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Abstract: In the Congo Basin, the elevated vulnerability of food security and the water 

supply implies that sustainable development strategies must incorporate the effects of 

climate change on hydrological regimes. However, the lack of observational hydro-climatic 

data over the past decades strongly limits the number of studies investigating the effects of 

climate change in the Congo Basin. We present the largest altimetry-based dataset of water 

levels ever constituted over the entire Congo Basin. This dataset of water levels illuminates 

the hydrological regimes of various tributaries of the Congo River. A total of 140 water 

level time series are extracted using ENVISAT altimetry over the period of 2003 to 2009.  

To improve the understanding of the physical phenomena dominating the region, we 

perform a K-means cluster analysis of the altimeter-derived river level height variations to 

identify groups of hydrologically similar catchments. This analysis reveals nine distinct 

hydrological regions. The proposed regionalization scheme is validated and therefore 

considered reliable for estimating monthly water level variations in the Congo Basin. 

This result confirms the potential of satellite altimetry in monitoring spatio-temporal water 
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level variations as a promising and unprecedented means for improved representation of 

the hydrologic characteristics in large ungauged river basins. 

Keywords: satellite altimetry; Congo Basin; regional hydrology; K-means 

 

1. Introduction  

Despite the global importance of the Congo Basin, which is the second largest river basin in the 

world, only a small number of studies to date have focused on the potential impact of climate change 

on the hydro-climatic variability over the Congo Basin using in situ data and/or hydrological models.  

The limited understanding of climate dynamics in the Congo Basin is in part due to the lack of the  

in situ monitoring of climate variables in that area. Climate and hydrological station networks are 

sparse and poorly maintained; the small number of networks that were implemented during the 

colonial period has shrunk considerably [1–3]. The Congo Basin has experienced a turbulent history 

since pre-colonial times [4,5]. The resultant political instability, social unrest, and poor infrastructure 

may partly explain the lack of scientific attention [6]. Another great obstacle is the substantial difficulty 

of performing fieldwork in the Congo swamps. This large gap in understanding hydro-climate processes 

in this region increases the uncertainties in the evaluation of risks associated with decision making for 

major water resource development plans [7]. Conversely, recent improvements in remote sensing 

technology provide more observations than ever before that can advance hydrological studies [8,9], 

particularly in tropical regions. Given the vast size of the Congo Basin, remote sensing observations 

provide the only viable approach to understanding the spatial and temporal variability of the basin’s  

hydro-climatic patterns. Several studies have therefore begun to address this topic by using remote sensing 

observations with a particular focus on hydrology. The following paragraph summarizes the results 

obtained by previous investigations.  

Rosenqvist and Birkett [10] showed that temporal changes in river water levels in the Congo Basin 

can be derived from radar imagery. Eltahir et al. [11] inferred an anti-correlation in runoff anomalies 

between the Amazon Basin and the Congo Basin using two in situ time series of river flow from 

records at Manaus and Kinshasa, respectively, coupled with satellite-derived estimates of rainfall from 

the Tropical Rainfall Measuring Mission (TRMM). These authors argued for a climatic “see-saw 

oscillation” from one side of the Atlantic to the other. Crowley et al. [12] estimated terrestrial water 

storage within the Congo Basin from 2002 to 2006 from Gravity Recovery and Climate Experiment 

(GRACE) data. This estimate showed significant seasonal and long-term trends, with a total loss of 

approximately 280 km3 of water over the study period. Jung et al. [13] evaluated the potential of  

space-borne radar for monitoring the large, subcontinental-scale river basins of the Amazon and Congo 

Rivers. The authors documented temporal changes in water surface elevations over time to reveal 

strikingly different flood behaviors in the Amazon and the largely undocumented Congo systems.  

The Congo system displayed less connectivity between the main and floodplain channels than did the 

Amazon system and exhibited more subtle changes during rising and falling limbs of the seasonal 

hydrograph. Lee et al. [14] used remote sensing measurements (i.e., GRACE, satellite radar altimetry, 

GPCP, JERS-1, SRTM, and MODIS) to estimate the amount of water entering and exiting Congo 
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wetlands and to determine the source of that water. O’Loughlin et al. [15] produced the first detailed 

hydraulic characterization of the middle reach of the Congo River utilizing mostly remotely sensed 

datasets (Landsat imagery, ICESat).  

Our paper contributes to this body of work by providing an investigation of the ENVISAT altimetry 

data to analyze contemporary river dynamics in the Congo Basin over the period 2003–2009, for 

which in situ level measurements are insufficient or non-existent. The paper is organized as follows. 

Section 2 describes the main characteristics of the study area. Section 3 presents the different datasets 

and the methods used in the study. Section 4 presents the resulting classification of the river water 

level signatures. Section 5 validates the regionalization and discusses the seasonal dynamics of river 

water levels. Finally, Section 6 discusses several issues concerning the applicability of the altimeter-

based techniques for the Congo Basin. 

2. Study Area: Congo Basin 

2.1. Location 

The Congo River Basin is a transboundary basin located in western equatorial Africa that extends 

over 3.7 million km2 (Figures 1 and 2). This shallow depression along the equator in the heart of 

Africa, named “Cuvette Central Caongolaise” [16], is bordered by higher areas (Figure 1): the Chaillu 

Mountains (900 m) and the Batéké Plateau (600–800 m) lie to the west and southwest. 

