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Abstract: An efficient method for the continuous extraction of subway tunnel cross 

sections using terrestrial point clouds is proposed. First, the continuous central axis of the 

tunnel is extracted using a 2D projection of the point cloud and curve fitting using the 

RANSAC (RANdom SAmple Consensus) algorithm, and the axis is optimized using a 

global extraction strategy based on segment-wise fitting. The cross-sectional planes,  

which are orthogonal to the central axis, are then determined for every interval. The  

cross-sectional points are extracted by intersecting straight lines that rotate orthogonally 

around the central axis within the cross-sectional plane with the tunnel point cloud. 

An interpolation algorithm based on quadric parametric surface fitting, using the BaySAC 

(Bayesian SAmpling Consensus) algorithm, is proposed to compute the cross-sectional 

point when it cannot be acquired directly from the tunnel points along the extraction 

direction of interest. Because the standard shape of the tunnel cross section is a circle, 

circle fitting is implemented using RANSAC to reduce the noise. The proposed approach is 

tested on terrestrial point clouds that cover a 150-m-long segment of a Shanghai subway 

tunnel, which were acquired using a LMS VZ-400 laser scanner. The results indicate that 
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the proposed quadric parametric surface fitting using the optimized BaySAC achieves a 

higher overall fitting accuracy (0.9 mm) than the accuracy (1.6 mm) obtained by the plain 

RANSAC. The results also show that the proposed cross section extraction algorithm can 

achieve high accuracy (millimeter level, which was assessed by comparing the fitted radii 

with the designed radius of the cross section and comparing corresponding chord lengths in 

different cross sections) and high efficiency (less than 3 s/section on average). 

Keywords: cross section; statistical testing; quadric parametric surface; random sample 

consensus; Bayesian sampling consensus; terrestrial laser scanning 

 

1. Introduction 

Because underground structures such as tunnels require routine inspections and maintenance for 

their optimal use, efficient and accurate tunnel inspections are necessary. The shape, width and area of 

the cross sections of constructed or natural tunnels can be used to determine their structural stability. 

These estimations are generally conducted based on sparsely sampled points that are surveyed using a 

total station. This approach requires a considerable amount of time and effort, although non-prism total 

stations are now available [1]. However, it is often difficult to survey and analyze the construction  

sites and tunnels that are currently in use. Many recent studies have discussed using digital 

photogrammetry to determine the internal cross sections of tunnels [1,2]. However, in many cases, it is 

difficult to discriminate the subjects using photography because of the restricted light sources in the 

poor environments and working conditions in tunnels, and it is difficult to capture the characteristics of 

irregular internal cross sections of tunnels. 

The application of laser technology is rapidly expanding and offers decreased costs and increased 

accuracy. Therefore, 3D laser scanners make it possible to obtain high-accuracy data and high location 

precision, even under disadvantageous conditions. Tsakiri et al. [3] discussed several surface modeling 

methods that were implemented to monitor deformation and various approaches to measure 

deformation from the modeled surfaces. Using a weighted-constraint, least-squares curve-fitting 

approach, Gordon and Lichti [4] developed a modeling strategy from the fundamental beam-deflection 

equations to permit the usage of coarse-precision terrestrial laser scanner observations to accurately 

measure the vertical deflections of deforming beams. Gosliga et al. [5] and Lindenbergh et al. [6] 

described a workflow for terrestrial laser scanning to detect deformation by taking advantage of both 

data redundancy and the individual point quality. Schneider [7] applied an analysis of highly redundant 

unstructured point clouds that represent the surfaces of objects to monitor the bending line of a 

television tower. Monserrat and Crosetto [8] proposed a procedure to measure land deformation using 

repeated terrestrial laser scanning (TLS) acquisitions and the least-squares surface-matching algorithm 

proposed by Gruen and Akca [9]. Pejic’ [10] presented a method for inspecting tunnel geometries that 

focused on the optimization of scan registrations, the georeferencing approach and the design of the 

survey control network. 

A tunnel’s internal cross section can be obtained from large quantities of laser scanning data of the 

tunnel, and precise outbreak and underbreak quantities can be calculated. Yoon et al. [11] developed a 
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prototype of a laser-based tunnel scanning system to extract the installations and the physically 

damaged parts of a tunnel liner using the geometric and radiometric features of the scanning data. 

Gikas [12] explored the potential of laser scanning technology to accurately track excavation and 

construction activities of highway tunnels. A tunnel cross section management system was developed 

based on terrestrial laser scanning to determine arbitrary cross sections [13]. 

