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Abstract: Given that ground stationary infrastructures for traffic monitoring are barely
able to handle everyday traffic volumes, there is a risk that they could fail altogether in
situations arising from mass events or disasters. In this work, we present an alternative
approach for traffic monitoring during disaster and mass events, which is based on an
airborne optical sensor system. With this system, optical image sequences are automatically
examined on board an aircraft to estimate road traffic information, such as vehicle positions,
velocities and driving directions. The traffic information, estimated in real time on board,
is immediately downlinked to a ground station. The airborne sensor system consists of
a three-head camera system, a real-time-capable GPS/INS unit, five industrial PCs and a
downlink unit. The processing chain for automatic extraction of traffic information contains
modules for the synchronization of image and navigation data streams, orthorectification
and vehicle detection and tracking modules. The vehicle detector is based on a combination
of AdaBoost and support vector machine classifiers. Vehicle tracking relies on shape-based
matching operators. The processing chain is evaluated on a large number of image sequences
recorded during several campaigns, and the data quality is compared to that obtained from
induction loops. In summary, we can conclude that the achieved overall quality of the traffic
data extracted by the airborne system is in the range of 68% and 81%. Thus, it is comparable
to data obtained from stationary ground sensor networks.
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1. Introduction

1.1. Motivation

The ongoing growth of our metropolises and regional conurbations makes it necessary to have
adequate methods for road traffic monitoring and traffic guidance. Everyday operations for generating
road traffic information mainly rely on stationary ground infrastructure, such as induction loops, radar
sensors and traffic cameras. All of the information is usually collected, processed and interpreted in
traffic control centers. There, measures are adopted for the optimization of traffic flow. These are then
transferred to the roads via intelligent traffic guidance systems. With a sparse distribution or even lack
of traffic sensors on side roads, these traffic monitoring systems are generally blind to the situations on
minor roads. Using floating car data (FCD, e.g., [1-3]) or floating phone data (e.g., [4]), it is possible
to get information of the traffic situation for some minor roads without stationary ground sensors [5]. It
was shown that these systems are well suited for the estimation of travel times, even without the use of
stationary traffic sensors. However, these data are incomplete in terms of wide area coverage and are not
sensitive to short-term congestion. In the case of disasters, with the damage of ground infrastructure or
extensive power blackouts, such systems would fail. This would result in a complete lack of information
and not just with respect to side roads.

Several projects that contribute to area-wide traffic monitoring by remote sensing based on airborne
optical and SAR sensors are currently running at the German Aerospace Center (DLR) or have already
been concluded (e.g., [6-9]). Meanwhile, an airborne optical system for traffic monitoring with real-time
capability has been developed [10]. This system allows automatic traffic data extraction from image
sequences in real time on board the aircraft. Data are immediately sent to the ground via air-ground
microwave radio relay or laser link [11]. The system is also able to send current orthorectified and
georeferenced images to the ground that can be used to produce situation maps, which are required
by relief forces [12]. The benefits of an airborne remote sensing system for the generation of traffic
information are its universal and selective applicability, since it is not limited to major roads, and that
it is independent of ground infrastructure. Even the ground station is designed to be self-sustaining,
supplied by a power generator. Combined with the disaster management tool (DMT, e.g., [13]), it is
possible to provide traffic information and aerial images to the relief forces in affected areas in real time,
even in the event of a complete breakdown of ground infrastructure. Furthermore, the generated traffic
information can be used for short-term prognoses of the traffic situation [14].