Figure 1. Elevation map based on the HydroSHEDS (Hydrological data and maps based 

on SHuttle Elevation Derivatives at multiple Scales). 
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Figure 2. The principal tributaries and lakes in the Congo Basin. 

 

North of the basin are the Adamawa Plateau (1500 m) and the flanks of the Central African Rift  

(600–700 m), the boundary between the Congo and the Chad Basins, and the Bongo Massif (1300 m 

and higher). To the east, the most important relief is that of the volcanic foothills of the East African 

Rift, which reach altitudes of 2000–3000 m. The Katanga and Lunda Plateaus (1000–1500 m) bound 

the southern part of this vast watershed. 

2.2. Hydrological System 

The Congo Basin features a complex hydrological system composed of the Congo River, its many 

tributaries, and extensive swamps. The sources of the Congo River are on the highlands of the East 

African Rift in Lake Tanganyika, which feeds the Lukuga and Lualaba Rivers; these become the 

Congo River at Kisangani, below Boyoma Falls (Figure 2). The other two principal tributaries of the 

Congo are the Kasai River from the south and the Ubangi River from the north.  

The Ubangi River is formed by the confluence of the Uele and Bomu rivers. Other main tributaries 

of the Ubangi River are the Bori River, the Kotto River and the Ouake River. The major tributaries of 

the Kasai River are the Kwango River and the Lulua River. They join to form the Kasai River from the 

south and drain a large part of the southern and southwestern Democratic Republic of Congo and 

northern Angola. The Fimi/Lukenie system runs parallel to and just north of the main Kasai River.  



Remote Sens. 2014, 6 9344 

 

Water draining from Lake Mai-Ndombe empties south through the Fimi River into the Kasai River.  

The Sangha River is a second-order tributary of the Congo River.  

2.3. Climate 

The Congo River receives year-round rainfall from the migration of the Inter-Tropical Convergence 

Zone (ITCZ). The northern part of the basin experiences a minor rainy season from September to 

November and a major one from the first half of March to early May; in the south, the minor rainy 

season lasts from February to May, and the major rainy season occurs between September and 

December. The source regions receive an average annual rainfall of 1200 mm. The middle and the 

downstream parts of the watershed receive 1800–2500 mm of rainfall per year and experience almost 

no dry season [16–18].  

3. Primary Datasets and Methods 

3.1. Altimetry and Virtual Station Data 

The European Space Agency launched the ENVIronmental SATellite (ENVISAT) in March 2002 

as part of its Earth Observation Program. This mission concluded in April 2012. ENVISAT carried ten 

instruments [19], including a nadir radar altimeter (RA-2 or Advanced Radar Altimeter). The ground 

track of the nominal ENVISAT orbit over the Congo Basin is shown in Figure 3. At all points where a 

satellite track intersects a water body, or “virtual stations”, we extracted a water level time series, 

which allowed us to measure the successive water levels at each pass of the satellite over the large 

rivers channels, smaller tributaries and wetlands within sub-basins of the Congo Basin. The raw 

ENVISAT data are freely distributed by the Center for Topographic studies of the Ocean and 

Hydrosphere (CTOH, [20]) in the standardized format of along-track Geophysical Data Records 

(GDRs). These data include four estimates of the distance between the satellite antenna and the 

ground, or the range. These four ranges are obtained by processing the radar echo with a dedicated 

algorithm called a retracker. Although none of the four retrackers had been tuned for echoes from river 

surfaces, Frappart et al. [21] and Santos da Silva et al. [22] showed that the ice-1 algorithm [23] 

performed well over rivers. Therefore, in this study, we used the ice-1 ranges when processing the raw 

ENVISAT data to compute water level time series at each virtual station. Our corrections are of two 

types: propagation corrections and geophysical corrections. The geophysical corrections are designed 

to remove instantaneous crustal movements. We applied corrections for solid earth and polar tides. 

Propagation corrections are designed to correct for the propagation of the electromagnetic wave as the 

radar travels through an ionized medium, the ionosphere, and a dense medium, the troposphere. We 

applied the corrections derived from global models as provided in the GDRs, in particular the 

tropospheric corrections derived from the European Centre for Medium-Range Weather Forecasts 

(ECMWF) meteorological model. We obtained the water stage time series between 2003 and 2009 

(complete years) at 140 virtual stations (Figure 3) using the Virtual ALtimetry Station Tool 

(VALS) [24] for the ENVISAT tracks crossing the Congo Basin.  
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Figure 3. Location of ENVISAT tracks over the Congo Basin. Points represent the  

140 virtual stations, with the 99 selected stations shown in black. 

 

Details regarding the procedure used to process the data using VALS can be found in  

Santos da Silva et al. [22]. In this study, the water level data are referenced to the EGM2008 geoid  

model [25]. The water level time series at every virtual station passed a quality control test for gaps 

and/or shifts in the data. All time series with gaps greater than 3 consecutive months were deleted.  

