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Abstract: For near real-time water applications, the Moderate Resolution Imaging 

Spectroradiometers (MODIS) on Terra and Aqua are currently the only satellite instruments 

that can provide well-calibrated top-of-atmosphere (TOA) radiance data over the global 

aquatic environments. However, TOA radiance data in the MODIS ocean bands over turbid 

atmosphere in east China often saturate, leaving only four land bands to use. In this study, 

an approach based on Empirical Orthogonal Function (EOF) analysis has been developed 

and validated to estimate chlorophyll a concentrations (Chla, μg/L) in surface waters of 

Taihu Lake, the third largest freshwater lake in China. The EOF approach analyzed the 

spectral variance of normalized Rayleigh-corrected reflectance (Rrc) data at 469, 555, 645, and 

859 nm, and subsequently related that variance to Chla using 28 concurrent MODIS and field 

measurements. This empirical algorithm was then validated using another 30 independent 

concurrent MODIS and field measurements. Image analysis and radiative transfer 

simulations indicated that the algorithm appeared to be tolerant to aerosol perturbations, with 

unbiased RMS uncertainties of <80% for Chla ranging between 3 and 100 μg/L. Application 
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of the algorithm to a total of 853 MODIS images between 2000 and 2013 under cloud-free 

conditions revealed spatial distribution patterns and seasonal changes that are consistent to 

previous findings based on floating algae mats. The current study can provide additional 

quantitative estimates of Chla that can be assimilated in an existing forecast model, 

which showed improved performance over the use of a previous Chla algorithm. However, 

the empirical nature, relatively large uncertainties, and limited number of spectral bands all 

point to the need of further improvement in data availability and accuracy with future 

satellite sensors. 

Keywords: remote sensing; MODIS; chlorophyll a; algorithm; forecast model; data 

assimilation; real-time applications 

 

1. Introduction 

A number of studies have shown increasing trends of phytoplankton blooms in coastal and inland 

waters around the world (e.g., [1]), often caused by excessive nutrients and other pollutants derived from 

agriculture, urbanization, and industries. In the southern Caribbean, increased nutrient concentrations 

around coral reefs were linked to land-based runoff [2]. Similarly, recurrent phytoplankton blooms in 

the Gulf of California were attributed to agriculture irrigation and runoff [3]. On the west Florida shelf, 

increased nutrient inputs from coastal runoff were thought to be at least one reason leading to the 

increased occurrences of blooms of the toxic dinoflagellate Karenia brevis between the 1950s and the 

2000s [4]. In coastal waters of the Bohai Sea, Yellow Sea, and East China Sea, the number and size of 

toxic algae blooms have increased since 1998 [5], likely due to coastal eutrophication. The increased 

frequency and severity of macroalgae blooms of Ulva prolifera in these waters were linked to the 

increased coastal aquaculture [6,7]. In Taihu Lake of east China, blooms of the cyanobacterium 

Microcystis aeruginosa were found to increase in both frequency and duration, accompanied with 

increases in total nitrogen and phosphorus [8,9]. 

Accurate assessment of the bloom conditions in coastal and inland waters, in terms of the 

concentrations of the phytoplankton chlorophyll a pigment (Chla in μg/L), provides information on the 

eutrophication state and thus can help implement management plans and strategies [10]. Timely delivery 

of Chla distribution information is also important for management actions including closure of shellfish 

beds in response to toxic blooms, or physical removal of certain algae in the case of cyanobacterial 

blooms (e.g., [11–13]). The ability to predict Chla distributions, on the other hand, is critical in helping 

make proactive short-term and long-term management decisions such as reducing nutrient discharges 

through coordinated regulations [14,15]. 

Unfortunately, none of the above three tasks (quantification, delivery, and prediction) is straightforward. 

First, traditional ship-borne measurements of water quality parameters (including Chla) are regarded as 

the most accurate, yet they often lack sufficient spatial and/or temporal coverage. Satellite remote 

sensing, on the other hand, provides frequent and synoptic measurements, but the accuracy of the 

satellite-based data products for the optically complex coastal and inland waters are often questionable. 

Recent algorithm development efforts have led to significant progress in improving the Chla data product 
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accuracy using either spectral bands in the green and red [16–25], neural-networks [26],or empirical 

orthogonal function (EOF) approaches [26,27]. However, most of these studies are based on in situ 

measured reflectance data. While in situ data provides the basis for algorithm development and 

validation, the validity of the algorithm needs to be evaluated using long-term satellite data. In contrast, 

Le et al. (2013) used remote sensing reflectance (Rrs, sr−1) data derived from Moderate Resolution 

Imaging Spectroradiometer (MODIS) measurements to establish a long-term Chla data record for a 

medium-sized estuary (Tampa Bay, ~1000 km2) between 2003 and 2012 [25]. This algorithm, however, 

was specifically tuned to the optical relationships for Tampa Bay, and its general applicability to other 

estuaries or lakes is unknown. In short, developing accurate, satellite-based Chla algorithms is still an 

active research area, especially for coastal and inland waters that are typically complex in their  

optical properties. 