In contrast to our previous publication [10,15], where the used hardware architecture and components
are described in detail (Section 2), this paper is focused on the automatic traffic data acquisition. In
particular, the methods and algorithms for the generation of road traffic information (Section 3) are
addressed, and the quality of the traffic data for the data set shown in Section 4 was evaluated (Section 5).
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1.2. Related Work

There are many approaches for vehicle detection from aerial images. Extensive overviews are given
in [16-18]. Generally, vehicle detection is performed using implicit or explicit models. The first
approaches with explicit models used a simple rectangular mask for detection [19,20]. Later on,
extensions to 3D wire fame models were introduced and combined with classification methods [21].
One of the most mature works using hierarchical vehicle models was shown in [22], which was used
for road verification. Most approaches are not concerned with computation time, which is a critical
condition for real-time applications, such as the system proposed in this work. Implicit models in
combination with neural networks were used by [23,24] with promising results. In [25], an online
boosting procedure for efficient training data collection was utilized. They used different features, which
can all be calculated very quickly using integral images or integral histograms. Finally, a non-parametric
algorithm performs clustering of the calculated confidence values. An interesting work was presented
in [26]. They introduced new features for vehicle detection, i.e., color probability maps and pairs of
pixels. These led to very large feature sets, and partial least squares were used for feature transformation.
The authors of [27] use rotation invariant histograms of oriented gradients [28] and an adaptive boosting
classifier. Even though the authors use the same kind of imagery as the presented work (see Section 2.1),
the overall approach is not in the operational state. In the last few years, there have been many approaches
to vehicle detection working with images from UAVs [29-32]. These systems have a small payload,
which leads to limited coverage compared to airborne systems. Additionally, the regulatory framework
to fly UAVs remains uncertain in some countries, while a concept for the country-wide operationalization
of the presented system can be found in [33].

In recent decades, several methods for automatic tracking algorithms have been examined. The
first results were achieved based on the optical flow [34,35] from the image sequences of stationary
ground traffic cams. Further developments in vehicle tracking were carried out by [36], who used a
deformable vehicle template model, and by [37], who presented a 3D modeling approach. Airborne
frame cameras with a low or medium frame rate require alternative methods. Fundamental research
on this topic based on change detection algorithms was done by [38,39]. While these algorithms
work fine on moving objects, they are not suitable for recording vehicles that are static. In [6,7],
detection-based tracking algorithms on a medium frame rate system were presented. There, tracking
was performed by an intelligent attribution of vehicle detections in consecutive images. A similar
approach was transferred to low frame rate sequences in [40]. Later on, the focus of development shifted
to combined detection tracking approaches, in which the tracking was based on template matching
(e.g., [8,41,42]). The tracking results shown in this paper are based on the latter approaches. At the
current operational state, all vehicle are tracked individually. Newer approaches for aerial vehicle
tracking use more advanced prediction methods, such as Kalman filtering and, furthermore, track
multiple objects simultaneously [43]. In [44], particle filtering for multiple vehicles is presented, which
is currently integrated with the operational system.

Due to the increased number of high resolution satellite imagery systems in the last decade, there have
been many approaches for vehicle detection [45-49] and even tracking from single-pass images [50-52].
However, these systems are not comparable to the presented work. Satellites have revisit times of



Remote Sens. 2014, 11 11318

several days and are mostly solar synchronic. Thus, the possible applications seem to be quite restricted.
Even so, these approaches are quite interesting; to our best knowledge, there is no operational system
that uses traffic data from such systems.

As a matter of course, all optical imaging system strongly rely on weather and illumination
conditions. During night time or bad weather conditions, active sensors, such as LiDAR [53-55] or
SAR [56-58], may be applicable. Furthermore, infrared sensors are capable of detecting still and
recently active vehicles [59]. Within the same project as the presented work, approaches for vehicle
detection from airborne SAR systems are developed [60], which are based on the DLR’s in-house E-SAR
system [61].