All time series with a visually detectable spurious strong shift were also deleted. For the remaining 

time series, outliers were identified using Rosner’s test [26] and removed. When small gaps  

(≤3 consecutive months) were observed, we reintroduced missing data by linearly interpolating the 

time series. Only 99 time series from the initial dataset of the 140 river water level series (RWL) 

satisfied these requirements (Figure 3). In this study, we use water level data rather than river discharge 

data. Because direct measurements of discharge in river channels can be time-consuming and costly, 

flow is often estimated indirectly by the rating curve method [27]. According to this technique, 

measurements of a river stage are converted to river discharge by a function (rating curve), which is 

preliminarily estimated by using a set of stage and flow measurements. Hence, uncertainties in 

measurements and the rating curve method increase the final uncertainty. Using the river level data is 

thus more straightforward in this region because we lack the data needed to calculate the rating curve 

at each virtual station. Moreover, this study uses water levels rather than discharge because, unlike 

in situ data, altimetry-derived stages are related to a common geoidal reference; the classification 

process used and described hereafter allows us to separate and analyze the section morphology effect 

while also not increasing the corresponding uncertainties by estimating discharge from stages. 
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3.2. Brazzaville Gauging Station 

The time series of monthly water levels at Brazzaville (Figure 2. 15.3°E and 4.3°S) over the period 

2003–2009 is selected from the Environmental Research Observatory HYBAM [28] Station: 

50800000 Rio Congo at Congo Beach Brazzaville, covering the period from 1990 to the latest 

available year). This time series is used to evaluate our classification method. The same quality control 

process applied to the virtual stations was applied to this time series.  

3.3. Lake Water Level 

The monthly water level time series of Lake Mweru (Figure 2, 29.8°E and 8.7°S) and Lake 

Tanganyika (Figure 2, 29.5°E and 6.5°S) are available through Hydroweb [29]. Hydroweb is 

developed by LEGOS (Laboratoire d'Etudes en Géophysique Océanographie Spatiales) in France and 

provides water level time series of large rivers, approximately 150 lakes and reservoirs, and wetlands 

around the world using the merged data from the Topex/Poseidon, Jason-1, Jason-2, ENVISAT, 

European remote sensing satellite (ERS) and Geosat Follow-On (GFO) satellite missions. The 

processing procedures of Hydroweb are described in Crétaux et al. [30]. The Hydroweb lake water 

levels are monthly values obtained by merging measurements from different tracks of different 

altimeter satellites overflying the same lake in the same month [30]. These time series will be used to 

evaluate our classification method. 

3.4. K-Means Clustering 

The K-means is a common algorithm for classifying objects into K clusters, with K being a positive 

integer number. The classification is performed by minimizing the sum of squares of distances 

between data and the corresponding cluster centroid. Thus, the sample is assigned to a cluster based on 

minimizing, in its simplest form, the Euclidean distance between the vector of its variables and the 

means of the variables within a cluster. The K-means algorithm proceeds by updating the mean and 

grouping the data again. This procedure continues until all samples no longer change clusters. Given a 

dataset, a desired number of clusters K, and a set of K initial starting points, the K-means clustering 

algorithm finds the desired number of distinct clusters and their centroids. The K-means algorithm is 

described in more detail by Hartigan [31] and Hartigan and Wong [32]. In hydrology, the K-means 

algorithm and its variants have been used primarily in the regionalization of watersheds [33–37]. In 

this study, K-means analysis is performed for predefined cluster numbers varying from 5 to 15, where 

15 is the maximum number of groups that maintains sufficient sample sizes in each group. To choose 

the initial cluster centroid positions, we select K uniform points at random from the range of the 

normalized parameters. The chosen parameter vectors are elevation data based on the HydroSHEDS 

DEM data at 30 arc-second resolution [38], river water level anomaly (RWLA) amplitude, dates of 

low and high stages and interannual correlation structure (lag-1), representing the dynamic component 

of the process. For example, if the autocorrelation in a time series at lag-1 is high (>0.6) the values are 

highly correlated with the value in the previous month. We run 10,000 replicates from randomly 

chosen starting parameter vectors; all runs converge to the same solution. The optimal number of 

clusters to retain is determined with the aid of the Davies–Bouldin index, a cluster validity measure 
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that is a function of the ratio of the sum of within-cluster dispersion to between-cluster separation [39]. 

We calculate the separation measure for numbers of clusters ranging from 5 to 15. We filter our results 

according to certain specific criteria, such as a homogeneous distribution of observations within each 

cluster and no single-member clusters. 

4. Results of the RWLA K-Means Clustering 

The first step of the proposed approach is to cluster the 99 time series of altimeter-derived RWLA 

to identify groups with similar characteristics, defined by a conservative set of morphometric and 

hydrologic parameters. This study is developed for the RWLA is hereafter defined as the difference 

between the water level value and the temporal mean of the time series. Finally, according to these 

requirements presented in Section 3.4, the RWLA dataset is divided into 9 clusters exhibiting similar 

features. The optimal cluster locations are shown in Figure 4, and a topology map of RWLA signature 

vectors is shown in Figure 5. The topology highlights the variation of the RWLA features along the 

different classes, characterizing the behavior of the input variables and their interrelations. The RWLA 

time series composing each cluster are shown in Figure 6.  

Figure 4. Optimal locations of the 9 clusters over the Congo Basin. Each circle represents 

the location of a virtual station and is color-coded to indicate its affiliation to a particular 

cluster. Light-gray circles with black crosses inside represent the “Outliers” cluster. These 

data are not used in the K-means clustering. 
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Figure 5. Optimal cluster topology of RWLA signature vectors. 

 

Figure 6. Left panel: The nine groups found by using K-means time series clustering in 

the 99 RWLA time series (black lines). The number of RWLA time series in each cluster is 

presented in parentheses. Right panel: The bold line represents the mean of the RWLA for 

each cluster, and the envelope (gray) shows the 5% and 95% quartile of the mean. 
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Cluster “Upper Uele”, in the extreme northeast of the Congo Basin, contains 9 RWLA time series. 

