral models provides valuable information for next 

generation hyperspectral sensors from which users will have to extract appropriate optimal wavebands 

relevant for their application, or, as an alternative, they could carry specialized optimal sensors with 

selective wavebands, focusing on gathering data for targeted applications [34]. Therefore, we simulated 

Hyperion, CHRIS and HyspIRI spectral bands by using a Gaussian spectral response function on the field 

Rrs data [34–36]. For the Hyperion spectral bandwidth simulation, we used the bands centered at: 599.8, 

609.97, 620.15, 650.67, 701.55, 711.72 and 721.9 nm. For CHRIS bandwidth simulation, we used the 

spectral bands centered at: 603, 613, 622, 651, 703, 709, 722 and 728 nm. For HyspIRI bandwidth 

simulation we used the spectral bands centered at: 605, 615, 625, 655, 705 and 725 nm. These bands were 

used to develop SC00, SI05, MI09 and MM09 models and used their mixed calibrations. 

Results from the linear calibration/validation analysis for the Hyperion, CHRIS and HyspIRI 

spectral bands are presented in Table 8. Among all models, SI05 performed best by producing highest 

R2 and lowest RMSE in calibration and validation for the Hyperion bands (Table 8). However, the 

models using CHRIS bands have a better linear calibration with a maximum R2 of 0.72 using SI05 and 

lower RMSE of 14.45%. The performance of SI05 on the HyspIRI data was also better than the others 

with a R2 of 0.71 and a RMSE of 14.87%. 

The sensitivity analysis for Hyperion bands (Figure 7) revealed a similar behavior as shown by the 

hyperspectral models (Figure 6). For example, Figure 7A also shows that although SC00 was 

insensitive to chl-a, it was not a good predictor of PC concentration. MI09 showed to be most sensitive 
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to PC and the least sensitive to chl-a (Figure 7C). SI05 and MM09 performed similarly by showing 

sensitivity to both PC and chl-a. (Figure 7B, D). Overall, we noticed during sensitivity analysis that 

although SI05 and MM09 sometimes produced the highest R2 and lowest RMSE during calibration and 

validation, their dependency on chl-a is consistently greater than MI09. Therefore, sometimes they 

also act as a strong predictor of chl-a concentration.  

Table 8. Error analysis for linear calibrations for Hyperion and CHRIS bands. 

 Hyperion CHRIS HyspIRI 

R2  RMSE (%)  R2  RMSE (%)  R2 RMSE (%) 

SC00 0.42 23.23 0.49 16.81 0.54 18.38 

SI05 0.69 15.54 0.72 14.45 0.71 14.87 

MI09 0.55 22.63 0.64 18.43 0.62 20.16 

MM09 0.68 16.30 0.68 15.41 0.68 15.58 

Figure 7. Models using simulated Hyperion data: sensitivity analysis showing the 

interference of chl-a on the performance of (A) SC00, (B) SI05, (C) MI09, and (D) MM09. 

 

The difference in performance of Hyperion and CHRIS sensors could be attributed to the variable 

bandwidth of these sensors. Although data for both sensors were simulated using the Gaussian 

response function, the bandwidths were different. Hyperion bandwidths vary from 10.5 to 10.69 nm 

while CHRIS bandwidths vary from 6 to 12 nm. CHRIS has wider bandwidths near the PC absorption 

maxima and narrower bandwidths near the chl-a reflectance peak, while Hyperion bands have almost 

the same width in those areas. This difference can explain the models sensitivity to chl-a 

concentration, since the narrow bands enhance the spectral response in the chl-a reflectance peak.  

The sensitivity analysis for CHRIS dataset (Figure 8) revealed that all four models are sensitive to 

variations in PC concentration. However, all models showed to be more sensitive to the presence of 

chl-a, having high values when the chl-a was also higher and low values when the chl-a was low. 
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Figure 8. Models using simulated CHRIS data: sensitivity analysis showing the 

interference of chl-a on the performance of (A) SC00, (B) SI05, (C) MI09, and (D) MM09. 

 

The sensitivity analysis for HyspIRI dataset (Figure 9) revealed a good sensitivity of SC00 to PC 

concentration. MI09 and SI05 showed a moderate sensitivity to PC concentration. However, SI05 and 

MM09 appeared to be more sensitive to the presence of chl-a, having high values when the chl-a 

concentration was higher and vice versa. On the other hand, SC00 and MI09 showed no sensitivity to 

chl-a presence. For HyspIRI, the best sensitivity performance was found in SC00, since it appeared to 

be sensitive to variations in PC concentration and also showed no sensitivity to chl-a presence 

Figure 9. Models using simulated HyspIRI data: sensitivity analysis showing the 

interference of chl-a on the performance of (A) SC00, (B) SI05, (C) MI09, and (D) MM09. 

 



Remote Sens. 2013, 5 4794 

 

 

As the sensor bands confirm the algorithms input requirements, accurate atmospheric correction are 

required in order to avoid errors in the estimation of PC. In this research, we used proximal remote 

sensing measurements which do not require atmospheric correction. Therefore, applying these 

algorithms as described may not work for orbital sensors without an accurate atmospheric correction. 

However, Kutser [37] showed that the standard atmospheric correction procedures fail for water bodies 

with dense BG blooms since they operate under the assumption that water-leaving radiance at NIR is 

almost zero; but in case of a water body with dense algal bloom, that assumption is not accurate and 

the NIR signal cannot be ignored. 