2. System Overview

The real-time system for traffic monitoring from aerial images can be divided into several
sub-systems. The on-board system consists of a sensor system, a computer network system and a
radio link. The ground system consists of a receiving antenna and a computer network. Figure 1
shows an overview of the system part on-board the aircraft. The on-board computer network system
consists of industrial PCs with up-to-date hardware (Core-i-7 CPU, 16 GB RAM, SSD drives, NVIDIA
GeForce 9800 GTX GPU/512 MB memory/compute capability 1.1) and a Gigabit switch. Image
sequences are acquired by the 3K+ camera system. Flight position and attitude is recorded synchronously
by an IGI GPS/Inertial Navigation System (INS) with real-time capabilities. Images are read out
from the cameras and synchronized with the data stream recorded by the GPS/INS navigation unit.
Further processing steps performed by the on-board computers are image storage and image/navigation
data stream synchronization, direct georeferencing/orthorectification and the generation of road traffic
information. After the traffic information is extracted, images are sent to the ground together with the
extracted traffic data. In order to reduce the data traffic of the downlink, only every third image of the
sequence is sent to the ground, which is sufficient for continuous mapping. Another function of the
on-board computer network is to steer the beam antennas of the directional radio link system. It keeps
the sending antennas aligned to the ground station regardless of the position and attitude of the aircraft.
The radio link system operates in the C-band, works bidirectionally and delivers a data bandwidth of
7-12 Mbit/s for distances of up to 100 km. The ground antenna has a parabolic design with a diameter
of 60 cm and is pivot mounted in azimuth and elevation. Aircraft and the ground station exchange GPS
positions via the radio link for dynamic antenna alignment.

On the ground, traffic information, such as vehicle positions and velocities, is refined and aggregated
on Navteq road sections. A road section is a polygon of several nodes that locates the primary middle
axis positions of roads. It follows the road until an intersection is reached or an attribute of the road
changes. In these cases, a new section begins. On two-way roads, the opposite driving direction is
represented by separate polygons with a reverse course. A typical road level-of-service display of a
traffic portal uses aggregated traffic information. Therefore, each vehicle is allocated to its corresponding
road section, and the average values of velocity and vehicle density are calculated for each section.
Aggregated traffic information is transferred to an internet traffic portal server. This allows security and

emergency authorities and organizations to follow the current traffic situation (road level-of-service) and
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derive traffic prognoses based on this traffic data. The underlying road map of the traffic portal is also
Navteq-based. Georeferenced images of the airborne system are mosaicked at the ground station and
transferred to an Internet portal, as well.

Figure 1. Overview of the airborne component of the on-board sensor system.
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Due to limited camera capacities for high frame rates, the sensor system records images in the
so-called burst modes. Camera bursts are short sequences with a high image repetition rate. After
an image burst, the cameras stop for several seconds until the next burst is triggered. Each burst consists
of three consecutive exposures with a 1.25 to 2 Hz frame rate (configurable). An image burst is recorded
every 7s. Thus, the amount of image data is significantly reduced compared to a continuous exposure
mode with a high frame rate. At a typical flight speed of 70 m/s, there is a 30% overlap between the first
images of each burst at a flight height of 1500 m. Vehicle detection is performed on each first image of
the burst, and vehicle tracking is done using consecutive image pairs within the burst (Section 3).

In another configuration, the radio downlink system is replaced by an optical laser transmission,
called FELT (free-space experimental laser terminal; [11]). It consists of an airborne optical terminal
that aligns the laser towards the ground station. The digital data stream is modulated to the laser light
signal. On the ground, the transportable optical ground station receives the signal.

The aircraft system is usually controlled by two on-board operators. For future purposes, a fully
automatic system will be designed to handle operations without any on-board interaction. In this case,
interventions will be commanded from the ground via radio link. Based on the present system, we are
currently developing a small lightweight version of an airborne traffic monitoring system that can be
installed on helicopters or small aircraft [10].