Second, even after an algorithm is developed and validated for a study region, timely delivery of the 

data products such as Chla is still problematic due to (1) lack of near real-time satellite data receiving 

and processing capacity and (2) frequent cloud cover, sun glint, and other non-optimal observing 

conditions. For the case of MODIS, global data are openly available (through the U.S. National 

Aeronautics and Space Administration, NASA) and thus can be used to develop near real-time data 

products without a ground antenna [28]. Unfortunately, the spectral bands designed for water studies 

and used in the above algorithms are often saturated for some coastal and inland waters [29], leaving no 

data to use. Alternative Chla retrieval approaches must be developed to use the non-saturating bands to 

avoid such problems. 

Finally, predicting Chla or other water quality parameters requires models based on either statistics 

(empirical approach, e.g., Le et al. (2013) for Chesapeake Bay [30] and Millie et al. (2013) for Sarasota 

Bay [31]) or coupled hydrodynamics and biology (physics-based approach, e.g., Popova et al. (2002) 

for the northeast Atlantic [32]; Hu et al. (2006) for Taihu Lake [33]). The latter approach has  

physical- and biological-governing equations explicitly built into the models, making it easier to test the 

connections between physical/biological forces and the biological responses. The parameterization of 

such an approach, especially for biological variables in small water bodies, is difficult due to the optical 

and biological complexity. One way to overcome such difficulties is to assimilate either in situ or 

satellite-derived data to guide and tune the coupled model. Indeed, data assimilation has been 

increasingly used to improve the model performance [32,34–41]. 

When synoptic satellite measurement is used, one limiting factor of data assimilation is the large 

uncertainty in the assimilated satellite data. For data assimilation for Taihu Lake, Qi et al. (2014) [42] 

used Chla data products derived from the red and NIR bands (645 and 859 nm) of MODIS [43] , which 

suffer from interferences of sediment resuspension. Indeed, despite the effort in the past decade on 

algorithm development for inland water bodies [20,23,24,44–50], for a number of reasons there is no 

reliable Chla algorithm that can be applied to MODIS data in near real-time for the purposes of both 

timely information delivery and data assimilation for Taihu Lake. 

Given such urgent needs for near real-time Chla and lack of a practical algorithm to deliver such data, 

the objective of this study was thus to develop and validate a local algorithm to estimate Chla from 

MODIS measurements. The study is focused on Taihu Lake, yet the approach might be applicable to 

other similar water bodies and environments where MODIS ocean bands also saturate. 
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2. Data and Method 

2.1. Study Area 

With a drainage basin of 36,895 km2, Taihu Lake is the third largest freshwater lake in China, having 

an average water depth of ~1.9 m and surface area of ~2338 km2. The drainage basin covers some of the 

most developed regions in China including Jiangsu, Zhejiang, and Anhui Provinces and the Shanghai 

Municipality, which contributed ~10% of China’s GDP with only 0.4% of China’s territory [51,52]. 

In recent years, increasing eutrophication and cyanobacterial blooms have been reported, posing a 

significant threat the environment and humans who rely on the lake for drinking water, tourism, 

aquaculture, recreation, and other activities [9,53]. 

Several studies have shown locally optimized Chla algorithms for Taihu Lake [24,42,46], yet they 

are all based on in situ Rrs. Other studies used satellite data to show the multi-year cyanobacterial bloom 

patterns [8,9], but the index used in the studies is sensitive to only intense blooms when cyanobacteria 

form surface mats. To date, a practice Chla retrieval algorithm targeted for near real-time applications 

still needs to be developed. 

2.2. Field Data 

A series of cruise surveys were conducted by the Nanjing Institute of Geography and Limnology, 

Chinese Academy of Science (NIGLAS) between October 2004 and May 2011 (Figure 1). Six of these 

surveys measured surface Chla. Of these samples, after quality control and searching for the matching 

MODIS data records 28 were used in this study to develop the Chla retrieval algorithm. These surveys 

were conducted in October 2004, May 2008, October 2008, May 2010, March 2011, and May 2011. 

In addition to the surveys, measurements were also collected at six fixed locations by NIGLAS 

(Figure 1). The data were collected weekly from April to September every year from 2008 to 2010. Total 

nitrogen, total phosphorus and Chla for the collected water samples were analyzed in the laboratory. 

Similar to the samples collected and measured during the field surveys, after data quality control and 

searching for the matching MODIS data 30 of these samples were used as the independent dataset used 

to validate the developed Chla algorithm. 

Water samples were collected near the surface. Chla was then determined spectrophotometrically 

following community-accepted protocols [54,55]. Specifically, a 47-mm Whatman GF/F glass fiber 

filter was used to filter the water and was subsequently soaked in 90% ethanol for 4–6 h in the dark. 