Two methods are commonly used to extract the cross sections of a tunnel from TLS data [12]. The 

first method extracts the cross sections from a 3D model of the tunnel tube that is generated from TLS 

data using NURBS [14], which uses standard geometric models such as a cylinder [5] or a 3D mesh 

model [3], to approximate a geometric domain. However, the reconstruction of the entire 3D model of 

a tunnel may involve processing millions of laser points, which predictably leads to large computation 

costs. The approximation of the fitted model to the real tunnel also degrades the accuracy of the cross 

section estimation. The second method determines the cross section based only on a subset of the point 

cloud, which forms a thin, sliced, solid body. In this case, the vertical plane that defines the cross 

section is determined in terms of the central axis of the tunnel, and the cross section is developed using 

a poly-line string that results from projecting the point-cloud data in the sliced body onto the plane of 

the desired cross section [15]. As an extension of our previous work [16], this paper proposes an 

algorithm to extract cross sections that determines the cross-sectional points using a different strategy. 

First, the central axis of the subway tunnel is determined using a 2D projection of the tunnel point 

cloud and multiple model (e.g., straight line, transition curve and curve) fitting using a so-called 

statistical testing algorithm and the RANSAC (RANdom SAmple Consensus) algorithm. Because the 

extraction of the central axis by multiple model fitting may suffer from noise in the tunnel point data 

and bending of the tunnel, we propose a global extraction algorithm based on segment-wise fitting. 

Oude Elberink et al. [17] presented a similar strategy of rail track modeling that integrated piece-wise 

fitting by Markov Chain Monte Carlo (MCMC) sampling and global optimization using a Fourier 

series. In addition, an algorithm proposed by Han et al. [15] is employed to adjust the pseudo  

cross-sectional plane, whose direction is subject to the errors that are generated from the fitting 

processes and from the noise and the positioning errors of the laser scanner. The cross-sectional points 

are then produced by intersecting a radial rotating line about the central axis of the tunnel within a 

vertical plane with the tunnel points. Although they have a notably high spatial resolution (millimeter 

level), the terrestrial laser points remain discrete; thus, no laser point intersects with the radial, which 

implies that no cross-sectional point can be acquired. To address the spatial discontinuity of a 

scattered-point cloud, we propose an algorithm to compute the cross-sectional point in terms of quadric 

parametric surface fitting in the vicinity of the extraction position. Finally, because the standard shape 

of the subway tunnel of interest is a circle, the fitting of a circle is implemented using RANSAC to 

remove the irrelevant points and retain the real cross-sectional points so that the cross sections in the 

circular form are extracted. 

We begin by describing the algorithm used to extract the central axis of a tunnel in Section 2. 

The next section introduces the algorithm for the continuous extraction of cross sections based on the 

extracted central axis from the terrestrial point clouds. Section 4 discusses the test results, after which 

we offer conclusions and suggestions for further research in Section 5. 



Remote Sens. 2014, 6 860 

 

2. Extraction of the Central Axis of a Tunnel 

To extract so-called continuous (i.e., at any interval) cross sections from terrestrial point clouds, the 

central axis of the subway tunnel must be determined. The central axis can be used to determine the 

direction of a cross-sectional plane at any interval. Tunnels are generally tubular and can be simplified 

as narrow and relatively long 2D objects if they are projected onto horizontal or vertical planes. 

Many skeletonizing methods that are popular in the computer vision, medical visualization and feature 

representation fields are applicable for estimating the centerline of tubular objects [15,18–20]. 

Similar to the idea of the 2D projection, the 3D central axis of a tunnel is estimated in terms of the 

projections of the tunnel points on the XOY and the YOZ planes. 

2.1. Determination of the Central Axis of a Tunnel Based on 2D Projection 

2.1.1. Estimation of the Boundary Points 

The tunnel point clouds are projected onto the XOY plane, from which we extract the boundary 

points of both sides of the tunnel. An algorithm for boundary point extraction is proposed using a 

moving window. Figure 1 shows a circular window with a predefined radius that is centered at the 

point of interest P. All points within the window are considered the neighboring points of point P. 

The polar angles of the neighboring points are computed relative to point P (e.g., α1). We then 

calculate the differences between consecutive polar angles. If point P is a boundary point, the 

difference ∆αi + 1,i
 
 between boundary points Pi and Pi + 1 is much larger than the difference ∆αi,i − 1 

 
 

between boundary point Pi and interior point Pi − 1. Therefore, once the difference is greater than a 

predefined threshold, point P is labeled as a boundary point. 