4. Conclusions  

In this paper, we have reviewed and discussed the performance of all available reflectance based 

algorithms to predict phycocyanin (PC) content in waters with wide ranges of pigment concentration. 

All PC algorithms analyzed in this paper used different wavelength regions in the reflectance spectra 

including an absorption peak of around 600–620 nm, a fluorescence peak of around 650 nm, and a chl-a 

reflectance peak between 700 and 724 nm. We applied seven reflectance based bio-optical algorithms 

including Dekker [16], Schalles & Yacobi [17], Simis et al. [10], Mishra et al. [5], Mishra [29], 

Modified Mishra et al. [5], and Hunter et al. [11] (Table 2) for calibration and validation using three 

datasets that contained observations from two study sites (Catfish Ponds, MS, USA and Funil 

Reservoir, RJ, Brazil). Overall, we conclude that the use of chl-a reflectance peak near 700 nm and PC 

absorption at 600 nm is the best combination to be used in a PC prediction algorithm The Dekker [16] 

algorithm showed the highest RMSE for all the datasets. Its best performance occurred in the mixed 

dataset (RMSE of 28.845%) where it showed a linear relationship at low PC concentrations, however, 

at very high PC concentration, this relationship was no longer linear. The relatively high errors 

produced by the Dekker [16] algorithm in the three datasets suggest that an empirical parameterization 

in the calibration dataset could improve its performance. The Schalles & Yacobi [17] algorithm 

showed its best performance in the high PC concentrations datasets, probably because it was developed 

using optical data obtained in eutrophic, cyanobacteria-dominated lakes [17].  

However, the use of the 650 nm band contaminates this model with strong interference from chl-a, 

thus decreasing its PC prediction capacity. Similarly, Simis et al. [10] showed the lowest error values for 

the high PC dataset, and for the low PC dataset, it did not have the same accuracy. In our datasets, chl-a 

concentration was high for the data points with low PC (i.e., PC:chl-a ratio was low for low PC points) 

and therefore, interference of chl-a at 620 nm for low PC points was higher and affected the accuracy of 

the algorithm by Simis et al. [10]. Mishra et al. [5] showed the highest accuracy among all models and 

the least interference from chl-a because of the use of a band at 600 nm, and by moving away from the 

PC absorption maxima at 620 nm. Its derivatives, Mishra [29] and Modified Mishra et al. [5], used 

bands at 709 and 724 nm instead of at 700 and they produced mixed results with a higher sensitivity to 

chl-a compared to Mishra et al. [5]. Hunter et al. [11] showed the lowest %RMSE for the low PC data 

points. However, for the high PC data points, it produced high errors due to the use of two bands (600 

and 615 nm) in the PC absorption region. 

Overall, the sensitivity analyses were crucial in determining the efficiency of each algorithm, since 

it was possible to observe the interference of chl-a in these algorithms. Mishra et al. [5] appeared to be 
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the most insensitive algorithm to chl-a concentration, which also confirmed the fact that PC absorption 

at 600 nm has less influence of chl-a absorption as compared to that at 620 nm. However, the residual 

errors found in Mishra et al. [5] could be due to the enhanced interference of another water constituent, 

i.e., the total suspended solids (TSS). More research is needed to quantify the interference of TSS at 

600 nm and isolate the errors observed in Mishra et al. [5].  

In addition, we evaluated the performance of all the PC algorithms for two spaceborne 

hyperspectral sensors and the upcoming HyspIRI sensor using simulated in situ hyperspectral data. 

From the analysis, it has been concluded that the three sensors can potentially be used to quantify and 

map PC concentration using some of the reflectance based algorithms considered in this study. 

However, CHRIS bands appeared to be more sensitive to chl-a due to its narrow bandwidth around the 

chl-a reflectance peak. Variations in the bandwidth proved to be a determinant for the accuracy of  

bio-optical models. Overall, results demonstrate that reflectance based algorithms can be applied to 

infer PC concentrations and distributions accurately using any of the three sensors. 

One of the unique factors of this review paper is the datasets used in comparing the performance of 

various models. The datasets represent two significantly different waters in terms of their bio-optical 

properties, one acquired from a tropical reservoir representing oligotrophic conditions and the other 

from catfish ponds representing hyper-eutrophic conditions. Performance evaluation of PC detection 

algorithms in a tropical reservoir has not been done previously, demonstrating the presence of a 

research gap for low latitude areas. For example, Matthew and Bernard [38] stressed the importance of 

studying lower latitudes by advising future studies to focus on water types in different low latitude 

geographical regions of the world, mainly where data are lacking. Therefore, inclusion of a dataset 

from a tropical reservoir in our analysis created a significant difference in the two datasets which 

allowed us to test the performance and sensitivity of the reflectance based models at very low and very 

high PC and chl-a presence. We summarize that the influence of chl-a absorption determines the 

performance of a reflectance based PC prediction model, and that interference is higher at the PC 

absorption maxima near 620 nm than at 600 nm. Therefore, Mishra et al. [5] algorithm, which uses a 

band near 600 nm, showed the highest overall PC prediction accuracy. We conclude that for 

comprehensive water quality monitoring including accurate prediction of cyanobacteria content in 

water, a band at 600 nm is imperative in future multispectral and hyperspectral sensors. 
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