2.1. DLR’s In-House “3K/3K+" Camera System

Since 2004, an optical airborne sensor system based on commercial off-the-shelf cameras had been
developed at the DLR and employed for many campaigns. The 3K camera has a significantly higher
frame rate than metric camera systems, which allows it to record movements on the ground, like road
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traffic. The 3K camera consists of three Canon 1Ds Mark II cameras with a 36 x 24 mm CMOS chip
at 16.7 Megapixels. The maximum frame rate is 3 fps. The cameras are arranged to provide one nadir
view and two oblique views. In 2011, the camera system was replaced by its successor, the 3K+ camera
system. The platform design of the 3K was kept, but the cameras were replaced by Canon 1Ds Mark
III cameras. These cameras provide a resolution of 21 Mpix each and a higher frame rate of up to 5 Hz.
A detailed comparison between of the 3K and 3K+ system can be found in [10]. With the use of 50-mm
objective lenses, the nadir ground sampling distances for the 3K/3K+ sensor at a typical flight height
of 1000 m above ground are 15 cm versus 13 cm. With a (configurable) maximum tilt angle of +32° of
the side-looking cameras, both sensors have a footprint of 2560 m x 480 m at this flight height. The field
of view (FOV) at the maximum angle is 104° across track and 26° in the flight direction. The maximum
positioning error on the ground after georeferencing/orthorectification at a height of 1000m is in the
range of 1.4 m in the nadir to around 3 m at the edges of the FOV. The displacement between consecutive
images of the same burst is less than 1 pixel, which is important for accurate velocity determination
during tracking. Figure 2 shows the coverage in across and along track mode. The standard mode for
traffic data acquisition is the across track burst mode (Figure 2, upper left illustration).

Figure 2. Ground coverage of the 3K/3K+ sensor system in continuous across track mode
(lower left), across track burst mode (upper left) and continuous along track mode (right).
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Exposures of the sensor are triggered by an external trigger box. The trigger box has an internal logic
that produces pulses for the external trigger input of the cameras. It is activated manually by the camera
operator on-board the aircraft when it reaches the flight strip. Exposure parameters and image recording
can be triggered for the cameras with software via USB.

The airborne sensor system is usually operated on-board the DLR research aircraft, Dornier DO 228
and Cessna 208B Grand Caravan. These aircraft provide high performance concerning range (i.e., natical
mile - NM) and endurance (DO 228: 1500 NM/9:00 h; Cessna: 1020 NM/6:30 h) and airspeed (i.e., knots
true airspeed - KTAS) (DO 228: 220 KTAS; Cessna: 184 KTAS). The total cost of a flight hour is 1200
EUR for the Cessna and 1600 EUR for the DO 228. Compared to the total turnover and gains during

major events, the costs for flight hours might be acceptable, not to mention flight costs versus information
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gain by additional products, such as maps during a disaster [12]. The lightweight version of the airborne
system mentioned above already had its first flight with the DLR BO 105 helicopter in June 2014. Flight

operation costs of the helicopter are comparable to that of the Cessna 208B.

2.2. Online Pre-Processing

In the first pre-processing step, the image stream of each camera and the data stream of the GPS/IMU
navigation system are synchronized in each camera PC.

The next processing step is direct georeferencing/orthorectification. This is done only with the flight
position, height and attitude data of the GPS/INS navigation unit without using any ground control
points. The interior orientation of the cameras and the boresight misalignment between cameras and
IMU has to be determined once prior to the real-time mission. Images are projected to a DEM using
the algorithm presented in [62]. For real-time orthorectification, the code has been parallelized to run on
NVIDIA graphics card GPUs in the CUDA programming environment. With this, the execution time of
the orthorectification process for each image is reduced from 13 s, when executed on a CPU, to 250 ms
on the GPU.

The projected images are passed to the traffic processor, which performs the traffic data extraction.
After traffic processing, the traffic data and selected images are transferred to the sender PC (PC 5 in

Figure 1) to transmit them directly to the ground station.

3. Methodology

In this section, the overall procedure for the generation of traffic information is presented. All
processing steps for estimating road traffic information are performed on-board the aircraft. To fulfill
the interface specification of the Internet traffic portal, only the conversion of the traffic information is
done on the ground. In addition, another outlier correction procedure, which is done according to [41],
can be activated at the ground station. This module was transferred to the ground in order to save
computing power in the on-board system. After georeferencing of the images (Section 2.2), external
geoinformation is used for delineation of road areas (Section 3.1). The following vehicle detection
(Section 3.2) is performed in the regions of interest of the first image of each sequence (image burst).
All detected vehicles are tracked by shape-based matching, as described in Section 3.3. The performance
of the algorithms has to fulfill the time constraints given by the burst mode configuration, which limits
the overall processing time to 7 s. Details of our strategy for saving computation time are given in the

following section.