Figure 1. Extraction of boundary points using a moving window. 

 

2.1.2. Fitting of the Bounding Lines 

The bounding lines of a tunnel usually contain segments of straight lines, curves and transition 

curves, which are parameterized as follows: 
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Straight line model:  

baYX   (1) 

Transition curve model:  

feYdYcYX  23  (2) 

Curve model:  

khYgYX  2  (3) 

where a and b are the parameters of a straight line; c, d, e, and f are the parameters of a transition curve; 

and g, h, and k are the parameters of a curve. 

The bounding line fitting process includes the estimation of multiple models. To ensure the 

robustness of the fitting, the RANSAC algorithm [21] is used to estimate the parameters of the three 

models. Instead of using as much data as possible to obtain an initial solution and attempting to 

eliminate the invalid data points, RANSAC uses as small an initial data set as is feasible and enlarges 

this set using consistent data when possible. The RANSAC paradigm contains three unspecified 

parameters: (1) the error tolerance, which is used to determine whether a point is compatible with the 

model; (2) the number of subsets to attempt; and (3) the threshold t, which is the number of compatible 

points and is used to define that the correct model has been found. The determination of these three 

parameters is discussed in the introduction to RANSAC [21]. 

A statistical testing algorithm is proposed to automatically detect the initial models from the 

extracted boundary points so the proper model is selected to fit each segment of the bounding line. 

The statistical testing is implemented using straight-line, transition-curve and curve models. 

The statistical testing process is implemented using a histogram, which illustrates the distribution of 

the discrete hypothesis model parameter sets that are computed during different iterations. The degree 

of convergence of a candidate parameter set is used as a criterion of the statistical testing. This 

criterion describes how the other sets converge to it and is calculated by dividing the number of 

converging sets by the total number of parameter sets. We construct vectors with two, four and three 

dimensions for each set of model parameters. The Euclidian distances between different vectors are 

computed to describe the deviation between the candidate parameter set and the other hypothesis 

model parameter sets. If the distance between a hypothesis set and the candidate set is smaller than the 

predefined threshold, the hypothesis set is considered the converging set of the candidate set, and the 

degree of convergence of the candidate set increases. In this method, the histogram of the candidate 

parameter sets is updated during each iteration using the newly calculated hypothesis parameter set. 

When the degree of convergence of a candidate parameter set reaches a predefined threshold, the 

candidate parameter set is detected as an initial model to fit the bounding line segment. If the degree of 

convergence fails to reach the threshold after a predefined number of iterations, we believe that there is 

no such model. 

To visualize the statistical results, we illustrate them as a histogram (Figure 2). The horizontal axis 

denotes the mean value of the model parameters, and the vertical axis represents the degree of 

convergence of each cell. A high degree of convergence for a parameter reflects a high probability of 

finding the initial model. 
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Figure 2. Histogram of hypothesis model parameters. 

 

After the initial model is detected, RANSAC is used to robustly estimate the optimized model 

parameters. Two, four, and three points are used to estimate the model parameters to fit a straight line, 

a transition curve and a curve, respectively. The criterion used to identify outliers is based on the 

deviations of the tested points from the fitted model. The inlier bounding points of a certain model are 

classified as a segment that is used in the following global optimization. The final optimal parameters 

are computed by the least-squares adjustment using the obtained inlier points. 

2.1.3. Fitting of the Central Axis 

After fitting the bounding lines, the boundary points are evenly resampled. To extract the central 

axis of the tunnel, the normal vector Vl of the left bounding curve at boundary point Pl is determined 

(Figure 3). A straight line orthogonal to the normal vector reaches the right bounding curve from Pl 

and generates point Pl'. Theoretically, the radial line from point Pl' that is orthogonal to Vl' reaches the 

left bounding curve at point Pl, so the extracted central-axis point is the midpoint of the line Pl Pl'. 

However, because the bounding curves are subject to errors that are generated from the fitting 

processes, the radial orthogonal to Vl' produces point Pl" instead of point Pl. Figure 3 shows that Ml' 

and Ml" are the midpoints of Pl Pl' and Pl' Pl", respectively. The extracted central-axis point is 

determined as Ml, which is the average of points Ml' and Ml". The same process is implemented from 

boundary point Pr on the right bounding curve to extract the point on the central axis as point Mr. 

Based on the extracted central-axis points, the presented strategy to fit a bounding line is used to 

generate the central axis. Because the extraction of the central axis is implemented on the XOY plane, 

the height of the central axis is determined as the average height of the tunnel points.  
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Figure 3. Determination of the central-axis point. 

