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Abstract: The monitoring of herbaceous fuel moisture content is a crucial activity in order 
to assess savanna fire risks. Faced with the difficulty of managing wide areas of vegetated 
surfaces, remote sensing appears an attractive alternative for terrestrial measurements 
because of its advantages related to temporal resolution and spatial coverage. Earth 
observation (EO)-based vegetation indices (VIs) and the ratio between Normalized 
Difference Vegetation Index (NDVI) and surface temperature (ST) were used for 
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assessment of herbaceous fuel moisture content estimates and validated against herbaceous 
data collected in 2010 at three open savanna sites located in Senegal, West Africa.  
EO-based estimates of water content were more consistent with the use of VI as compared 
to the ratio NDVI/ST. Different VIs based on near-infrared (NIR) and shortwave infrared 
(SWIR) reflectance were tested and a consistent relationship was found between field 
measurements of leaf equivalent water thickness (EWT) from all test sites and Normalized 
Difference Infrared Index (NDII), Global Vegetation Moisture Index (GVMI) and 
Moisture Stress Index (MSI). Also, strong relationships were found between fuel moisture 
content (FMC) and VIs for the sites separately; however, they were weaker for the pooled 
data. The correlations between EWT/FMC and VIs were found to decrease progressively 
as the woody cover increased. Although these results suggest that NIR and SWIR 
reflectance can be used for the estimation of herbaceous water content, additional 
validation from an increased number of study sites is necessary to study the robustness of 
such indices for a larger variety of savanna vegetation types.  

Keywords: herbaceous moisture content; vegetation indices; land surface temperature; 
remote sensing; MODIS; Senegal 

 

1. Introduction 

Savanna fires play a major role in ecosystem dynamics in dry tropical areas [1,2]. Due to an 
increased number of fires ignited by humans, fire frequency on savanna ecosystems has increased 
during the last decades to a level where it has become a threat to biodiversity and ecosystem  
stability [3]. Although the cause of ignition in most cases is related to rural livelihoods, the severity of 
a fire depends on many biophysical factors, such as vegetation water status, topography, and wind 
direction [4]. The vegetation fuel moisture is a critical parameter in fire ignition because flammability 
is closely limited by leaf water content [5]. Therefore, the monitoring of vegetation water content is 
fundamental in assessing the risk of fire [6–11]. Ground measurements of herbaceous water content 
are labor intensive and expensive if performed over larger areas and therefore difficult to apply at the 
regional scale. The phenology adds another level of complexity which is related to the short time 
window during which fuel moisture drop down rapidly (a few weeks after the end of the rainy season). 
To overcome these limitations, satellite remote sensing is suggested as an attractive solution due to 
large area coverage, high temporal frequency and non-destructive alternatives to expensive field 
measurements of vegetation water content [12–15]. 

Considering the varying spatial and temporal dynamics of vegetation biophysical variables such as 
canopy water content, the use of earth observation (EO) data is a great opportunity for acquiring real-time 
continuous information on vegetation status [13,14,16]. The estimation of vegetation water content 
from satellite data has been attempted using high and low spatial resolution sensors. The high 
resolution reduces noise in quantitative correlation with field data by providing a higher spatial 
accuracy [11,17]. However, the main constraint of using high or moderate spatial resolution data for 
vegetation monitoring is the low temporal resolution (e.g., revisit cycle of 16 days for Landsat) while 
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vegetation water content can vary with a significantly higher temporal frequency [18]. The low spatial 
resolution data offers a higher temporal resolution (e.g., daily or 10-daily) provided by high-temporal 
satellite sensors (e.g., Advanced Very High Resolution Radiometer—AVHRR; Moderate Resolution 
Imaging Spectroradiometer—MODIS; and Satellite Pour l’Observation de la Terre—SPOT 
VEGETATION) and are more likely to be used operationally since fire managers require frequent 
updates of water content [5,11]. The use of satellite remote sensing data for analysis of vegetation is 
traditionally based on the use of various spectral indices. The best known of these is the Normalized 
Difference Vegetation Index (NDVI) indicating the chlorophyll content of vegetation from the 
combined use of the red and near infrared wavebands [19]. NDVI has also been used as a proxy of 
vegetation water content in several studies based upon the assumption of chlorophyll content 
dependency of canopy water content [8,19–24]. This assumption may be correct for some conditions 
but cannot be generalized to all ecosystems [11,25]. Variations in chlorophyll content can be caused by 
water stress but also by normal phenological status of the plant, atmospheric pollution, nutrient 
deficiency, toxicity, plant disease, and radiation stress [26].  