3.1. Image Preprocessing

Orthoimage preparation for vehicle detection is performed for each camera viewing direction. The
images are overlayed with road axes obtained from a Navteq database. This is done in order to reduce
the search area for vehicle detection and limit it to road areas. In this preprocessing step, it is possible to
choose roads of certain level types by the number of lane categories or other road attributes. All of the

pixels located between a certain width buffer along the road axes are selected as the region-of-interest.
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A typical value used for the road buffer width is 22 m, because it works for all types of road categories.
It is sufficient to cover motorways with four or more lanes while taking into account the errors in the
location of road axes and image georeferencing. If the extraction of traffic information is limited to
minor roads (e.g., in city regions), the buffer width can be reduced. In a future version of the processing
chain, we plan to adapt the road buffer width to the lane categories.

All regions-of-interest are aligned in the road direction by resampling, which leads to straightened
and rotated road snippets. All vehicles appear horizontal. Thus, there is no need for rotational invariant
feature calculation during detection, which may be computational expensive compared to the used
Haar-like features. A look-up table for the transformation of pixel and UTM coordinates from the
straightened road images back to the original images is created. It contains both the pixel coordinates in
the straightened image and the UTM coordinates of each node of the respective Navteq section. Thus,
each vehicle position detected in the straightened roads image can be transformed into the coordinate
system of the original image. Figure 3a shows the situation after road buffering and straightening. The
images of the straightened roads obtained from each first image of an exposure burst are transferred to

the next module of the traffic processor, the vehicle detector.

Figure 3. Results of the boosted classifier. (a) Straightened image; (b) boosting results;
(¢) boosting results after threshold.
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3.2. Vehicle Detection

We developed a processing procedure for fast vehicle detection, which consists of the following

three stages:

e pre-classification with a boosted classifier;
e blob detection for reducing the number of vehicles hypothesis;
e final classification of the remaining hypothesis.

This stage-wise approach is able to fulfill the defined performance constraints.

Pre-Classification

During pre-classification, an extended set of Haar-like features [63] is used, which are based on
features introduced in [64] and give a general description of different objects. Due to the large number
of pixels covering one single vehicle in images with a ground sampling distance (GSD) of 20 cm, the
overcomplete set of features contains nearly 2 million possible Haar-features for all image channels.
Although the calculation of single features is very fast, as shown in [65], it is not feasible to calculate
all features during classification, due to existing time constraints. Therefore, the pre-classification
is performed by an adaptive boosting algorithm, also known as AdaBoost. Thus, necessary feature
reduction is directly carried out during the training of the classifier. In general, AdaBoost builds a strong
classifier /' () as a linear combination of iteratively generated weak classifiers f™ (x):

Fo)=3 ") (1)

Here, the sign of F' () gives the predicted class label, while its absolute value is a confidence measure
for this prediction. Different techniques, such as stumps or decision trees, can be used as weak classifiers.
While decision trees are able to learn dependencies between features [66], we used stumps, because they
can be evaluated faster, since only one binary threshold has to be evaluated. During the training, only the
feature that produces the lowest weighted classification error is selected at each iteration. This leads to a
drastic reduction of the overcomplete feature set. The training stops when the predefined threshold of test
error is reached. The error rate was set to 2%, and the training finished after 70 iterations. Therefore, only
70 features have to be calculated during classification. Figure 3 shows an example of the classification
result. In the first image (Figure 3a), an original straightened road is display. The next image (Figure 3b)
shows the complete range of possible confidence values from —1 (black color) to 1 (white color), where
high values stand for vehicles and lower values correspond to the background. After setting all negative
confidence values to 0, vehicles already become clearly visible in Figure 3c.

In this work, the classification is performed by gentle AdaBoost [66], which is stated to have better
performance [67] compared to the original discrete [68] and real AdaBoost [69], due to less severe
weighting of wrongly labeled or unrepresentative training samples.