The sample in ethanol was then heated to 80–90 °C for 3–5 min to extract the pigments. Absorbance at 

665 and 750 nm of the extract was measured with a UV2401 spectrophotometer (Shimadzu Corp., Kyoto, 

Japan), and Chla was calculated against a blank reference (i.e., filtered water). There have been reports 

that Chla determined spectrophotometrically tended to be overestimated as compared with high-performance 

liquid chromatography (HPLC) method (e.g., Pinckney et al. [56]). However, the overestimation was 

small systematic bias instead of random error. Thus, the Chla dataset used in this study is self-consistent 

and will not impact algorithm development or studies on detecting anomalies. 
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Figure 1. Taihu Lake in the Yangtze River Delta, China. Annotated on the image are 

locations of the 28 sampling stations visited by the six NIGLAS cruise surveys (October 2004, 

May 2008, October 2008, May 2010, March 2011 and May 2011) and 6 fixed sampling sites. 

 

2.3. MODIS Satellite Data 

MODIS Level-0 data collected by both Terra (2000–present) and Aqua (2002–present) covering the 

study region were obtained from the NASA Goddard Space Flight Center through its Ocean Biology 

Processing Group [57]. With a swath width of 2330 km, the two MODIS instruments cover the Earth’s 

surface (including Taihu Lake) at least once per day, making this dataset suitable for near real-time 

applications. Both MODIS instruments have nine spectral bands from 412 to 869 nm at approximately 

1-km ground resolution. These bands were designed for ocean use and are highly sensitive but with a 

narrow dynamic range [29]. They are saturated most of the time over Taihu Lake due to the turbid 

atmosphere and water, and therefore are not used in this study. 

The MODIS instruments also have seven spectral bands from 469 nm to 2130 nm designed for land 

and atmosphere use. They are less sensitive but cover a higher dynamic range than the ocean bands, and 

therefore rarely saturate in this region. Although not designed for the ocean, the bands have shown wide 

applications for coastal and inland waters [8,58] because of their wide coverage and medium resolutions. 

The ground resolution of the 645- and 859-nm bands is 250 m, and 500 m for the bands at 469-, 555-, 

1240-, 1640-, and 2130-nm. Because the 1240- and 1640-nm bands often contain substantial noise due 

to detector artifacts, in this study, only four bands at 469-, 555-, 645-, and 859-nm were used. 

MODIS data were processed using the software SeaDAS (version 7.0). First, the data were converted 

to calibrated radiance (Level-1B). Then, because a full atmospheric correction through SeaDAS often 

resulted in data loss due to incorrect data masking and high uncertainties in the retrieved remote sensing 

reflectance (Rrs, sr−1), a partial atmospheric correction to correct for the gaseous absorption (mainly by 

ozone) and Rayleigh (molecular) scattering effects was applied to the Level-1B data, resulting in 

Rayleigh corrected reflectance (Rrc, dimensionless):  
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Rrc(λ) = ρt(λ) − ρr(λ) = ρa(λ) + πt(λ)t0(λ)Rrs(λ) (1)

where ρt is the top of atmosphere (TOA) reflectance after adjustment of the gaseous absorption, ρr is the 

reflectance due to Rayleigh scattering, ρa is that due to aerosol scattering and aerosol-Rayleigh 

interactions, t and t0 are diffuse transmittance from the image pixel to the satellite and from the sun to 

the image pixel, respectively. Note that ρa, t, and t0 are functions of aerosol type, aerosol optical 

thickness, and solar/viewing geometry. The above formulation assumes negligible contributions from 

whitecaps and sun glint. 

The Rrc data were mapped to a cylindrical equidistant projection for further analysis. First, the Rrc 

data at 645-nm, 555-nm, and 469-nm were used to compose the Red-Green-Blue true color images in 

order to screen for clouds and sun glint. After visual inspection, a total of 853 data granules between 

2000 and 2013 were found to contain minimal cloud cover and sun glint, therefore suitable for algorithm 

development and time-series studies. The granules are evenly distributed in all four seasons, with 

approximately once per week frequency (Table 1). Potential aliasing due to infrequent measurements 

may be thus minimized at monthly to seasonal scales. 

Table 1. Number of MODIS images used in each season, 2000–2013. 

Season (Months) # Of Images 

Spring (April, May, June) 211 
Summer (July, August, September) 192 

Autumn (October, November, December) 203 
Winter (January, February, March) 247 

Total # of Images 853 

The Rrc data were then queried to find the data concurrent (same day) and collocated with the field 

measurements (termed “matching pairs”). For both algorithm development and validation, the following 

criteria were applied. To minimize the potential impact of straylight, a 3 × 3 pixel box centered at the 

field measurement location was selected. Only when at least five pixels of the 3 × 3 box contained valid 

Rrc data was the box used for further analysis. To assure spatial homogeneity, the variance of Rrc(555) 

in the box (standard deviation/mean) must be <10%, otherwise the box was discarded. The median value 

of the 3 × 3 box was used to compare with the field data. After quality control, only 28 field stations 

showed valid MODIS matching pairs (Figure 1), and these were used for algorithm development. Thirty 

other data points from the six fixed stations also showed MODIS matching pairs, and these were used to 

evaluate the algorithm. 