 

2.2. Global Adjustment of the Central Axis Using Segment-Wise Fitting 

Because the extraction of the segments of the bounding lines and the central axis on the XOY plane 

using the three models may suffer from noise in the tunnel points, there may be deviations in the 

overlapping parts of adjacent fitted models (Figure 4). Therefore, we propose a global extraction 

algorithm to minimize the deviations. 

Figure 4. Segment-wise fitting. 

 

To maintain consistency between adjacent fitted models, the divided segments overlap each other 

somewhat, and a global least-squares adjustment is developed to implement the multiple model fitting 

of all of the segments together by minimizing the deviations in the overlapping parts of adjacent  

fitted models. Using Equations (1)–(3), the constraints are derived between a straight line, a transition 

curve and a curve, respectively, and are added to the adjustment model. For example, Equation (4) 

parameterizes the constraint between a straight line and a transition curve: 

0)( 23  jjjjii fYeYdYcbYa  (4) 

where ai and bi are the line parameters of segment i, cj, dj, ej, fj are the transition curve parameters of 

segment j, and Y is the Y coordinate of a point in the overlap region between segments i and j. 

Equation (4) describes the constraint that the X coordinates computed by any Y coordinate in the 

overlap region between segments i and j using the model parameters of segments i and j are 

theoretically equal. 
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The coefficient matrix of the observation and constraint equations of the global least-squares 

adjustment is derived in Equation (5): 
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which are derived from Equations (1)–(3) for segment i, m denotes the number of the points on 

segment i, and n = n1 + n2 + n3; 
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which are derived from Equation (5) for the overlap region between segment j and segment j + 1. 

The form of Cij depends on the models of the two overlapping segments. In the proposed global  

least-squares adjustment system, as a constraint equation, Equation (4) is weighted with a large value 
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(e.g., 10) instead of 1 as in an observation equation. Based on the coefficient matrix B, we calculate the 

optimized parameters of the bounding line segments by following the least-squares strategy. After the 

bounding lines are fitted, the method presented in Section 2.1 is implemented to extract the central-axis 

points, which we use to generate the globally optimized central axis using the proposed global  

least-squares adjustment system. 

3. Cross Section Extraction Based on Quadric Parametric Surface Fitting 

As introduced in Section 1, a widely used strategy for cross section extraction is to project the 

tunnel point subset that forms a sliced body onto the plane of the desired cross section. However, it is 

almost impossible for this method to find a cross-sectional point that is located exactly at an arbitrary 

vertical angle from the central axis. Although the cross section is orthogonal to the central axis, any 

cross-sectional point can be extracted by intersecting a straight line that orthogonally rotates about the 

central axis with the tunnel point cloud. Therefore, we propose an extraction strategy that uses this idea 

to compute an arbitrary cross-sectional point within a small subset of the large tunnel point cloud. 

To extract the cross-sectional points, the direction of the cross-sectional plane is first determined 

based on the central axis by assuming that the cross-sectional plane is orthogonal to the central axis. 

However, even when a fine extraction of the central axis is implemented, the direction of a pseudo 

cross-sectional plane is still subject to the errors from the fitting processes and the noise and 

measurement errors of the tunnel point cloud. Therefore, the algorithm proposed by Han et al. [15] is 

used to adjust the pseudo cross-sectional plane. 

3.1. Adjustment of the Pseudo Cross-Sectional Plane 

To adjust the cross-sectional plane, a point group Gp is extracted from between the two planes that 

are parallel to the pseudo cross-sectional plane l at a distance d (Figure 5). The pseudo cross-sectional 

plane l is defined as the plane that passes through Sn that is orthogonal to the central-axis fragment 

VkSn. The value of d is set to provide enough room to swing the plane l to adjust the final cross section. 

Figure 5. Adjustment of the pseudo cross-sectional plane [15]. (a) Plan view; 

(b) Perspective view. 

 

(a) (b) 
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As shown in Figure 5a, l1 and l2 are the bounding lines of point group Gp, which are estimated from 

the outer points using RANSAC. By moving points P1 and P2 on the lines, a final cross-sectional plane 

l' (shown as a red line) is adjusted as a vertical plane that is skewed by an angle θ from station Sn that 

traverses the two points P1 and P2, where the horizontal length of the line segment P1P2 is minimized. 

The horizontal length of line segment P1P2 is equivalent to the width of the final cross section at the 

station (Figure 5b). 