Blob Detection

Following the pre-classification, neighboring pixel with positive confidence values are grouped

by finding zero crossings. As can be seen in Figure 4a, a huge number of image regions do not
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correspond to vehicles. To reduce the number of possible image regions for later final classification,
we detect very fast keypoints, as described in [70]. To do this, the image is smoothed using a
median filter, resulting in smoothed image I. Then, points I (m + dR,) within a predefined radius
R, i.e., approximately the size of vehicles, are evaluated according to the gray value difference 7
to the center point I (m). Here, dR, = (Rcos();Rsin(a)) and « is varying between 0 and 7.
If |1 (m) — I (m+ dRa)‘ < 7andif ‘f(m) —I(m— dRa)‘ < 7, then m is not a keypoint. Thus, blobs
of specific characteristics can be found within the positive valued image regions. Optimal parameters
for R, 7 and the number of points on the radius, i.e., the number of varying «, were found by 5-fold
cross-validation. The red circles in Figure 4b mark the remaining regions. Only these image areas are
passed to the final classification. In empirical tests, the number of vehicle hypotheses (regions with
positive confidence values) is reduced by a factor of four to five, which significantly accelerates the
final classification.

Figure 4. Clustering and final classification. (a) Zero crossings of the confidence image;
(b) Lepetit points (red circles) and final detections by SVM (green crosses); (¢) final

detections on the original image.
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Final Classification

All areas marked by red circles in Figure 4b are classified using support vector machines
(SVM) [71-74]. In general, the final classification could have been carried out using the same algorithm
as the pre-classification. However, we decided to use SVM, since the usage of kernel functions allows
a better discrimination of non-linear classification problems, which might be the case for the features
used. The features used for classification are listed in Table 1. All radiometric properties are calculated
independently for red, green, blue, intensity, saturation channels and the confidence image. This
leads to many correlated features. Thus, before applying the SVM, a principal component analysis
is performed. The cumulative percentage of the total variance explained by each principal component
was set to 99.99%, which leads to a significant reduction of the feature space and, thus, a speed up during
classification. We use the v-SVM introduced in [75], with the radial basis function as the kernel. The two
parameters of the SVM, i.e., v and kernel parameter o, were defined using cross-validation. In total, three
classes are made: vehicle, background and possible vehicle. During classification, possible vehicles are
only verified if there is no object of class vehicle in the surroundings. Verified vehicle hypotheses are
marked by green crosses in Figure 4b,c. The final position of a vehicle is given by the center of verified
blobs. In the case of shadows surrounding a vehicle, these regions also give a positive response during
the pre-classification. Thus, the position is biased in the direction of the shadow. Still, since the final

derived trajectories are only per direction and not per lane, these inaccuracies are negligible.

Table 1. Geometric and radiometric features for image region classification.

Geometric Features Radiometric Features
(from [76]) (from [77])
semiaxes of smallest enclosing ellipse mean and deviation of gray values
area entropy
circularity local homogeneity
rectangularity energy
compactness correlation
eccentricity contrast

3.3. Vehicle Tracking

The proposed vehicle tracking is performed using explicit shape models generated on each vehicle
on the roads. For that, we generate a shape model within the radius of 5.2 m centered on each vehicle
detection. This usually covers complete cars. For trucks, a shape model is created with the same radius
centered on the driving cab. This area on the truck usually comprises the most characteristic signature of
each individual truck. Tracking takes place between consecutive images of an image sequence (burst).
Tracking is performed by matching the vehicles detected in the first image over the following images of
the sequence. The vehicle pattern is updated after each tracking step. This makes the tracking method
almost invariant for illumination or perspective changes. Vehicle positions in the first image of each burst

are known prior to vehicle tracking from the previously detection. A shape model is generated for each
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position of a detected vehicle. Position prediction for the second image is based on the position detected
in the first image and the maximum vehicle speed expected. A search area is spanned in the travel
direction originating from the known position of the vehicle in the image before. The assumed travel
direction is derived from the direction of the road (obtained from Navteq data) on which the vehicle was
detected. The instance with the best matching score is assumed to be the correct match. A threshold
for the score, which is normalized to a range of 0.0 and 1.0, is applied. For matching scores below this
threshold, it is assumed that the vehicle is not visible in the second image and that the match is skipped.
The best results with minimum false positive and negative rates were obtained with a threshold of 0.6.
The search area length is calculated corresponding to the road section maximum speed plus a constant
and a linear tolerance. Typical values used for the tolerance are 10 km/h for the constant contribution and
20% for the linear portion (10 km/h is about twice the error in measuring velocity, and 20% is usually
the threshold, where a speeding ticket comes along with harsh sanctions).