Cluster “Lower Uele” contains the downstream part of the Uele River and its confluence with the 

Bomu River; the cluster includes 13 RWLA time series. Cluster “Ubangi” is composed of 10 RWLA 

time series. Cluster “Central Congo” contains 5 time series located along the Congo River after its 

confluence with the Ubangi River and prior to its confluence with the Kasai River. Cluster “Central 

Lualaba” includes 3 RWLA time series. Cluster “Lower Lualaba” is formed by 7 RWLA time series, 

4 of which are located in the eastern part of the basin along the Lualaba River between the confluences 

with the Ulindi River and the Lomami River. The remaining 3 times series of this cluster are located 

along the Kasai River. For this cluster, we observe a large dispersion of the lag-1 coefficient, most 

likely because the RWLA time series are not located on the same rivers and therefore have different 

temporal correlation structures. Cluster “Cuvette Centrale” contains 31 RWLA time series. This cluster 

includes RWLA time series located in three regions: on the main stream of the Congo River between 

the confluences of the Lomami River and the Ubangi River, along the Ruki and Tshuapa Rivers, and 

along the Fimi and Lukenie Rivers. The 16 RWLA time series that compose Cluster “Kasai” are 

located in the meridional part of the Congo Basin. Cluster “Outliers” contains 4 RWLA time series 

spread throughout the basin. From the comparison shown in Figure 6, we can conclude that there is no 

good consistency between the time series in this cluster and we therefore removed it from 

consideration in the remainder of the study. 

5. Validation of the RWLA Regionalization 

Mahé [40] defined four great climatic zones over the Congo Basin: the North (Ubangi River Basin), 

where the influence of the North African continental air mass is prominent; the South (Kasai River 

Basin), which is influenced by South African air masses; the eastern and south-eastern parts of the 

basin (Lualaba River Upper Basin), which are influenced by the humid Indian Ocean air masses; and 

the Center-West, where the climate is controlled by the Atlantic Ocean. The seasonal partition of 

rainfall is bimodal along the equator and becomes unimodal farther north and south. We should 

therefore typically observe two-peak hydrographs (bimodal) for rivers near the equator and a gradual 

transformation into one-peak hydrographs (unimodal) farther north and south of the equator. We use 

this hypothesis to validate our RWLA regionalization. Figure 7 shows the hydrographs of monthly 

mean RWLA from 2003 to 2009 for each cluster. For each of the clusters, we verify that their time 

series show the same seasonal dynamics. 

5.1. The North-Ubangi River Basin  

Cluster “Upper Uele”: We observe a unimodal distribution of the RWLA in all years except 2009. 

This cluster is characterized by a high water level from September to November and a low water level 

from February to March. The transition period, May to June, is very short. The years 2004, 2005, 2006 

and 2009 were particularly dry (average RWLA < 0.5 m), whereas in 2003, the RWLA was greater 

than 1 m for 4 months (August through November). The seasonal variability contributed between 1 to 

1.8 m over this period. 
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Figure 7. Hydrograph of the RWLA mean for each cluster. 

 

Cluster “Lower Uele”: The distribution of RWLA is unimodal, with low water levels from March 

to April and high water levels from September to October. These dynamics are comparable to the 

monthly maxima and minima recorded by the historical river gauge at Bondo in 1956, located on the Uele 

River (Rosenqvist and Birkett [10], in Table 2). The seasonal amplitude is approximately 3 m over our 

study period. 

Cluster “Ubangi”: The RWLA time series of this cluster are relatively homogeneous from 2003 to 

2009. The distribution is unimodal. The dry season occurs from December through March (4 months), 

followed by rising water in May and a high water level in October. From November to January  

(3 months), we observe a rapid decrease in water level. These dynamics are similar to the monthly 

maxima and minima recorded by the historical river gauge at Bangui over 1890–1955, located on the 

Ubangi River ([10], in Table 2). This cluster has the largest seasonal variability in terms of RWLA, 

approximately 4.1 m over our study period. 

5.2. The Southeast–Central and Upper Basins of the Lualaba River 

Cluster “Central Lualaba”: The RWLA in this cluster shows marked variability from one year to 

another. The distribution of the RWLA is unimodal, with high water levels from April to May and low 

water levels in October. These dynamics are consistent with the changes in water level recorded by the 

historical river gauge at Kindu over 1912–1955, located on the Lualaba River (Table 2 in Rosenqvist 

and Birkett 2002 [10]). We can observe 2 different periods in RWLA: (1) the seasonal variability from 

2003 to 2006 shows well-marked minima and maxima but slight amplitude variations; (2) the seasonal 

variability over 2007–2009 shows well-marked minima and maxima and very large amplitude 

variations. In 2007, the extreme anomaly (2.2 m) was, on average, 4 times greater than the minimum 

values during the first period (~0.5 m). We observe evidence of completely different behavior of the 

RWLA in the year 2006. The temporal structure of low and high water levels is retained, but all the 
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values are either near 0 m or negative, except in December. During the 3 months from October to 

December, we observe an increase in water level by more than 2.2 m. This extreme RWLA variability 

in 2006 and 2007 can be explained by hydro-climatic changes occurring in the East African Rift 

region. This cluster is located downstream on the Lualaba River (elevation ~500 m), which is fed by 

Lake Tanganyika and Lake Mweru. The extreme water levels are most likely related to the 2005 

severe drought reported in Equatorial East Africa [41] and to the positive strong Indian Ocean Dipole 