To understand the impact of partial atmospheric correction (as compared with the full atmospheric 

correction) on the algorithm performance, a sensitivity test was conducted where various atmospheric 

parameters were extracted from the SeaDAS LUTs and passed to the algorithm as perturbations. These 

parameters include aerosol optical thickness at 869 nm (τ869), ρa, t0, t, and extraterrestrial solar constant 

(F0(λ)) corresponding to the solar/viewing geometry specified by the solar zenith angle (θo), satellite 

zenith angle (θ), and their relative azimuth angle (ϕ). 
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2.4. Algorithm Development 

Figure 2a shows the MODIS Rrc spectra of the four land bands (469, 555, 645, 859 nm) corresponding 

to the 28 Chla matching pairs. Note that the high reflectance led to saturation of most of the MODIS 1-km 

ocean bands, leaving only four land bands to be used for the algorithm development. 

Figure 2. (a) MODIS Rrc spectra (469, 555, 645, and 859 nm) corresponding to the 28  

in situ measurements shown in Figure 1. These spectra were used with field-measured Chla 

to develop the EOF model; (b) MODIS Rrc ratios versus field-measured Chla. 

 

Two existing algorithms were first tested to evaluate their performance. These are the blue-green 

band ratio algorithm following the traditional approach [59] and the red-green band ratio algorithm 

following the approach of [25]. The algorithms used the Rrc(469)/Rrc(555) and Rrc(645)/Rrc(555) 

ratios, respectively, to correlate with concurrent Chla. The Rrc(469)/Rrc(555) band ratio from MODIS 

had virtually no correlation with the field-measured Chla (Figure 2b). Although the Rrc(645)/Rrc(555) 

band ratio showed some correlation with the field-measured Chla, there was substantial data scattering. 

The poor performance of the band-ratio algorithms is mainly because that the band ratios were designed 

for Rrs instead of Rrc data, and the blue band contained information from not just particulate matter but 

also colored dissolved organic matter. Clearly, alternative approaches other than band ratios must  

be developed. 

The EOF-based approach developed by [27] showed great potentials in deriving the water column 

IOPs, and it was adapted to estimate UV light attenuation in optically shallow waters in the Florida Keys 

from MODIS Rrs data in the visible bands [60] .The EOF approach is similar to principal component 

regression (PCR) or partial least squares (PLS) model, which have been used extensively in retrieving 

water quality parameters and land properties [61]. The EOF is used to reduce multi-band reflectance 

data to several independent (i.e., uncorrelated) variables (i.e., EOF modes or scores, aka eigenvectors) 

that retain most of the variance in the original data. Changes in the concentration of a water constituent 

(e.g., Chla) will affect the multi-band reflectance, thus will be correlated to one or more of the EOF 

modes. These modes can then be used in a stepwise fashion to reconstruct the corresponding Chla record, 

from which an empirical regression model is established. Further details of the original EOF approach and 

the modified approach can be found in [27,60], respectively. The approach was modified in this study to 

use the four-band MODIS Rrc data as the input. Specifically, the EOF analysis was implemented using 

the MATLAB™ function princomp. The input for this function consisted of an (N × m) array of Rrc(λ) 
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spectra, where N was the number of samples, and m is the number of MODIS land band (m = 4). 

Following [27] and to focus on the variability in the spectral shape (as opposed to amplitude), 

MODIS Rrc spectra were normalized first:  〈ܴ௥௖(λ)〉 = ܴ௥௖(λ)׬ ܴ௥௖(λ)݀λ଼ହଽସ଺ଽ  (2) 

where <Rrc(λ)> is the normalized spectra [27,60]. EOFs were then constructed using the MODIS 

<Rrc(λ)>, with each EOF expressed as a vector of four loadings corresponding to the four spectral bands. 

Because only 4 MODIS bands were used in this analysis, the four EOF modes explained 100% of the 

variance in the <Rrc(λ)>. The resulting scores for each of these EOF modes were used as the independent 

variables in a stepwise multiple regression (i.e., stepwise principal component regression), with the 

dependent variable being the field-measured Chla. 

2.5. Algorithm Evaluation 

Several commonly accepted measures were used to assess algorithm performance. These include R2 

and Root-Mean-Square-Error (RMSE) in log space and unbiased RMSE (URMSE) in relative 

percentage (100%):  

(݃݋݈)ܧܵܯܴ = ඩ1ܰ ෍(݈10݃݋(ݕ௜) − ଶே((௜ݔ)10݃݋݈
௜ୀଵ  (3) 

(%)ܧܵܯܴܷ = ඩ1ܰ ෍( ௜ݕ − ௜ݕ)௜0.5ݔ + ௜))ଶேݔ
௜ୀଵ × 100% (4) 

where xi and yi refer to the measured and modeled values for the ith sample. The use of the log form was 

to follow the tradition for log-normal distributions [62]. URMSE (2(y − x)/(y + x)) was used instead of 

the typical RMSE ((y − x)/x) to avoid outliers that cause skewed error distributions [63]. This is 

particularly important when both x and y may contain large errors [64]. 