Shape-based matching, which forms the main operator of tracking, is based on pixel-wise template
matching of the image gradients. Common gradient-based methods, like the generalized Hough
transform (e.g., [78,79]), have the disadvantage that they are not invariant against larger illumination
changes. They are edge point based, and the number of extracted points depends on the image contrast.
Thus, a lower contrast reduces the number of edge points, which affects the matching in the same way
that occlusion of an object would [80]. Therefore, [80] proposed a pixel-wise, shape-based matching
approach, since it is robust against occlusion, clutter and nonlinear illumination changes. In detail, an n

pixel model of an object is defined according to [76] as a set of points:

pi = (ri,c)’ (2)
withs =1, ...,n, and:

di = (ti,u;)' (3)

as the associated gradient direction vectors generated by edge extraction [81]. The search area in the
target image of the template search is represented by a direction vector:

Erc = (Ur,ca u}r,c)T (4)

for each image point (7, ¢). The normalized similarity measure s for shape-based template matching is
calculated then as:

n

Z _diegy 1 EiVr ot e + Uit ere] 5)
I d;

(& n < 2 2
”H P H i=1 t/z +U’; \/UT2+T£70+C;: +wg+7’g,c+cg

In order to speed up the search, a hierarchical search using image pyramids is used. Figure 5 shows
the typical result obtained from the vehicle matching operator prior to the elimination of outliers. The
vehicle positions obtained after tracking are stored and can be used for a second call of the vehicle
tracking module with the next image pair of the sequence.

The first step in reducing outliers is performed in the vehicle tracking module inside the aircraft.
The goal is to reduce false matches in tracking, as well as false positives in detection (e.g., road

markings that have been erroneously detected as vehicles). The latter may be partially revealed by a
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possible irregular behavior in tracking. If the direction deviation exceeds 30°, the match is refused. No
direction criterion is applied below a speed threshold of 10 km/h, since inaccuracies in georeferencing
may influence travel directions beyond the derivation criterion (see also Section 5.3). The threshold value
of 30° was chosen, since we already observed angles of more than 20° during lane changes in the case
of congestion situations on motorways. Moreover, in intersection areas, we observed vehicles with up
to a 30° deviation from the straight driving direction, which need to be detected by our rotation variant
vehicle detector (Section 3.2). ASCII data files containing the corrected tracking results are transferred to
the ground instantaneously via a radio link system. Since the radio link may be working at full capacity
due to the images being sent to the ground, ASCII files with traffic data are highly prioritized in order to
keep the traffic data highly current.

Further outlier reduction is performed on the ground due to limited processing power on-board the
aircraft. A fuzzy logic is applied for this purpose, as described in [42]. In summary, vehicle velocities
are evaluated with respect to the state of traffic and the distance to or from the next intersection. For
example, if a vehicle is far from an intersection and its velocity is significantly below the average of
the free flowing traffic situation around the car, it is rejected. If the image burst sequence consists
of more than two consecutive images, a further validation of plausibility for each vehicle trajectory
is performed at the ground station. The time derivatives of velocity and direction are checked for
plausibility for each vehicle track. If the acceleration, deceleration or direction change leaves physically
realistic value ranges, the vehicle trajectory is assumed to be an outlier and removed from the traffic data.
The thresholds for the maximum acceleration and deceleration allowed are set to 5 m/s? and 10 m/s?. The
maximum acceleration is a typical value for a premium car, like the Porsche Cayenne Turbo or Jaguar
XKR Coupe (0-100 km/h) [82]. The maximum deceleration is a typical value for a premium car (e.g.,
Mercedes CLK 430 or Chevrolet Corvette, 100—0 km/h) [82]. For direction change, a maximum of 8°/s
(0.1396 rad/s) is allowed. This value is due to the following assumptions. The minimum curve radius
for European motorways with a recommended speed of 80 km/h is 240 m (e.g., [83]). This corresponds
to a lateral acceleration of 2m/s?. In [84], the measured velocity vgsy in bends with a radius of 240 m
is 92km/h is shown. This corresponds to a lateral acceleration of 2.8 m/s?. In order to additionally
catch the 15% of drivers driving faster than 92 km/h, we assume an additional 20% and an additionally
constant of 10 km/h for the 92 km/h, as described before. Totally, we assume for a bend with a 240-m
radius a maximum speed of 120 km/h. This value leads to a rate of turn of 7.95°/s, which we rounded to
8°/s. This corresponds to a lateral acceleration of 4.6 m/s?.