3.2. Continuous Estimation of the Cross-Sectional Point 

Figure 6 illustrates the process of cross-sectional point estimation. At one point on the central axis, 

a straight line that orthogonally rotates around the central axis within the cross-sectional plane 

intersects the tunnel points to produce the cross-sectional point. Theoretically, the radial can reach the 

tunnel at any angle so that the cross-sectional points are continuously extracted. However, although 

they have a notably high spatial resolution (millimeter level), the terrestrial laser points remain 

discrete; thus, the radial might not intersect a laser point, which implies that no cross-sectional point 

can be acquired. To solve this problem, we propose an algorithm to compute the cross-sectional point 

using quadric parametric surface fitting of the vicinity of the extraction position. 

Figure 6. Cross-sectional point estimation. 

 

3.2.1. Quadric Parametric Surface Model 

Interpolation is a method to construct new data points within a discrete set of known data points. 

Therefore, when no cross-sectional point can be directly acquired from the tunnel points, we use the 

interpolation method to compute the cross-sectional point as accurately as possible. In our strategy, the 

cross section is calculated within a small subset of the tunnel point cloud so that only laser points in the 

vicinity of the computed cross-sectional point (highlighted in red in Figure 6) are involved in the 

interpolation. We choose the quadric parametric surface model [22] to represent the tunnel surface in 

the area from which the cross-sectional point of interest is interpolated. 
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The form of a quadric parametric surface [22] is given by 

ji

j i

ij vuQvur 
 


2

0

2

0

),(  (9) 

where u and v are the parametric values of the projection of a laser point onto the local tangent plane, 

which is determined by the point subset of the tunnel point cloud in the vicinity of the computed  

cross-sectional point. Q is a 3 × 3 matrix that describes the parametric surface that minimizes the 

square sum of the Euclidean distances from the laser points in the vicinity of the computed  

cross-sectional point to the parametric surface. For the details of the determination of the parametric 

values u and v and the matrix Q, please refer to Yang and Lee [22]. 

Because our so-called continuous extraction of cross sections may need to interpolate a large 

number of cross-sectional points, we adopt an improved BaySAC [23] algorithm to improve the 

computational efficiency and the robustness of the quadric parametric surface fitting. 

3.2.2. Fitting Process Based on the Improved BaySAC Algorithm 

A well-regarded technique for robust model fitting of point clouds is the statistical framework of 

RANSAC (RANdom SAmple Consensus) [21], which tries many minimal random subsets and 

evaluates the fit of each subset’s model. However, the original RANSAC algorithm assumes 

constant prior probabilities for the data points and randomly chooses the initial data sets, which likely 

leads to more iterations and expensive computational costs when the hypothesis set is contaminated by 

many outliers.  

To improve the computational efficiency, this study employs a conditional sampling method based 

on BaySAC (Bayesian SAmpling Consensus) [23], which always selects the minimum number of data 

required with the highest inlier probabilities as a hypothesis set and thus reduces the number of 

iterations needed to find a good model. Instead of using specific characteristic information about a 

primitive, the improved BaySAC algorithm computes the prior probability of each data point using 

statistical testing of candidate model parameters. Moreover, the probability update is implemented 

using the simplified Bayes’ formula. Compared with RANSAC, the key properties of the improved 

BaySAC algorithm are to determine and update the prior probabilities of the data points. For details of 

the algorithm, please refer to Kang et al. [23]. 

After the quadric parametric surface parameters are determined, a cross-sectional point is 

interpolated by computing the intersection point of the fitted surface and the radial line along the 

extraction direction. Figure 7a shows the cross-sectional points that are extracted to represent the cross 

section. Several noisy points, such as those on wires and pipelines, are included in the set and should 

be eliminated. Because the standard shape of the subway tunnel of interest is a circle, circle fitting is 

implemented using RANSAC to remove the irrelevant points and to retain the real cross-sectional 

points; thus, the cross section is extracted (Figure 7b) in a circular form. 
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Figure 7. Extraction of the cross section. (a) Extracted cross-sectional points; (b) The real 

cross-sectional points. 

  

(a) (b) 

4. Experimental Section 

The proposed approach was tested on a real dataset (Figure 8), which was acquired using a  

RIEGL LMS VZ-400 laser scanner in a subway tunnel in Shanghai, China. Table 1 describes the point 

cloud dataset. 

Figure 8. The experimental dataset. 

 

Table 1. Description of the point cloud dataset. 