Since the mid-1990s, several studies [16,25,27–35] have focused on combining information from 
different wavelengths and showed the ability of near infrared (NIR) (0.7–0.9 µm) and short wave 
infrared (SWIR) (1.2–2.5 µm) to determine vegetation water content [25,28,30,31,36]. In addition to 
VIs, several studies have proven the potential use of combining NDVI and surface temperature (ST) 
for predicting vegetation moisture [5,37,38]. The primary basis for this relationship should be found in 
the unique spectral reflectance-emittance properties of plant leaves in the red and infrared wavelengths 
combined with the low thermal mass of plant leaves relative to soil. Plant spectral reflectance patterns 
provide a possibility to remotely sense surface variations in green biomass [39]. Similarly, 
transpiration and the limited thermal mass of plant leaves provides a possibility to distinguish between 
vegetation and soil background properties from thermal infrared observations [40]. Plant leaves 
actively exchange absorbed solar radiation through transpiration. During daylight hours, plant leaves 
(in the absence of water stress) maintain a temperature close to air temperature, whereas exposed, dry 
soil temperatures are much higher than air temperatures [41].  

Studies on the monitoring of vegetation water content by remote sensing for fire risk assessment are 
numerous, and many have focused on ecosystems located in midlatitudes [29,42] and in North 
America [13,14,30]. Generally, these studies compared the ability of spectral approaches operating in 
the shortwave optical domain to predict vegetation water content across different plant functional 
types. These studies provided mostly encouraging results on the ability of remote sensing to monitor 
vegetation water content. Also, studies in Sahel covering a variety of open savanna ecosystems have 
been conducted [11,16,18,25,28,35]. The Sahel is characterized as a region highly affected by fire and 
where the monitoring of vegetation water content could potentially play an important role in the 
assessment of fire risk for subsequent fire management.  

This study aims at testing relationships between vegetation indices based on (1) NIR/SWIR 
reflectance data, (2) the combined use of NDVI/ST and field measurements of herbaceous water 
content in the Senegalese savanna ecosystems, to assess the ability of remotely sensed information to 
predict herbaceous water content for improved fire risk assessment. Both daily and eight-day 
composite products from 2010 are tested to study the importance of image acquisition timeliness when 
monitoring a highly fluctuating biophysical variable like vegetation water content. Extensive 
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validation data, collected in the field, cover three different savanna types to account for spatial and 
ecological differences in the sensitivity of the indices tested. The focus in this study is on herbaceous 
vegetation water content, since most fires in the semi-arid to sub-humid areas are mainly surface fires 
fueled by the herbaceous vegetation layer.  

2. Materials and Methods  

2.1. Study Area  

Three sites were selected following a north–south gradient taking into account the main eco-climatic 
regions of Senegal along an increasing rainfall gradient (Sahelian area, northern Sudanian area and 
southern Sudanian area (Figure 1). 

Figure 1. MODIS (MCD12Q1) land cover classification and location of biomass sampling 
sites in the main ecosystems of Senegal (Source NASA: http://e4ftl01.cr.usgs.gov/MOTA/).  

 

The first site is located at 15°16'3"N, 14°51'55"W near the village of Barkedji in the northern part 
of the country. In the central Sahel, the rainy season extended from July to September with annual 
rainfall ranging from 200 to 400 mm [16]. The length of the rainy seasons ranges changes from three 
to six months from northernmost to the southernmost site. Relative humidity can reach a minimum of 
10% in the northern part (in May), as a consequence of high temperatures and high evaporating power 
of the region’s hot and dry harmattan wind. In the early stages of the dry season, the harmattan winds 
primarily influence the northeast of Senegal before moving to the southern continental regions [43]. 
Conversely, the relative humidity can exceed 75% throughout the entire region when the summer 
monsoon starts in July. The annual mean of the maximum temperatures for the region is above 35 °C. 
The vegetation is a grassland (Figure 2) dominated by annual grasses: Eragrostis gangetica, 
Eragrostis tremula, Schoenefeldia gracilis, Zornia glochidiata, Dactyloctenium aegyptium,  
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Aristida mutabilis, Cenchrus biflorus, Chloris virgata, Aristida fuiniculata and Polycarpea linearifolia. 
The sparse woody layer is dominated by Balanites aegyptiaca, Boscia senegalensis, Adenium obesum. 
The woody cover did not exceed 11% [44], as determined by the method outlined by Mahamane and 
Saadou [45] based on physiognomy and floristic composition.  