3. Results 

3.1. Algorithm Development 

Figure 3a shows the algorithm performance using the 28 data pairs from MODIS and in situ 

measurements. Despite the data scattering around the 1:1 line, there is a statistically significant 

correlation between the EOF-modeled Chla and measured Chla, with coefficient of determination (R2) 

of 0.47. Unbiased RMSE is 63.3% and RMSE(log) is 0.29 for Chla ranging between ~3 and ~50 μg/L, 

slightly higher than that for the global open ocean (~0.27, [65]). Some of the data scatter might be caused 

by the possible patchiness in this optically complex lake and also potential errors in the measured Chla 

due to low sampling volume. Thus, the performance of the algorithm may be acceptable, especially when 

considering that only four land bands were used in the EOF-based algorithm and only a partial 

atmospheric correction was performed. 
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Figure 3. (a) Comparison between field measured Chla at the 28 stations (Figure 1) and 

Chla derived from the MODIS Rrc using the EOF model; (b) Validation of the EOF model 

using independent field measurements from the six fixed stations (Figure 1). The dashed 

lines are 1:1 lines. 

(a) (b) 

3.2. Algorithm Validation 

3.2.1. Validation Using MODIS Data and Field Data 

The algorithm was further validated using independent data collected from the 6 fixed stations. The 

30 matching pairs led to performance statistics slightly worse than those from the algorithm development 

(Figure 3b), with URMSE = 77.6%, RMSE(log) = 0.36, and R2 = 0.37. However, for the same arguments 

as above, the performance might be acceptable as long as the retrieved Chla patterns are spatially 

coherent and temporally consistent, as shown below. 

3.2.2. Validation Using MODIS Data Alone 

Regardless of the amount of effort expended in collecting field data, these data are always limited in 

space and time. An additional method to validate algorithms is through consistency measures 

where satellite data products of adjacent days are examined for their spatial and temporal patterns. 

This method has been used in validating an open-ocean Chla algorithm developed recently for all ocean 

color sensors [64], and is adopted here. 

First, the EOF-based algorithm was applied to all MODIS images. After a static landmask  

was applied, the images were screened to exclude pixels contaminated with clouds and sun glint [8]. 

Then, Rrc(λ) spectra from all valid pixels were normalized using Equation (4), which were then used as 

the input of the MATLAB™ princomp function to obtain the EOF scores for each Rrc spectrum (pixel). 

Finally, Chla for that pixel was derived as  Chla = β଴ + βଵ ଵܵ + βଶܵଶ + βଷܵଷ + βସܵସ (5) 

where β0–4 are the regression coefficients derived from the 28 data pairs in the algorithm development, 

and S1–4 are the EOF scores [27]. Note that of the four EOF scores only the first three would explain at 

least 5% of the variance from the input Rrc data, yet for completeness the fourth score is kept here. In 

contrast, for hyperspectral or multi-spectral data with many bands (e.g., 10 or more), for simplicity only 

the first several scores are used in the regression (e.g., [60]). 
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Such derived MODIS Chla images were examined one by one to determine whether Chla spatial 

patterns were coherent (i.e., there was no significant edging effect or sharp boundaries between different 

water masses) and whether Chla temporal patterns in the same locations were consistent under different 

observing conditions. 

Figure 4. Performance of the Chla retrieval algorithm under different aerosol conditions in 

both winter (29 and 30 January 2007) and summer (8 and 9 August 2007). The top panels 

show MODIS RGB images (a,b,c,d) while the bottom panels show the retrieved Chla 

(e,f,g,h).The RGB images in winter (a,b) show significant variations in the aerosol content 

(haziness); yet the retrieved Chla images (e,f) are consistent in the large-scale spatial patterns 

and Chla magnitudes (e.g., higher Chla in the southern lake than in the northern lake); 

Likewise, for the bloom cases in summer, the retrieved Chla patterns in (g,h) appear to be 

insensitive to different aerosol perturbations in (c,d). Note that the optically shallow waters 

in the eastern lake are masked to prevent algorithm artifacts. 

 

Figure 4 shows several examples of the algorithm performance under different aerosol perturbations 

for both non-bloom Figure 4a,b and bloom Figure 4c,d cases, respectively. For the non-bloom case in 

winter, the two MODIS images on consecutive days of 29 (Aqua) and 30 (Terra) January 2007 were 

collected under thin and thick aerosols, respectively, as revealed by the RGB images. The mean Rrc(859) 

differences between the two images was around 0.055, corresponding to aerosol optical thickness (τa) of 

0.6 for maritime aerosols. Note that τa = 0.3 is the threshold for “thick aerosol” in the NASA processing 

software SeaDAS. Thus, even when the increased τa doubled the “thick aerosol” threshold (Figure 4a,b), 

the Chla spatial patterns were still temporally consistent for non-bloom conditions (Figure 4e,f). Likewise, 

for the two consecutive images on 8 August 2004 (Terra) and 9 August 2004 (Aqua) where mean Rrc(859) 

decreased by 0.036 (corresponding to τa decrease of 0.4, Figure 4c,d), most of the Chla spatial patterns for 

bloom conditions were also temporally consistent (Figure 4g,h). Note that the MODIS measurements were 

from both Terra (30 January 2007 and 8 August 2004) and Aqua (29 January 2007 and 9 August 2004), 

yet the EOF-retrieved Chla patterns are all consistent. 
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3.2.3. Sensitivity Test Using Radiative Transfer Simulations 

Similar image comparison as shown in Figure 4 was performed for the entire MODIS time series, 

with similar findings, i.e., the EOF-based Chla algorithm appeared to be tolerant to aerosol perturbations. 