Laser Scanner Scan Angular Resolution n Range Accuracy 

RIEGL VZ-400 0.046 2,686,866 ±5 mm 

Note: n is the total number of TLS points in the dataset. 

4.1. Central Axis Fitting 

4.1.1. Fitting of the Central Axis Based on the 2D Projection 

As proposed in Section 2.1, the tunnel points of the VZ-400 dataset were projected onto the XOY 

plane as shown in Figure 9. The boundary points were extracted and are shown by the dark dots. 
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As presented in Section 2.1.2, the bounding lines of a tunnel may comprise segments of straight 

lines, curves and transition curves. The proposed statistical testing algorithm was implemented using 

the three models to automatically detect the corresponding initial model from the extracted boundary 

points. Figure 10 shows the peaks in the histograms for the straight lines, transition curves and curves 

of the extracted boundary points that were fit using the three models. 

Figure 9. 2D projection of the tunnel points onto the XOY plane. 

 

Figure 10. Statistical test results of the optimized BaySAC algorithm. (a) Straight line; 

(b) Transition curve; (c) Curve.  

  

(a) (b) 

 

(c) 

Based on the detected initial model (e.g., the transition curve), we fit the bounding lines using 

RANSAC (Figure 11a). The boundary points were evenly resampled in terms of the fitted model 
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parameters. The method presented in Section 2.1 was implemented using these fitted parameters to 

extract the central-axis points (Figure 11b). Figure 11c shows a 3D view of the central axis that was 

generated from the central-axis points. 

Figure 11. Fitting of the tunnel axis (the transition curve). (a) Fitted bounding lines;  

(b) Central-axis extraction; (c) Extracted 3D central axis. 

  

(a) (b) 

 

(c) 

Figure 12. Extracted central axis. 
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As shown in Figure 12, the central axis fitted from the tunnel points consists of three segments. The 

yellow box on the left highlights the overlap between the curve and the transition curve, while the box 

on the right shows the overlap between the transition curve and the straight line. To test the fitting 

accuracy, we set 24 Y coordinates along the central axis within the overlap zones highlighted in the 

two yellow boxes. Their corresponding points on the two adjacent segments were computed. The 

deviations between the corresponding points were then calculated and are shown in Table 2. Large 

deviations with an RMSE of 26 mm (the zoom-in views) are present within the overlap zones between 

the segments due to the noise in the tunnel point dataset. 

Table 2. Comparison of the fitting accuracies. 

ID 
Deviations after Global 

Extraction (m) 

Deviations before Global 

Extraction (m) 
ID 

Deviations after Global 

Extraction (m) 

Deviations before Global 

Extraction (m) 

1 0.005 0.035 13 0.001 0.056 

2 −0.003 −0.026 14 0.004 0.039 

3 0.002 0.019 15 −0.005 0.022 

4 0.003 0.016 16 0.003 0.047 

5 −0.005 0.002 17 0.001 −0.032 

6 0.001 0.001 18 0.004 0.03 

7 −0.003 −0.007 19 0.001 0.038 

8 0.002 0.003 20 −0.007 −0.015 

9 −0.001 0.008 21 −0.001 0.035 

10 −0.003 0.004 22 0.003 0.002 

11 0.0013 0.01 23 0.001 −0.025 

12 −0.002 −0.035 24 0.002 0.015 

RMSE 0.002 0.026 

4.1.2. Global Extraction of the Central Axis Using Segment-Wise Fitting 

To optimize the extraction result, the global least squares adjustment proposed in Section 2.2 was 

implemented to minimize the deviations in the overlap zones between the adjacent fitted models. 

Figure 13 shows that the differences in Figure 12 were remarkably reduced, and a globally optimized 

central axis was extracted. 

Figure 13. Central-axis fitting with global least squares adjustment. 
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To test the fitting accuracy, we set 24 Y coordinates along the central axis within the overlap  

zones highlighted in the two yellow boxes. Their corresponding points on the two adjacent segments 

were computed. The deviations between the corresponding points were then calculated and are  

shown in Table 2. The RMSE of the deviations was reduced from 26 mm to 2 mm by the global 

extraction process. 

4.2. Cross Section Extraction Based on Quadric Parametric Surface Fitting 

As presented in Section 2.2, the proposed algorithm for the continuous extraction of cross sections 

must interpolate a large number of cross-sectional points. The interpolation of a cross-sectional point 

involves the fitting of a quadric parametric surface. Therefore, we implemented the improved BaySAC 

algorithm described in Section 3.2.2 to improve the computational efficiency and the robustness of the 

quadric parametric surface fitting. In this section, the performances of the quadric parametric surface 

fitting using the optimized BaySAC algorithm and the RANSAC framework were compared in terms 

of their computational efficiencies and fitting accuracies. 