Figure 2. Composition and distribution of vegetation typical for the three sites:  
(a) grassland; (b) shrub savanna; (c) shrub savanna with sparse trees. 

(a) (b) 

(c) 

The second site is located at 13°52'59"N, 15°25'0"W near the village of Maka in central Senegal. 
Over the northern Sudanian region, the rainy season extended from June to October with annual 
rainfall ranging from 700 to 800 mm. The relative humidity ranges from 34% to 79%. The average 
annual temperature is ca. 29 °C. The savanna vegetation (Figure 2) includes shrub and tree species 
(Combretum glutinosum, Guiera senegalensis, Sterculia setigera, Pterocarpus erinaceus and  
Cordyla pinnata) with a total woody cover estimated to be 29% [44]. The herbaceous layer is 
continuous and dominated by Andropogon pseudapricus. However, we noted the presence of 
Pennisetum pedicellatum, Spermacoce chaetocephala and Spermacoce stachydea.  

The third site is located at 12°49'0"N, 14°52'0"W near the village of Dioulacolon in the  
southern Sudanian area. During the rainy season (May to October), annual rainfall varies from 800 to 
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1,200 mm. The relative humidity ranges from 37%–89% and the annual mean temperature is ca. 28 °C. 
The landscape composition includes shrub savannas and woodlands with a continuous grass layer 
(Figure 2) dominated by Andropogon pseudapricus, Ctenium villosum, Andropogon gayanus, and 
Indigofera leptoclada. Woody vegetation is dominated by Combretum glutinosum, Combretum 
nigricans, Strychnos spinosa, Crossopteryx febrifuga, Terminalia macroptera and Bombax costatum. 
The total woody cover at this site is estimated to be close to 50% [44].  

2.2. Experimental Design for Biomass Sampling 

In each of the three sites, a quadratic experimental plot of 1 km2 was established including nine  
sub-plots of 250 × 250 m (Figure 3).  

Figure 3. The experimental design for biomass collection covered 1 km2, including  
nine plots of 250 × 250 m from which four samples were collected at random locations 
using a 1 m2 quadrat. The geographic coordinates of the MODIS 1 km2 LST pixel corners 
were used to outline the experimental plot area for the best possible match of footprints 
from MODIS data and ground observations.  

 

The specific location of the experimental plots was selected based on landscape physiognomy at the 
1-km2 level and the sub-plots were selected to include the dominant herbaceous species in the area. 
Measurements of herbaceous water content must occur at the right time and for the most representative 
grass cover, in order to properly capture the variations of water content that vary over space and 
rapidly declines at the end of the rainy season. Data collections were conducted in each site on a daily 
basis starting eight days after the last rain in 2010. This timing allowed comparing trends of water 
content for the three sites at the early dry-season. To be able to start the collection of biomass eight 
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days after the last rain, we used predictions (through a personal communication) of the potential period 
of the end of rainfall season in different areas of Senegal from the National Agency of Meteorology in 
Senegal (ANAMS). Due to the distance separating sites, three teams carried out the field work, 
simultaneously applying an identical methodological protocol. For 32 days, we conducted daily data 
collection at 14–15 h coinciding with the driest period of the day (Sow, unpublished data). 
Aboveground herbaceous biomass in each 1 m2 quadrat was harvested. In each plot of 250 m, four 
samples were collected, and weighed directly in the field to avoid water loss [29]. The average of the 
four samples constituted the sample weight of fresh biomass in the plot and was disposed in a hessian 
bag before being oven-dried at 60 °C until constant dry weight was obtained [46,47]. 

The direct method for the estimation of the herbaceous water content was made on the basis of two 
different metrics: (i) the fuel moisture content [4,5,8,29,48] and (ii) the equivalent water thickness at 
leaf level [25,27–31,49–51]. FMC (Equation (1) [5,11,52]) is defined as the percentage of moisture 
content as compared to dry material weight as follows:  

(( ) / ) 100FMC FW DW DW= − ×  (1)

where FW is the fresh weight measured in the field and DW the oven dry weight of the same sample. 
Similarly, leaf EWT is defined as the quantity of water per herbaceous unit area as follows 

(Equation (2) [29,47,52]):  

( ) /EWT FW DW A= −  (2)

where A is an estimation of the area covered by herbaceous and expressed in m2 in the plot of 1 m2 

quadrat. FMC indicates the intrinsic moisture of the plants, while EWT indicates water content per unit 
surface area of the vegetation [29].  