(IOD) in 2006. Similar behavior has been noted for other continental water cycle parameters. For 

example, Becker et al. [42] confirmed that precipitation and terrestrial water storage in the East 

African great lakes region have a common mode of variability, with a minimum in late 2005 and a 

sharp rise in 2006–2007. The authors showed that this event was due to forcing by the 2006 IOD on 

East African rainfall. As expected, we observe asymmetry in RWLA seasonal variability between the 

northern and the southern regions due to their locations on both sides of the equator. A comparison 

between the RWLA mean time series from the “Central Lualaba” cluster and the water level (WL) 

time series of Lake Mweru and Lake Tanganyika, computed from the T/P, Jason-1, Jason-2, 

ENVISAT, ERS and GFO satellite missions and provided by Hydroweb is presented in Figure 8a. The 

Luvua River exits Lake Mweru and flows northwest, and the Lukuga River drains Lake Tanganyika. 

These 2 rivers join the cluster on the Lualaba River.  

Figure 8. (a) Comparison of Cluster 4 RWLA time series with Lake Tanganyika and Lake 

Mweru Lake water level time series obtained from Hydroweb over 2003–2009. The time 

series are normalized to place them on the same scale; (b) Comparison of Cluster 7.a RWLA 

time series with RWLA at Brazzaville gauging station obtained from ORE-HYBAM  

over 2003–2009. 
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The RWLA seasonal variability from the cluster agrees well with the WL seasonal variability of the 

two lakes. We observe a lagged correlation coefficient of 0.9 between the cluster RWLA and Lake 

Mweru WL with a delay of 1–2 months for the Lake Mweru WL. Further work concerning the 

hydrology of this region is necessary to explain the 1–2 month delay observed between the cluster 

and Lake Mweru. The correlation coefficient is 0.7 (p-value < 0.001) between the RWLA cluster 

and  the Lake Tanganyika WL; no significant delay is detected between these two curves. A slight 

trend is observed in the Lake Tanganyika WL before 2007, but it is not observed in the RWLA of the 

cluster and Lake Mweru. Such consistency between the RWLA and WL time series enables us to 

validate this cluster. 

5.3. The South-Kasai River Basin 

Cluster “Kasai”: We observe a unimodal RWLA distribution of this cluster time series over the 

studied period. The RWLA minima occur from August to September, and the maxima occur from 

January to April. RWLA maxima occur in January (2003, 2005 and 2007) or April (2004, 2006, 2008 

and 2009), usually in alternating years. The seasonal variability is between 1.8 and 2 m over the 

period. These dynamics are comparable with the monthly maxima and minima distribution recorded by 

the historical river gauge at Mushie in 1932–1955 and at Ilebo in 1924–1955, both located on the 

Kasai River ([10], in Table 2). 

5.4. The Center-West–Congo River Basin 

Cluster “Cuvette Centrale”: This cluster holds the largest number of RWLA time series (31) and 

has the largest latitudinal variability (from 2.5°N to 6°S). To avoid over-parameterization, we do not 

include prior information regarding the latitude coordinate or the RWLA bimodal/unimodal seasonal 

signature in the K-means clustering method. It is thus prudent to check the homogeneity of the RWLA 

seasonal variability within this cluster. As might be expected, we clearly observe 2 sub-clusters: 

(1) 20 RWLA time series located on the main stream of the Congo River and the Tshuapa River 

(hereafter named Cluster “Congo-Tshuapa”); (2) 11 RWLA time series located on the Lukenie River 

(hereafter named Cluster “Lukenie”). The RWLA time series of the cluster “Congo-Tshuapa” has a 

bimodal distribution. The water levels begin to rise in August and September due to rainfall 

intensification in the southern hemisphere. The high-water period is reached in December and lasts a 

relatively short time. The secondary low-water period occurs in March, during the dry season that 

prevails in the northern hemisphere tributaries. The primary low-water period in July and August 

corresponds to the dry season that prevails in the southern hemisphere [43]. These results are validated 

by the dynamics of the historical river gauge records at Mbandaka over 1913–1955 and at Lisala over 

1914–1955, both located on the Congo River, and at Ingende over 1933–1955, located on the Ruki 

River ([10], in Table 2). We notice a contrast between the very dry years 2004, 2005 and 2006, when 

low water levels lasted 8, 9 and 10 months, respectively, and the years 2003, 2007, 2008 and 2009, 

when the low-water periods were almost non-existent. The average seasonal variability over our study 

period is on average 1.8 m, except in 2006 when it was 2.6 m, twice the amplitude observed in 2003. 

Figure 8b shows a comparison between the RWLA time series from the cluster “Congo-Tshuapa” 

and the RWLA time series recorded at the Brazzaville gauging station over the period 2003–2009.  
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These two RWLA time series are remarkably synchronized and have a correlation coefficient of  

0.96 (p-value < 0.001). However, the RWLA time series recorded at Brazzaville shows an amplitude 

10% greater than the 95% confidence upper and lower bounds. Although not shown in the figure, the 

Brazzaville gauge also has a significant correlation coefficient (p-value < 0.001) with respect to the 

RWLA of Cluster “Central Congo” (0.9), Cluster “Lower Lualaba” (0.75), Cluster “Lukenie” (0.75) 

and Cluster “Kasai” (0.5). 

The RWLA time series of Cluster “Lukenie” has unimodal dynamics and is relatively  

homogeneous from 2003 to 2007. The dates of extreme water levels coincide with those of the Cluster  

“Congo-Tshuapa”: minimum in July and maximum in December and January. The seasonal variability 

over our study period averages 1.8 m. These results are similar to the historical water level time series 

records at Dekese over 1932–1955, located on the Lukenie River ([10], in Table 2). 