4.2.1. Computational Efficiency 

Because hypothesis testing is an iterative process, the computational efficiencies of the proposed 

strategies were evaluated in terms of the number of iterations. The iterations of RANSAC are shown as 

circular icons in Figure 14. The horizontal and vertical axes in Figure 14 represent the numbers of 

fitted laser point subsets and the number of iterations, respectively. For example, the green circle 

(3,020, 97) indicates that 97 iterations were required to fit a quadric parametric surface to a subset of 

3,020 points using RANSAC. As described in Section 3.2.2, the iterations of BaySAC-ST (Statistical 

Testing) include two parts: the random part and BaySAC. These parts are depicted using square and 

diamond icons, respectively. The random part consists of the iterations that are required to determine 

the prior probability using statistical testing of the candidate model parameters sets.  

Figure 14. Computational efficiency. 

 

As shown in Figure 14, when the number of laser points in the fitted subsets increases, the number 

of iterations of RANSAC also increases. When using BaySAC-ST, it generally takes fewer than 50 

iterations to determine the prior probability using statistical testing of the candidate model parameters 
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sets. As presented in Section 2, after determining the prior probability of every data point, the 

hypothesis testing strategy changes from RANSAC to BaySAC. Figure 14 shows a remarkable 

decrease in the number of iterations compared to RANSAC. For example, the fitting of a subset of 

5,010 points using RANSAC requires 267 iterations, whereas the BaySAC requires only 103 iterations. 

4.2.2. Fitting Accuracy 

Figure 15 illustrates the fitting results of the RANSAC and the optimized BaySAC algorithms on a 

subset of 1,298 tunnel points that were extracted along the vertical angle (such as the 330° direction) of 

a cross section. To visualize the difference in the fitting accuracy, Figure 15 shows the front (left) and 

side (middle) views of the fitting results, where the diamond-shaped points denote the original laser 

points, and the grey curves represent the fitted primitives (side view). The right section of Figure 15a 

(a zoomed-in view of the region highlighted by a rectangle in the middle part) shows that the fitted 

surface acquired by RANSAC fits the lower point segment well; however, it clearly deviates from  

the upper segment. The right section of Figure 15b illustrates a more optimized fit; the inliers are 

evenly distributed around the fitted surface, which was achieved using the proposed optimized 

BaySAC algorithm. 

Figure 15. Fitting results of the laser point subset of a tunnel. (a) RANSAC;  

(b) Optimized BaySAC. 

   

(a) 

   

(b) 

To further test the fitting accuracy, we selected ten inliers as check points. The point-to-surface 

distances were then calculated and are shown in Table 3. The maximum, minimum and average  

point-to-surface distances from RANSAC are 2.5 mm, 0.8 mm and 1.6 mm, respectively, whereas 

those from BaySAC are 1.5 mm, 0.2 mm and 0.9 mm. The results indicate that the optimized BaySAC 

algorithm achieved a higher overall fitting accuracy. 
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Table 3. Accuracies of quadric parametric surface fitting. 

Point 
Point-to-Surface Distance (m) 

RANSAC Optimized BaySAC 

1 0.0021 0.0009 

2 0.0020 0.0009 

3 0.0008 0.0002 

4 0.0012 0.0005 

5 0.0016 0.0007 

6 0.0025 0.0015 

7 0.0019 0.0010 

8 0.0010 0.0007 

9 0.0020 0.0015 

10 0.0014 0.0009 

As described in Section 3.2, we proposed an algorithm to interpolate cross-sectional points using 

quadric parametric surface fitting when no cross-sectional point can be directly acquired from the  

laser points. To evaluate the accuracy of the interpolation, five laser points were chosen, and their 

interpolated coordinates were computed, as shown in Table 4. The mean deviation of the interpolated 

coordinates from the measured points is only 0.8 mm. 

Table 4. Accuracy of the cross-sectional point interpolation. 