The average water content at the plot level was then compared to the VI of the corresponding 
geographic pixels. For the part of the analyses including comparisons to the eight-day MODIS data, 
daily field-based water content estimates were averaged to produce eight-day values.  

2.3. MODIS Data and Processing 

The Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance product was 
used due to the high spectral and temporal resolution required for this study. The MODIS sensors 
onboard the Terra and Aqua platforms have daytime crossing over Senegal at about 10 h and 14 h, 
respectively. We selected the MODIS Aqua data for this study to minimize the time difference 
between satellite acquisition and the samples collected in the field (between 14 and 15 h). MODIS 
Collection 5 data were downloaded from the National Aeronautic and Space Administration (NASA) 
(http://reverb.echo.nasa.gov/reverb/). The different MODIS products used included both daily 
observations of surface reflectance and land surface temperature (98 scenes) and eight-day composites 
surface reflectance and land surface temperature (12 scenes) covering the period from 6 October to 
23 November 2010 (Table 1).  
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Table 1. Characteristics of the MODIS products used in this study. 

Product Short Name Product Description Year 

MYD09GA 
MODIS/Aqua Surface Reflectance Daily Level 2 Global  
500 m SIN Grid Collection 5 

2010 

MYD11A1 
MODIS/Aqua Land Surface Temperature/Emissivity Daily Level 3 
Global 1 km SIN Grid Collection 5 

2010 

MYD09A1 
MODIS/Aqua Surface Reflectance Eight-day Level 3 Global  
500 m SIN Grid Collection 5  

2010 

MYD11A2 
MODIS/Aqua Land Surface Temperature/Emissivity Eight-day Level 
3 Global 1 km SIN Grid Collection 5 

2010 

MCD12Q1 
MODIS/Terra + Aqua Land Cover Type Yearly Level 3 Global 500 
m SIN Grid Collection 5 

2010 

Surface reflectance and land cover data products are available in a 500-m spatial resolution, 
whereas the land surface temperature (LST) product has a spatial resolution of 1 km. The MODIS data 
sets are provided in Sinusoidal (SIN) mapping grid. The MODIS data were therefore reprojected to 
Universal Transverse Mercator System (UTM) and re-sampled using Nearest Neighbor using the 
MODIS Reprojection Tool (MRT, see https://lpdaac.usgs.gov/tools/modis_reprojection_tool for 
download). The computing of spectral indices and statistical analyses were conducted using both the 
ENVI 4.5 and R software [53].  

The daily MODIS and eight-day MODIS composite data products include a data quality assessment 
(QA-data) product providing information on overall usefulness and cloud condition on a per-pixel 
basis. For the daily MODIS reflectance observations (MYD09GA) the Reflectance Data State QA 
“cloud state” parameter was used (bit 0–1) to screen for clouds. “Clear” was considered cloud free, 
whereas “cloudy” and “mixed” were considered cloud contaminated. For the daily LST observations 
the Daytime LSTE quality control “Data quality flag” parameter was used to screen for clouds (bit 2–3). 
“Good quality” was considered cloud free, whereas “Other quality” was considered cloud 
contaminated. Only observations being labeled as cloud-free were used in this study. 

Similarly, for the eight-day MODIS composite (MYD09A1), the 500-m Reflectance Band Quality 
“MODLAND QA bits” parameter was used (bit 0–1). “Corrected product produced at ideal quality all 
bands” was considered cloud free, whereas “corrected product produced at less than ideal quality for 
some or all bands” were considered cloud contaminated. For the eight-day LST composite, the quality 
control for daytime LST and emissivity “data quality flag” parameter was used to screen for clouds 
(bit 2–3). “Good data quality of L1B in 7 TIR bands” was considered cloud free, whereas “other 
quality data” was considered cloud contaminated. 