To further understand the algorithm sensitivity to aerosol perturbations under different solar/viewing 

geometry, radiative transfer simulations were used. In these simulations, aerosol perturbations (ρa(λ), 

t(λ), t0(λ) in Equation (1)) to Rrc(λ) were estimated using SeaDAS aerosol look up tables (LUTs) for 

several scenarios. Specifically, variations in satellite zenith angle (scene edge or scene center), aerosol 

type (coastal or maritime), relative humidity and aerosol optical thickness were considered. Figure 5 

shows that the EOF algorithm performance, in terms of URMSE and R2, is roughly similar under these 

different circumstances, suggesting that the Rrc spectral shapes can be retrained under variable aerosol 

perturbations. This result is consistent to the image-based analysis (Figure 4). 

Figure 5. Sensitivity of the EOF Chla algorithm to different aerosol perturbations, derived 

from radiative transfer simulations. (a) Coastal aerosol with relative humidity of 50%,  

τ_869 = 0.37 at the scene edge; (b) maritime aerosol with relative humidity of 90%,  

τ_869 = 0.51, scene edge; (c) coastal aerosol with relative humidity of 50%, τ_869 = 0.19, 

scene center; (d) maritime aerosol with relative humidity of 90%, τ_869 = 0.23, scene center. 

 

3.3. Application to Long-Term MODIS Data 

Figure 6 shows the Chla spatial distributions in the four seasons derived by use of the EOF algorithm 

from MODIS Rrc data. The top panels in Figure 6a–d show the representative RGB images in the four 

seasons where bloom slicks and patches can be clearly visualized, and the middle panels show the 

corresponding Chla distributions. The summer image on 21 July 2011 reveals high Chla in the NW Lake, 

SW Lake, Meiliang Bay, Gonghu Bay, and north of the Central Lake due to typical cyanobacterial 
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blooms in summer. The images in the other three seasons showed variable but generally lower Chla in 

the various lake segments, with generally higher Chla in the bays than in the Central Lake. The bottom 

panels in Figure 6 show the seasonal mean Chla distributions. Of the 853 MODIS images between 2000 

and 2013, >200 images were used to calculate each seasonal mean. As such, the Chla patchiness in the 

individual images has been removed in the seasonal mean. Summer showed the highest Chla in the 

western lake and Meiliang Bay, followed by spring, fall, and winter. Such spatial distributions and their 

temporal changes are consistent with the findings of [8] where statistics of floating algae mats were used 

to estimate seasonal bloom variability. Unlike the algae mats assessment, the current study provides 

additional quantitative estimates of Chla distributions for assimilation in forecast models. 

Figure 6. Examples of MODIS RGB and Chla in different seasons. The top panels  

(a–d) show MODIS RGB images selected in the four seasons, the middle panels (e–h) show 

the retrieved Chla corresponding to the RGB images, and the bottom panels (i–l) show the 

seasonal mean Chla between 2000 and 2013. 

 

The MODIS Chla data were binned to calculate annual means and climatological monthly means for 

each of the six fixed sampling sites, with results shown in Figure 7. Despite the increasingly reported 

blooms in recent years, the 14-year trends in the annual means are not apparent in this dataset, although 

annual fluctuations are found in Figure 7a. In contrast, there is a clearly seasonality for most of the 

stations, with peak Chla between May and September (Figure 7b). Even though Chla in Taihu Lake 

could occasionally reach several hundreds of μg/L, such short-term variability has been smoothed in the 

annual and climatological monthly means, resulting in a relatively narrow range of Chla between 15 and 

35 μg/L. 
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Figure 7. (a) Annual mean MODIS Chla and (b) Climatological monthly mean MODIS 

Chla for the six fixed sampling sites (Figure 1). Station 4 is in Meiliang Bay, Station 10 is 

in the NW Lake, and Station 8 is in the Central Lake. 

 

3.4. Data Assimilation Results Using Default Chla and New Chla: A Comparison 

The EcoTaihu model [33] is a vertically-compressed three-dimensional ecological model. The model 

includes three modules: a relatively independent hydrodynamics module, a food chain network module, 

and a material transform and transport module. The model has been used to study water transfers from 

the Yangtze River to Taihu Lake [66] and to predict algal blooms [52]. The model parameterization, 

initialization, and forcing functions as well as other details can be found in [33], while the data assimilation 

method can be found in [43]. 