Cluster “Central Congo”: The RWLA stations are located on the Congo River downstream of its 

confluence with the Ubangi River and before its confluence with the Kasai River. This cluster is 

located in a hydrographically complex region and is influenced by three major rivers: the Ubangi, the 

Upper Congo and the Sangha [44]. The bimodal water level dynamics are very similar to those of 

Cluster “Congo-Tshuapa”: high water levels from November to December and a second high-water 

period from May to June. However, in Cluster “Central Congo”, low water levels occur in March and 

another more extreme low occurs in July, which is nearly the opposite of the Cluster “Congo-Tshuapa” 

dynamics. This finding can be explained by the strong influence of the Ubangi River (Cluster 

“Ubangi”), which is positive in the wet season (September) and negative in the dry season (March). 

Moreover, the RWLA seasonal variability is consistent with the dynamics at the Ouesso historical 

river gauge on the Sangha River (from the Global Runoff Data Center, [45]) and with the monthly 

maxima and minima recorded by the historical river gauge at Lukolela over 1909–1955, located on the 

Congo River ([10], in Table 2). The low-water period is very long, lasting 7 to 8 months. The seasonal 

variability is, on average, 2.4 m over our study period, except in 2006, when it was 3.2 m. 

Cluster “Lower Lualaba”: We apply the same methodology as that applied to Cluster “Cuvette 

Centrale” to the 7 time series that make up this cluster, but we do not observe any significant 

difference in seasonal variability between the RWLA time series from the Kasai River and the RWLA 

time series located on the lower Lualaba River. The RWLA hydrograph for Cluster 8 has a unimodal 

distribution, except for the years 2004 and 2006, for which a second high-water period occurs in April. 

The maximum occurs in December-January and the minimum in August. These results are validated 

by the historical water level time series recorded at Kisangani from 1907–1955, located on the Upper 

Congo River ([10], in Table 2). We note that in this region, the RWLA seasonal variability is, on 

average, 2.5 m over our study period, except in 2006, when it was 3.5 m. 

We investigate the regionalization that these clusters suggest. Clusters “Upper Uele”, “Lower Uele” 

and “Ubangi” spatially match the northern region as described by Mahé [36]. The increasing amplitude 

from upstream to downstream is coherent with the gathering of water along the river system. Cluster 

“Central Lualaba” represents the eastern and southeastern parts of the basin and is very distinct from 

the other clusters. The southern and central western regions are not very well represented by the 

clusters considered in the present study. Cluster “Lower Lualaba” appears intermediate between 

Cluster “Central Lualaba” and all other clusters. Clusters “Central Congo” and “Congo-Tshuapa” are 

bimodal, similar to each other, and separated from Clusters “Kasai” and “Lukenie”. Our data suggest 
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that regionalization in the central part of the catchment follows more of an east-west gradient than a 

north-south one.  

6. Further Research 

The dataset used in the present study is currently being expanded. In terms of spatial extent, many 

other virtual stations are currently being computed from ENVISAT to sample more rivers, such as the 

Kwango and Kwilu Rivers in the southwestern part of the basin, the Dja River in the northwestern part 

of the basin and in the east, and the Lukuga and Luvua Rivers, which drain the Tanganika and Mweru 

Lakes, respectively, into the Congo River. In terms of temporal extent, the 7-year ENVISAT time 

series will soon be extended with data from new satellites: Jason-2, launched in June 2008, and 

SARAL, launched in February 2013. Combining Jason-2 and SARAL observations for land water 

monitoring will take advantage of the 10-day temporal resolution of Jason-2 and the high geographical 

coverage of SARAL, which flies along the same orbit as ENVISAT. An example of a long series over 

the Congo River that can be obtained by combining ENVISAT, Jason-2 and SARAL data is shown in 

Figure 9.  

Figure 9. An extended time series of water levels obtained by combining successive 

ENVISAT track (blue), Jason-2 track (red) and SARAL track (black) measurements over 

the Congo River. The Jason-2 and SARAL measurement series are adjusted for biases 

relative to the ENVISAT series. This virtual station is located at [1°08ʹS; 18°33ʹ30ʹʹE].  

 

7. Conclusion 

This study was conducted using stage rather than discharge measurements, which makes it unusual 

within the field of hydrology. The utility of altimeter-derived information is illustrated by finding the 

spatial and temporal signatures of climate variability in water level variations within the Congo Basin. 

Studies of this type have been traditionally based on historical in situ gauging station records, when 

and where available. However, climate and hydrological networks are sparse within the Congo Basin. 

Using satellite altimetry, we constructed a very large number of virtual stations across the Congo Basin 

to obtain information on the regional variability of surface water level anomalies in places where no  
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in situ data are available over the period 2003–2009. This study shows that water levels can be 

measured throughout the basin, even in remote places, including the upstream, narrow parts of rivers. 

The study yielded interesting insights into the regionalization and characterization of the hydrological 

regime of the Congo Basin. Our analyses show an east-west gradient that has not previously been 

identified. The central western region is limited to a small region near the Congo swamp and 

represents the only bimodal hydrological regime of the basin. The Kasai region is similar to the central 

eastern region and is a progressive transition zone with the southeastern region. In conclusion, we have 

been validated the proposed regionalization scheme. Therefore considered reliable for estimating 

monthly water level variations in the Congo Basin. This result confirms the potential of satellite 

altimetry in monitoring spatio-temporal water level variations as a promising and unprecedented 

means for improved representation of the hydrologic characteristics in large ungauged river basins. 