2.4. Vegetation Indices 

In this study, we focused on the vegetation indices combining the satellite channels in the NIR and 
SWIR. Ideally, a VI should be sensitive to the type of dynamics of the vegetation cover to be studied, 
insensitive to changes in the soil layer and affected by atmospheric effects to a minimum [25,54–58]. 
Variations in leaf internal structure and leaf dry matter content influence the SWIR reflectance, 
thereby rendering SWIR reflectance unsuitable for vegetation water content estimates if not combined 
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with information from other wavelengths. The combined use of NIR and SWIR makes it possible to 
normalize for the influence on the reflectance signal related to variations in leaf internal structure and 
leaf dry matter content. Several studies support the theory that ratios, or normalized ratios, of these 
wavebands suppress the effect of variation in leaf scattering [25,27,28,52]. The NIR reflectance is 
affected by leaf internal structure and leaf dry matter content but not by water content [16]. 
By combining the NIR with the SWIR reflectance information, variations induced by leaf internal 
structure and leaf dry matter content can be removed and thus improve the accuracy in retrieving the 
vegetation water content [25].  

Several VIs have been proposed over the years as based on observations from different satellite 
sensor systems including measurements in the SWIR wavelengths (primarily Landsat, SPOT and 
MODIS). These indices focus on the characteristics of water absorption in the SWIR (sensitive to 
changes in leaf water content) and the NIR (sensitive to changes in leaf internal structure) of the 
spectrum being designed as ratios or normalized ratios of broad wavebands in the NIR and the SWIR. 
Amongst the most referred indices are Normalized Difference Water Index—NDWI [31,59], 
Normalized Difference Infrared Index—NDII [17,60–62], Simple Ratio Water Index—SRWI [59,63], 
Moisture Stress Index—MSI [61], and Global Vegetation Moisture Index—GVMI [28]. GVMI uses a 
combination of the SWIR and NIR channel rectified for contamination by atmospheric effects using 
the blue-band channel [28]. However, we did not rectify our NIR observations [13,52,64] because 
MODIS data used here have been atmospherically corrected [65,66]. The ability of these indices to 
estimate herbaceous water content was tested in this study from MODIS surface reflectance data using 
equations reported in Table 2. 

Table 2. Algorithms for the computing of vegetation indices extracted from literature. 
MODIS Band 2 (center µm) = 0.858 µm; Band 5 = 1.240 µm; Band 6 = 1.640 µm;  
Band 7 = 2.130 µm. NDWI (Normalized Difference Water Index); NDII (Normalized 
Difference Infrared Index); SRWI (Simple Ratio Water Index); MSI (Moisture Stress 
Index); GVMI (Global Vegetation Moisture Index). 

Index Algorithm References 

NDWI(2,5) 
2 5
2 5

NIR SWIR

NIR SWIR

Band BandNDWI
Band Band

ρ ρ
ρ ρ

− −= =
+ +

 [31,59] 

NDII(2,6) 
2 6
2 6

NIR SWIR

NIR SWIR

Band BandNDII
Band Band

ρ ρ
ρ ρ

− −= =
+ +

 [60–62] 

NDII(2,7) 
2 7
2 7

NIR SWIR

NIR SWIR

Band BandNDII
Band Band

ρ ρ
ρ ρ

− −= =
+ +

 [17,61] 

SRWI(2,5) 
2
5

NIR

SWIR

BandSRWI
Band

ρ
ρ

= =  [59,63] 

MSI(6,2) 
6
2

SWIR

NIR

BandMSI
Band

ρ
ρ

= =  [61] 

MSI(7,2) 
7
2

SWIR

NIR

BandMSI
Band

ρ
ρ

= =  [61] 

GVMI(2,6) 
( ) ( )
( ) ( )

( 2 0.1) ( 6 0.02)0.1 0.02
0.1 0.02 ( 2 0.1) ( 6 0.02)

NIR SWIR

NIR SWIR

GVMI
Band Band
Band Band

ρ ρ
ρ ρ

−
=

+
+ − ++ + =+ + + + +  [28] 
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2.5. The Ratio between NDVI and Surface Temperature  

Several studies demonstrated that the combined use of NDVI and surface temperature (ST) 
provides stronger relationships with water content than either of the two variables alone [5,23,67,68]. 
A positive correlation between the NDVI/ST ratio and fuel moisture is expected [67] and we use in 
this study the NDVI/ST ratio to predict vegetation water content. 

The Normalized Difference Vegetation Index was computed from MODIS reflectance data using 
NIR and red bands as following [69]:  

12
12

bandBand
BandBandNDVI

REDNIR

REDNIR

+
−=

+
−=

ρρ
ρρ

 

The 500-m NDVI data were re-sampled to 1 km using the Nearest Neighbor algorithm to facilitate 
comparison with MODIS LST 1-km data. 