The model was initialized for 1 August 2010 and run through 31 August 2010, with a time step of  

1 s and output every 24 h. The model initiation did not use any MODIS data, but used water quality data 

obtained from fixed monitoring stations during the previous month (July 2010) [33]. Three separate runs 

were conducted, with results shown in Figure 8. The first was a free run without assimilating MODIS 

data, used as the control (Figure 8b,f). The second run assimilated MODIS Chla distribution on  

13 August 2010 derived from an existing back propagation (BP) algorithm that used only 2 MODIS 

bands at 645 and 859 nm [42] (Figure 8c,g). The third run assimilated MODIS Chla distribution on  

13 August 2010 derived from the EOF algorithm in this study (Figure 8d,h).  
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Figure 8. Top panels in (a–d): Chla distributions on 13 August 2010. (a) MODIS (EOF 

algorithm); (b) Forecast model (EcoTaihu, started from 1 August) without assimilating 

MODIS data; (c) Forecast model after assimilating MODIS Chla from the existing BP 

algorithm [42]; (d) Forecast model after assimilating MODIS Chla from the new EOF 

algorithm (a). The forecast model (EcoTaihu) generated model output every 24 h on 12:00 

AM local time. Bottom panels in (e–h): Chla distributions on 15 August 2010. Note that 

although the MODIS Chla image on 13 August was assimilated in the model, the MODIS 

Chla image on 15 August 2010 was not assimilated in the model and therefore served as a 

reference to validate the model’s performance in predicting Chla in two days.  

 

Despite the model artifacts, there is some improvement in the model-predicted large-scale features. 

For example, the high-Chla patches outlined in the black circles appear to be unrealistic, and the use of 

the EOF-based MODIS Chla reduced such an artifact as compared with the use of the existing MODIS 

Chla (BP algorithm). This is especially apparent for the Chla patterns outlined in the blue circles.  

In general, there is a large difference between the model predicted Chla and MODIS-derived Chla  

(Figure 8e,h), suggesting future work is needed in model parameterization and tuning. Nevertheless,  

for the same model, the advantage of using the new EOF Chla over the old Chla in data assimilation is 

demonstrated here. 

4. Discussion 

Previous algorithm development for Taihu Lake and many other inland water bodies rarely used 

satellite data, but focused on field-measured Rrs (e.g., [24,67]). This may lead to two potential problems. 

One, the field data may not cover the full dynamic range of all environmental variables, limiting the 

application of the field-based algorithms to only those conditions under which the field data were 

collected. This is especially true when the field data were first classified before type-specific algorithms 

were developed. Two, the algorithms assumed error-free Rrs, which is not true for either field-measured 

or satellite-derived Rrs. Thus, in addition to the field-based algorithm development (which relies on both 

field and satellite measurements) and traditional point-based validation, this study also used image-based 

validation through inspection of the spatial and temporal patterns. 
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One aspect of this work is the use of Rrc instead of Rrs as a compromise between data quantity and 

data quality for near real-time use. Ideally, MODIS Rrs, after proper atmospheric correction, should be 

used for inversion to geophysical parameters such as Chla. However, although several case studies have 

shown significant improvement in turbid water atmospheric correction through using the MODIS 

shortwave infrared bands for Taihu Lake [68,69], the most significant problem for Taihu Lake real-time 

applications is lack of satellite data, as MODIS ocean bands often saturate over turbid atmosphere. Even 

without saturation, the requirements of the atmospheric correction on aerosol optical thickness (<0.3 at 

869 nm) make valid MODIS Rrs retrievals extremely sparse for Taihu Lake. The MEdium Resolution 

Imaging Spectrometer (MERIS) has more spectral bands with more dynamic range, yet MERIS stopped 

functioning since April 2012. Several satellite missions are currently being planned by NASA and the 

European Space Agency (ESA). These include ESA’s Sentinel-III, which will have a MERIS-like sensor 

called Ocean and Land Color Instrument (OLCI, 300-m resolution) and is expected to launch around 

June 2015 (Bryan Franz, personal comm.). However, as with all previous ocean color missions, these 

future missions may also be delayed. The most recently launched Visible Infrared Imaging Radiometer 

Suite (VIIRS, 2012–present) may potentially be used for real-time applications, yet the calibration 

problems, especially after December 2012 (personal comm., Menghua Wang, NOAA NESDIS), make 

its performance unclear. Although not optimal, before VIIRS performance is evaluated, the use of 

MODIS Rrc from the land bands is perhaps the best available option. Yet future algorithm development 

efforts should be dedicated to VIIRS multi-spectral data once its calibration is improved, as VIIRS has 

more spectral bands than MODIS that do not saturate. 