Acknowledgments 

We thank the CTOH for providing the ENVISAT GDR data. M. Becker is supported by the Centre 

National d’Etudes Spatiales (CNES) and a Fonds social européen (FSE) fellowship. This study was 

supported by the AforA project within the CNES/TOSCA fund. We thank the three anonymous reviewers 

for their careful reading of our manuscript and their many insightful comments and suggestions. 

Authors’ Contributions  

Mélanie Becker conducted the data analysis and wrote the majority of the paper. Joecila Santos da Silva 

was responsible for the processing of the ENVISAT observations. Stéphane Calmant supervised the 

research and contributed to manuscript organization and writing. Vivien Robinet contributed to the 

design of the regionalization method. Laurent Linguet and Frédérique Seyler helped with discussions 

and manuscript revisions.  

Conflicts of Interest  

The authors declare no conflict of interest. 

References 

1. Devroey, E. Observations Hydrographiques du Bassin Congolais (1932–1947). Available online: 

http://www.worldcat.org/title/observations-hydrographiques-du-bassin-congolais-1932-1947/ 

oclc/8209249 (accessed on 16 May 2014). 

2. Charlier, J. Études Hydrographiques Dans Le Bassin Du Lualaba, Congo Belge, 1952–1954; 

Comité Hydrographique du Bassin Congolais: Bruxelles, Belgium, 1955. 

3. Snel, M.J. Contribution à l’étude Hydrogéologique du Congo Belge. Service Géologique, 

Bulletin No. 7; Democratic Republic of the Congo: Kinshasa, Democratic Republic of the Congo, 

1957; Volume 2. 

4. Hochschild, A. King Leopold’s Ghost: A Story of Greed, Terror and Heroism in Colonial Africa; 

Houghton Mifflin: Boston, MA, USA, 1998. 



Remote Sens. 2014, 6 9356 

 

5. Ndaywel è Nziem, I.; Obenga, T.; Salmon, P. Histoire du Zaïre: De L’héritage ancien à L’âge 

Contemporain; Duculot: Louvain-la-Neuve, Belgique, 1997. 

6. Campbell, D. The Congo River basin. In The World largest  Wetlands: Ecology and 

Conservation; Cambridge University Press: Cambridge, UK, 2005; pp. 149–165. 

7. Shem, O.W.; Dickinson, R.E. How the Congo basin deforestation and the equatorial monsoonal 

circulation influences the regional hydrological cycle. In Proceedings of the 86th Annual 

American Meteorological Society Meeting, Tuesday, 31 January 2006, Atlanta, GA, USA, 2006. 

8. Alsdorf, D.E.; Rodrfgue, E.; Lettenmaier, D. Measuring Surface Water from Space. Available 

online: http://bprc.osu.edu/hydro/publications/2007a_Alsdorf.pdf (accessed on 16 May 2014). 

9. Tang, Q.; Gao, H.; Lu, H.; Lettenmaier, D.P. Remote sensing: Hydrology. Prog. Phys. Geogr. 

2009, 33, 490–509. 

10. Rosenqvist, A.A.; Birkett, C.M. Evaluation of JERS-1 SAR mosaics for hydrological applications 

in the Congo River Basin. Int. J. Remote Sens. 2002, 23, 1283–1302. 

11. Eltahir, E.A.; Loux, B.; Yamana, T.K.; Bomblies, A. A see-saw oscillation between the Amazon 

and Congo basins. Geophys. Res. Lett. 2004, 31, doi:10.1029/2004GL021160. 

12. Crowley, J.W.; Mitrovica, J.X.; Bailey, R.C.; Tamisiea, M.E.; Davis, J.L. Land water storage 

within the Congo Basin inferred from GRACE satellite gravity data. Geophys. Res. Lett. 2006, 33, 

doi:10.1029/2006GL027070. 

13. Jung, H.C.; Hamski, J.; Durand, M.; Alsdorf, D.; Hossain, F.; Lee, H.; Hossain, A.K.M.;  

Hasan, K.; Khan, A.S.; Hoque, A.K.M. Characterization of complex fluvial systems using remote 

sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra 

Rivers. Earth Surf. Process. Landf. 2010, 35, 294–304. 

14. Lee, H.; Beighley, R.E.; Alsdorf, D.; Jung, H.C.; Shum, C.K.; Duan, J.; Guo, J.; Yamazaki, D.; 

Andreadis, K. Characterization of terrestrial water dynamics in the Congo Basin using GRACE 

and satellite radar altimetry. Remote Sens. Environ. 2011, 115, 3530–3538. 

15. O’Loughlin, F.; Trigg, M.A.; Schumann, G.-P.; Bates, P.D. Hydraulic characterization of the 

middle reach of the Congo River. Water Resour. Res. 2013, 49, 5059–5070. 

16. Bernard, E., Le Climat Écologique: De la Cuvette Centrale Congolaise. Available online: 

http://www.persee.fr/web/revues/home/prescript/article/geo_0003-4010_1948_num_57_305_12165 

(accessed on 16 May 2014). 

17. Bultot, F. Atlas Climatique du Bassin Congolais. Available online: http://lib.ugent.be/catalog/ 

rug01:001906688?i=0&q=000000869163 (accessed on 16 May 2014). 