The MYD11 L3 land surface temperature (LST) product, produced by NASA using the Generalized 
Split-Window (GSW) algorithm [70], is based on brightness temperatures measured in bands #31 
(10.780–11.280 µm) and #32 (11.770–12.270 µm).  

2.6. Statistical Analyses 

All statistical analyses were carried out using the software R [53], and P < 0.05 was used to 
determine the significance of all tests. A correlation matrix was used to determine the satellite indices 
that were most highly correlated with the herbaceous water content measured in the field. Linear 
relationships were calculated between VIs and the ratio of NDVI/ST that correlated best with field 
measurements. Correlograms were performed to check for autocorrelation between observations and 
residuals from linear regression models were checked for normality and homoscedasticity [71].  

Finally, the potential application of detecting changes in herbaceous water content at the end of the 
rainy season during the early fire-season was tested. For this, the best relationship computed using  
in situ measurements and the VIs from the eight-day MODIS surface reflectance data (covering the 
period of 6 October to 23 November 2010) was used to estimate the herbaceous water content changes 
over the country.  

3. Results 

3.1. Spatial and Temporal Evolution of Herbaceous Water Content from Field Measurements  

During the 32 days of sampling collection of biomass for herbaceous water content estimates, the 
EWT results showed that the herbaceous water content increased from the north (Sahelian savannas) to 
the south (Sudanian savannas) following the rainfall gradient (Figure 4). The average values of EWT 
ranged between 0.011 and 0.045 g·cm−2 for the three sites over the 6 October to 23 November 2010 
period, with the highest EWT values (mean and variability) recorded at the southernmost location 
(Figure 4(top)). The temporal evolution of the water content was characterized by a continued 
downward trend for all sites. 40 days after the last rain, the herbaceous vegetation in the northern site 
had almost lost all its water content (0.003 g·cm−2 being close to the dry weight), whereas it was  
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3.2. Relationship between VIs and Field Measurements of Herbaceous Water Content 

At the site level, the vegetation indices NDII(2.6), MSI(6.2), GVMI(2.6) and NDVI/ST (computed from 
daily data) were in most cases highly correlated with both EWT and FMC (Table 3). The results 
showed that FMC is important for herbaceous water content assessment at the individual site level 
while EWT was found efficient at the site level and across site comparisons. Correlations between 
field measurements of water content and VIs decreased along the latitudinal gradient from the 
northernmost Sahelian site (r varied from 0.84 to 0.96) towards the southward Sudanian sites  
(r = 0.27–0.90 and 0.02–0.95 for sites 2 and 3, respectively) (Table 3).  

Table 3. Correlation coefficients between field measurements of herbaceous moisture 
content and (1) vegetation indices and (2) ratio NDVI/ST. Fuel Moisture Content (FMC), 
Equivalent Water Thickness (EWT), Moisture Stress Index (MSI), Normalized Difference 
Infrared Index (NDII), Normalized Difference Water Index (NDWI), Global Vegetation 
Moisture Index (GVMI), Simple Ratio Water Index (SRWI), Normalized Difference 
Vegetation Index (NDVI), Surface Temperature (ST). 

Vegetation 
Satellite 
Indices 

Vegetation Indices 
Site 1 Site 2 Site 3 All Sites 

FMC EWT FMC EWT FMC EWT FMC EWT 
MSI(6,2) r −0.92 −0.91 −0.82 −0.89 −0.80 −0.81 −0.62 −0.88 
MSI(7,2) r −0.92 −0.90 −0.44 −0.47 −0.60 −0.61 −0.46 −0.79 
NDII(2,6) r 0.93 0.92 0.84 0.90 0.76 0.78 0.63 0.90 
NDII(2,7) r 0.91 0.88 0.39 0.42 0.59 0.60 0.42 0.79 

NDWI(2,5) r 0.85 0.84 −0.27 −0.30 0.94 0.95 0.08 0.11 
GVMI(2,6) r 0.93 0.92 0.84 0.90 0.80 0.81 0.62 0.90 
SRWI(2,5) r 0.85 0.84 −0.35 −0.39 −0.03 0.02 −0.08 −0.04 
NDVI/ST r 0.96 0.95 0.62 0.65 0.74 0.69 0.52 0.85 