The limited number of MODIS bands, together with the large uncertainties in the full atmospheric 

correction, led to the EOF approach for near real-time Chla retrievals. Similar to other neural-network 

based approaches, the EOF is based the variance of the spectral reflectance and thus purely statistical 

without explaining the physical meaning of the EOF modes. However, the Chla spatial distribution 

patterns derived from the MODIS images appear reasonable. One reason may be due to the spectral 

normalization (Equation (4)), which may partially remove the aerosol effects while retaining most of the 

spectral shape information. Likewise, although the spectral magnitudes and shapes in the extracted 

MODIS Rrc data suggest sediment-rich waters, the influence of sediments on the Chla retrievals is 

implicitly suppressed by the EOF model tuning, as all the four spectral bands (especially the three visible 

bands) do contain information from phytoplankton. For example, the ratio of 645/555 reflectance has 

been shown highly correlated with Chla in Tampa Bay [70], and the 469-nm band is also influenced by 

phytoplankton pigment absorption. Nevertheless, given the large uncertainties and purely statistical 

nature of the algorithm, the EOF approach developed for the four MODIS bands is a temporary solution 

to derive large-scale Chla patterns in near real-time. This is especially true when considering that  

(1) Chla in the training dataset (about 3–100 μg/L) may not cover the full data range of all possible 

blooms, especially those during the summer. Zhang et al. (2009) showed Chla during all four seasons, 

and they reported median ± std of 31.6 ± 58.1 μg/L for summer, meaning that about 25% of their data 

are above 100 μg/L (i.e., exceeding the data range used in this study)[49]. Although some of the MODIS 

images showed that the algorithm could retrieve Chla > 100 μg/L (especially over surface scums), the 

validity of these high-Chla values needs to be verified; (2) perturbations from sun glint, thin clouds, 

whitecaps, and other aerosol types that were not used in the sensitivity simulations (Figure 5) could 

induce additional uncertainties in the algorithm. Figure 5 shows that compared with the original URMSE 
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of 63.3% in the Rrs-based algorithm development (Figure 3a), most aerosol perturbations could induce 

another 5% in the URMSE. Other perturbations that were not considered in the simulations could 

possibly induce extra 5% or 10% URMSE, leading to a total URMS approaching or even higher than 

80%. Clearly, future efforts should be dedicated to collect more field-MODIS data pairs to fine tune and 

improve the algorithm under most, if not all, satellite measurement conditions. 

The limited model runs results also suggest the need for improvement of forecasting models. Over 

the last two decades, two general approaches have been developed to forecast Chla. The first was based 

on statistics through either regression [71], artificial neural networks [72,73], or fuzzy logic [74]. The 

second was based on physical and biological processes, which could reveal controlling factors and causal 

relationships [75–80]. For Taihu Lake, such process-oriented models have been developed and used to 

study hydrodynamics and biological response to physical forcing [33,52,81,82]. However, application 

of such a model together with MODIS data assimilation revealed large-scale artifacts, where the reasons 

need to be further diagnosed. For example, it might be possible that the model has inherent limitations 

due to the shallow water bottom (mean water depth of Taihu Lake is ~2 m), which presents a dragging 

force but is neglected in nearly all hydrodynamic models. Nevertheless, even with such apparent model 

artifacts, the improvement in MODIS Chla still led to improved performance in the model prediction. 

Clearly, an inter-disciplinary effort is required to improve both the forecast model and the MODIS Chla 

retrievals in order to implement a near real-time operational forecasting model for Taihu Lake. 

Can the EOF approach be applied to other similar water bodies in different geographical and 

biogeochemical regimes where MODIS ocean bands also saturate? A preliminary test of the algorithm 

using data collected from a nearby lake, Chaohu Lake, showed reasonable Chla distribution patterns 

although their validity still requires rigorous validation. It is believed that similar to previous EOF 

approaches to retrieve water quality parameters [27,60], the principle of the EOF approach should be 

applicable to other similar water bodies for most water quality parameters including Chla, yet the number 

of spectral bands, number of modes, and parameterization of the algorithm may need to be localized to 

account for the different bio-optical properties (e.g., dominated by suspended sediments, CDOM, or 

phytoplankton). We anticipate carrying out these experiments for other lakes in the near future. 

5. Conclusions 

This work represents one step towards the ultimate goal of establishing an operational, near real-time 

forecast model to predict Chla distribution in a turbid lake. Using in situ data and only four MODIS land 

bands that do not saturate over turbid atmosphere or turbid water, the empirical approach based on 

Empirical Orthogonal Function (EOF) analysis provides a preliminary solution to derive Chla under 

cloudfree conditions in near real-time for Taihu Lake of China, which can be assimilated in forecast 

models to improve Chla prediction. For Chla ranging between 3 and 100 μg/L, the unbiased RMS 

uncertainties were estimated to be <80%. Together with 853 cloud-free MODIS images between 2000 

and 2013, the algorithm led to the development of spatial and temporal Chla distribution patterns in 

Taihu Lake. The preliminary success is encouraging as MODIS is currently the only well calibrated 

operational sensor for near real-time applications, yet the large uncertainties and the limited number of 

spectral bands suggest further improvements in both the Chla retrieval algorithms and data availability 

from future satellite sensors. The discrepancy between model predictions and satellite observations also 

points to the need of improving the forecasting models. 
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