ID 
Measured Coordinates (m) Interpolated Coordinates (m) 

Deviation (m) 
X Y Z X Y Z 

1 −3.171 15.578 0.051 −3.1705 15.578 0.0510 0.0005 

2 −3.182 15.544 0.013 −3.1821 15.544 0.1330 0.0001 

3 −2.842 15.680 1.918 −2.8409 15.680 1.9173 0.0013 

4 −2.864 15.759 1.875 −2.8646 15.759 1.8754 0.0007 

5 −0.596 15.576 −1.573 0.5965 15.576 −1.5744 0.0015 

Mean deviation (m) 0.0008 

4.2.3. Continuous Extraction of the Cross Sections 

As mentioned in Section 3, our proposed algorithm can theoretically extract cross sections at any 

interval from the terrestrial point clouds. We implemented the cross section extraction experiments at a 

one-meter interval. The average computational cost of the cross section extraction was less than 

3 s/section. The candidate cross-sectional points were extracted using the straight line that was 

orthogonal to the central axis of the tunnel within a vertical plane at a one-degree interval (Figure 16a). 

Noise points from wires and pipelines are clearly present in the data. As proposed in Section 3, circle 

fitting was implemented using RANSAC to remove the irrelevant points (Figure 16b). An overview of 

all extracted cross sections is shown in Figure 16c. 

To evaluate the accuracy of the cross section fitting, 100 cross sections were fitted from the VZ-400 

data. Because the standard shape of the tunnel cross section of interest is a circle, the radii of the fitted 

circular cross sections were compared with the design radius of 2.75 m. Figure 17 illustrates the 

differences between the cross sections and the design, which have a standard deviation of 6 mm. 
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Figure 16. Cross section extraction. (a) Interpolated candidate cross-sectional points;  

(b) Real cross-sectional points extracted by RANSAC; (c) Overview of all extracted  

cross sections. 

  

(a) (b) 

 

(c) 

Figure 17. Deviations between the fitted radii and the designed radius. 

 

Moreover, the chord length between every two cross-sectional points was calculated (e.g., Figure 18). 

We regarded the chord lengths of two different cross sections as corresponding chord lengths if the 

chord lengths were computed using the cross-sectional points selected in different cross sections with 

the same vertical angles. The corresponding chord lengths were then compared. Figure 19 shows the 

deviations between the corresponding chord lengths. The average lengths of chord I and II are 3.6487 m 

and 5.0951 m, respectively, and the standard deviations are 1.4 mm and 1 mm. 
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Figure 18. Chords used for comparison. (a) Chord I; (b) Chord II. 

  

(a) (b) 

Figure 19. Comparison of corresponding chord lengths. (a) Chord I; (b) Chord II. 

 

(a) 

 

(b) 
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5. Conclusions 

In this paper, we proposed an efficient algorithm to continuously extract tunnel cross sections.  

First, the central axis of a subway tunnel was extracted using multiple model fitting based on  

2D projections of a tunnel point cloud. This axis was optimized using a global extraction strategy 

based on segment-wise fitting. After the central axis was determined, the cross section was extracted 

by intersecting a radial line that orthogonally rotates about the central axis of the tunnel point cloud. 

An interpolation algorithm based on quadric parametric surface fitting using an improved BaySAC 

(Bayesian SAmpling Consensus) algorithm was proposed to compute a cross-sectional point when no 

cross-sectional point could be directly acquired from the tunnel points along the direction of interest. 

Because the standard shape of the tunnel cross section of interest is a circle, circle fitting was 

implemented using RANSAC (RANdom SAmple Consensus) to filter the noise. 

The proposed algorithm was implemented using a terrestrial laser scanning dataset that was 

acquired in a subway tunnel. The results of the central-axis extraction show that the proposed 

algorithm of global extraction based on segment-wise fitting achieved an accuracy of 2 mm, while the 

accuracy acquired by the fitting based on a single model is 26 mm. The results of the cross section 

extraction process show that the interpolation of the cross-axial points based on the improved BaySAC 

algorithm produces a mean deviation of 0.9 mm from the measured points. The millimeter-level 

accuracies (6 mm, 1.4 mm and 1 mm) of the cross section extraction were demonstrated respectively 

by comparing the fitted radii with the designed radius of the cross section in the subway and 

comparing corresponding chord lengths in different cross sections. Moreover, the average 

computational cost of the cross section extraction method was less than 3 s/section, which 

demonstrates its high efficiency. 

Because variations in the scanning parameters, such as point density, range to the scanner and 

incidence angle, and can affect the quality of the results, their effects and the optimization of the 

scanning parameters will be investigated in subsequent studies. Moreover, the deformation tendency of 

a tunnel can be reflected by the variance of its radius among the fitted circular cross sections and the 

variance between corresponding chord lengths in different cross sections. Future work will also focus 

on optimizing the proposed algorithm to detect possible deformation based on so-called continuously 

extracted cross sections. 
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