Based on the best correlations of EWT (as compared to FMC) with field observations, it was 
chosen only to focus on EWT estimates in the linear regression models for predicting vegetation water 
content from remote sensing data. The linear relationships between EWT and VIs derived from daily 
MODIS Aqua data were all highly significant (p < 0.001) with r2 varying from 0.78 with MSI(6,2) to 
0.81 and 0.82 with GVMI(2,6) and NDII(2,6), respectively (Figure 5), while the linear relationship 
between EWT vs. NDVI/ST was weaker (r2 = 0.72, p < 0.001). When testing for normality, 
homoscedasticity and temporal autocorrelation all assumptions were met. The use of daily MODIS 
data might potentially be influenced by day-to-day variations in sun-target-sensor geometry having a 
wavelength specific impact on reflectance’s (and VIs) due to wavelength-dependent differences in the 
anisotropy factor [35,72]. We also used the eight-day MODIS composite data related to field data 
synthesized into eight-day data (by temporal averaging). The linear regression based on eight-day 
MODIS composite data and eight-day average values of field measured EWT showed significantly 
stronger relationships (Figure 5) with index values of MSI(6,2), NDII(2,6) and GVMI(2,6) explaining 81, 
88, and 88% of the EWT variability, respectively. 
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Figure 5. Linear relationship between field observations of equivalent water thickness 
(EWT), vegetation indices and land surface temperature. Black dots and line represent the 
daily data while gray dots and dashed line represent the eight-day composite data.  

 

3.3. Application  

Maps of estimated herbaceous fuel water content over Senegal were calculated using the strong 
significant relation found between eight-day NDII(2,6) and EWT. The six consecutive eight-day periods 
confirmed that the drying of vegetation followed a regional north–south gradient (Figure 6).  

The monotonous trend in herbaceous water content reduction in the Senegalese savanna landscapes 
evolved from largely lush herbaceous vegetation (Doy 273–280) to widely senescent herbaceous 
vegetation with very limited water content (Doy 313–320), with a temporal lag related to geographical 
location (from North to South). 
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Figure 6. Changes in vegetation moisture content from DOY (day of year) 273 to 320. 
EWT was retrieved from eight-day MODIS using the equation of the linear regression 
between NDII and field measured EWT (Figure 5 top left).  

Doy 273-280 Doy 281-288

Doy 289-296 Doy 297-304

Doy 305-312 Doy 313-320
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4. Discussion 

4.1. Remote Sensing Indices versus Field Reality and Complexity 

According to Dauriac [29], the estimation of vegetation water content is an approximation regardless 
of methods used (field measurements or remote sensing). Especially in the case of dominant 
herbaceous vegetation (Sahelian site) being more sensitive to soil moisture, topography and weather 
conditions than woody vegetation (also present in Sudanian sites) this assertion could be valid. In 
addition, the presence of a mixture of several species of annual and perennial grasses, with different 
abilities regarding the mechanisms for regulation of water loss, is often characterized by different 
levels of water content at a given time. This is why it was mandatory to obtain representative samples 
as outlined in Section 2.2 to take into account the local variations.  

EWT is difficult to operationally measure in the field, because it requires the calculation of leaf  
area [51]. Herbaceous leaf area (A) was measured visually in the field. Although visual estimation of 
some parameters on the herbaceous vegetation is common [73–75], the visual estimation of A could 
affect the accuracy of the results presented.  

Despite these potential uncertainties, our results showed a consistent relationship over the studied 
region between VIs based on NIR/SWIR and EWT as many studies have found previously for 
different ecosystems [25,30,31,36,50,52]. Furthermore, strong correlations between FMC and VIs 
(NDII, GVMI and MSI) were found for each site, showing the possibility provided by remote sensing 
to predict FMC in areas where floristic composition is relatively uniform. However, we confirm that 
for Sahelian and Sudanian savannas, the relationship between FMC and VIs is relatively weaker at the 
overall level (analyzing all sites together) than at the local level (by site). Several earlier studies 
showed that estimation of FMC from reflectance measurements was challenging because FMC does 
not only depend on water absorption, but also on the changes in the dry matter as leafs dries [42]. The 
relationships between VI and FMC are likely to be species-specific and knowledge of the mixture of 
species and their biophysical properties (leaf internal structure) would be useful in estimating spatial 
variation in FMC from NIR/SWIR-based indices [52]. In fact, FMC expresses the intrinsic water 
content of plant which is partly related to the specific capacity of each plant species to regulate water 
loss. In addition, the use of 500-m and 1-km data for analysis of savanna ecosystems where vegetation 
type often varies at the scale of hectares rather than square kilometers could introduce uncertainties in 
the comparison between remotely sensed information and field observations.  