18. Mahe, G.; L’hote, Y.; Olivry, J.C.; Wotling, G. Trends and discontinuities in regional rainfall of 

West and Central Africa: 1951–1989. Hydrol. Sci. J. 2001, 46, 211–226. 

19. Wehr, T.; Attema, E. Geophysical validation of ENVISAT data products. Adv. Space Res. 2001, 

28, 83–91. 

20. Center for Topographic studies of the Ocean and Hydrosphere (CTOH). Available online: 

http://ctoh.legos.obs-mip.fr/ (accessed on 16 September 2014). 

21. Frappart, F.; Calmant, S. Cauhopvalidation of ENVISAT data products and Central Africa: 1951s 

in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens. Environ. 2006, 100, 

252–264. 



Remote Sens. 2014, 6 9357 

 

22. Santos da Silva, J.; Calmant, S.; Seyler, F.; Rotunno Filho, O.C.; Cochonneau, G.; Mansur, W.J. 

Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry 

missions. Remote Sens. Environ. 2010, 114, 2160–2181. 

23. Bamber, J.L. Ice sheet altimeter processing scheme. Int. J. Remote Sens. 1994, 15, 925–938. 

24. VALS Tool Virtual ALtimetry Station. VALS Version 0.5.7, 2009. Available online: 

http://www.ore-hybam.org/index.php/eng/Software/VALS (accessed on 16 May 2014). 

25. Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. The development and evaluation of the 

Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res. Solid Earth 2012, 117, 

doi:10.1029/2011JB008916. 

26. Rosner, B. On the detection of many outliers. Technometrics 1975, 17, 221–227. 

27. Clarke, R.T. Uncertainty in the estimation of mean annual flood due to rating-curve indefinition.  

J. Hydrol. 1999, 222, 185–190. 

28. ORE HYBAM—The Environmental Research Observatory on the Rivers of the Amazon Basin. 

Available online: http://www.ore-hybam.org/ (accessed on 18 September 2014). 

29. Hydroweb—Hydrology from Space. Available online: http://www.legos.obs-mip.fr/fr/soa/hydrologie/ 

hydroweb/Page_2.html (accessed on 18 September 2014). 

30. Crétaux, J.-F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.;  

Gennero, M.-C.; Nino, F.; Abarca Del Rio, R.; Cazenave, A. SOLS: A lake database to monitor in 

the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 

2011, 47, 1497–1507. 

31. Hartigan, J.A. Clustering Algorithms; Wiley: New York, NY, USA, 1975. 

32. Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. 

Ser. C Appl. Stat. 1979, 28, 100–108. 

33. Bhaskar, N.R.; O’Connor, C.A. Comparison of method of residuals and cluster analysis for flood 

regionalization. J. Water Resour. Plan. Manag. 1989, 115, 793–808. 

34. Burn, D.H.; Goel, N.K. The formation of groups for regional flood frequency analysis.  

Hydrol. Sci. J. 2000, 45, 97–112. 

35. Rao, A.R.; Srinivas, V.V. Regionalization of watersheds by hybrid-cluster analysis. J. Hydrol. 

2006, 318, 37–56. 

36. Isik, S.; Singh, V.P. Hydrologic regionalization of watersheds in Turkey. J. Hydrol. Eng. 2008, 

13, 824–834. 

37. Toth, E. Catchment classification based on characterisation of streamflow and precipitation time 

series. Hydrol. Earth Syst. Sci. 2013, 17, doi:10.5194/hess-17-1149-2013. 

38. Hydrological Data and Maps Based on SHuttle Elevation Derivatives at Multiple Scales  

USGS HydroSHEDS. Available online: http://hydrosheds.cr.usgs.gov/index.php (accessed on 18 

September 2014). 

39. Davies, D.L.; Bouldin, D.W. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. 

Intell. 1979, PAMI-1, 224–227. 

40. Mahé, G. Modulation annuelle et fluctuations interannuelles des précipitations sur le bassin 

versant du Congo. In Grands bassins fluviaux périatlantiques; ORSTOM: Paris, France, 1995; 

pp. 13–26. 



Remote Sens. 2014, 6 9358 

 

41. Hastenrath, S.; Polzin, D.; Mutai, C. Diagnosing the 2005 drought in equatorial East Africa.  

J. Clim. 2007, 20, doi:10.1175/2009JCLI3094.1. 

42. Becker, M.; Llovel, W.; Cazenave, A.; Güntner, A.; Crétaux, J.-F. Recent hydrological behavior 

of the East African great lakes region inferred from GRACE, satellite altimetry and rainfall 

observations. Comptes Rendus Geosci. 2010, 342, 223–233. 

43. Vennetier, P. Géographie du Congo-Brazzaville. Available online: http://horizon.documentation.ird.fr/ 

exl-doc/pleins_textes/divers11-11/01471.pdf (accessed on 16 May 2014). 

44. Laraque, A.; Orange, D.; Maziezoula, B.; Olivry, J.-C. Origine des variations de debits du Congo 

à Brazzaville durant le XXème siècle. In Water Resources Variability in Africa during the 20th 

Century; Servat, E., Hughes, D., Fritsch, J.-M., Hulme, M., Eds.; AISH: Wallingford, UK, 1998; 

pp. 171–179. 

45. GRDC—Global Runoff Data Center, Zaire—Ouesso Station. Available online: 

http://www.grdc.sr.unh.edu/html/Polygons/P1448100.html (accessed on 18 September 2014). 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