Although the relationships between the ratio NDVI/ST and EWT were relatively strong (r2 = 0.72), 
the following VIs (NDII(2,6), GVMI(2,6), MSI(6,2)) tested generally provided the most satisfactory results 
on predicting herbaceous water content. All the indices, using the bands 2 and 6 located respectively in 
the NIR (where water absorption is weak) and SWIR (where water absorption is strong) wavelengths 
were found to be highly correlated with the field measurements of EWT and therefore deemed useful in 
estimating herbaceous water content. As part of the validation of GVMI in Senegal, Ceccato et al. [27] 
found that this index was suitable to predict vegetation water content with coefficients of correlation 
which ranged between 0.76 to 0.98. They [27] recommended, however, that the GVMI should be 
validated further with more field measurements in a range of different savanna ecosystems. Our study 
focused in part on this perspective and the results confirm those found by Ceccato et al. [27]. In 
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addition, the study of Ceccato et al. [27] was based on 10-day SPOT-VEGETATION (VGT) 
composite data covering the entire year whereas our study was targeting the period of the early dry 
season where most fires are recorded in Senegal, hence requiring daily monitoring of vegetation status 
for timely savanna fire management. We opted for MODIS data because of the improved temporal 
(if combining MODIS Terra and Aqua acquisitions), spectral and spatial resolution as compared to 
VGT data. MODIS freely provides two images per day (MODIS Terra and Aqua) with spatial 
resolution of 250–500 m in contrast to VGT imagery being provided as 10-day composite data free of 
charge at 1 km2 resolution with a three-month dissemination delay. 

The correlations between EWT/FMC and VI decreased moderately with decreasing aridity from 
north (site 1) to south (site 3). This difference was most likely related to the site-specific differences in 
tree cover: with a low woody cover (11%) at site 1, 29% at site 2 and more closed woody cover (50%) 
at site 3. This suggests that such NIR/SWIR-based indices are less successful in the estimating of 
herbaceous water content for more dense woody cover. During the period of herbaceous senescence 
(as studied here) woody foliage will typically retain water from deep root water access. Optical 
satellite remote sensing methods have limited capabilities of separating the reflectance signal of 
herbaceous and forest canopy, when both layers are still green and when the sub-canopy herbaceous 
layer withers below a green forest canopy. Hence, the reduced ability of NIR/SWIR VIs to explain the 
variability in EWT is to be expected for an increased woody cover.  

4.2. Applied Remote Sensing Tools on Savanna Surveillance 

Overall, the drying of herbaceous vegetation followed a regional north–south gradient mirroring the 
withdrawal of rains (controlled by the movement of the Intertropical Convergence Zone (ITCZ)) from 
north to south. Figure 6 shows a rapid decrease of herbaceous water content over a period of six 
weeks. These results corroborated the findings of Verbesselt et al. [11] who indicated that the transition 
from wet to dry savanna vegetation occurs fast (approximately 1–2 months).  

Forest fire managers have traditionally collected in situ data on FMC because it is relatively easy to 
measure in the field and because FMC is closely related to ignition probability influencing the rate of 
spread if a fire occurs [52]. Our results suggest the effectiveness of using EWT when assessing 
herbaceous water content by satellite remote sensing. The mapping of EO-based herbaceous water 
content conducted in this study highlighted the potential usefulness for forest managers. However, the 
NIR/SWIR-based index method suggested here should be tested for a larger number of sites to further 
study the influence of species dependency on using either EWT or FMC as a metric for herbaceous 
water content. 

5. Conclusion 

In this study, satellite remote sensing has proven useful for estimating herbaceous water content. 
Vegetation indices computed using MODIS bands 2 (0.858 µm) and 6 (1.640 µm) located in the  
near-infrared (NIR) and shortwave infrared (SWIR) wavelengths, respectively, showed a strong 
significant relationship with leaf equivalent water thickness (EWT) for different sites representative of 
different Sahelian and Sudanian savanna ecosystems. This relationship was found to decrease 
moderately as a function of the woody cover as reflected by the selection of the three sites ranging 
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from sparse woody cover (<11%) in the north, to medium dense woody cover (approximately 50%) in 
the southernmost site. Remote sensing has proven to be a powerful tool for monitoring the drying 
process of herbaceous vegetation. Looking at the results, remote sensing could provide a good 
opportunity for forest managers in the assessment of herbaceous water content. In addition, this 
information is useful because of the importance of herbaceous water content in the management of 
savanna fires.  
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