At the ground station, traffic data obtained by the airborne camera system are prepared for use in a
traffic portal or GIS. This is done by assigning each vehicle to its nearest Navteq road section while
taking into account that its driving direction has to correspond to the direction of the respective Navteq
section. If the vehicle cannot be allocated to any road axis, it is assumed to be an outlier and rejected.
This outlier correction does not influence the behavior of the traffic data extraction at intersections. This
is due to the following fact. Since the vehicle detector is sensitive to driving directions, we cannot detect
vehicles which have a direction angle of more than around 30°/s for any Navteq road axis. Nevertheless,
vehicles lost due to this property of the vehicle detector are rare in practice. An average vehicle density
and velocity is calculated for each Navteq segment located in the first image of a burst. This spatially
aggregated data represent the road level-of-service. Single vehicle trajectories can be used after fusion
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with the traffic information recorded by ground-based sensor networks for the initialization of traffic

simulations (e.g., [14]).

Figure 5. Typical matching result of the vehicle tracking algorithm between the first (left)
and second image (right) of a camera burst (example from the nadir camera, Cologne
campaign on 17 September 2011).
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4. Datasets

4.1. Training and Reference Data

All in all, more than 4700 vehicles have been manually extracted from images of previous campaigns
and test flights. All of the images have been sampled to a 0.20-m ground sampling distance. To obtain a
large number of samples for the background class (negative examples), large road areas without vehicles
on it were marked manually. Within those areas, samples were extracted at random positions. We set the
number of background samples to 15,000 to have a good ratio between the number of training samples
of the vehicle and background class.

4.2. Campaign

In the past few years, the traffic monitoring system has been tested on several test flights and
campaigns in Munich and Cologne. For instance, it was flown during the BAUMAexhibition (World’s
Leading International Trade Fair for Construction Machinery, Building Material Machines, Mining
Machines, Construction Vehicles and Construction Equipment) on 22 April and 24 April 2010, at the
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Munich Exhibition Center and the skirting motorway A 94. The flight height of this campaign was
1000 m above ground. Further campaigns were flown in Cologne on 2 June 2009, at a flight height of
1500 m and during Aerospace Day in Cologne on 18 September 201 1. The results of an extensive system
test prior to Aerospace Day on 17 September 2011, are shown in Section 5. Images were taken at flight
levels of 1200 m and 1500 m above ground (depending on air space control permission) on motorways
and main roads in Cologne. They were orthorectified with a GSD of 0.2 m, since the complete system
and the vehicle detector are only configured for this resolution. Image sequences were acquired in triple
bursts with an intermission of 0.7 s between consecutive images within a burst. The break between the
last image of a given burst and the first image of its subsequent burst was 5.5 s.

During summer, 2011, the 3K system was exchanged with the 3K+ system. Thus, data for the
BAUMA campaign in 2010 and Cologne in 2009 were taken with the 3K system, while the second

campaign in Cologne from 2011 was flown with the 3K+ system.

5. Results

For the evaluation of the vehicle detection and tracking algorithms, the values for correctness,

completeness and quality are calculated for different scenes from several campaigns. They are defined as:

_ true positives
Correctness (Compl ) " truepositives+ false positives (6)
o true positives
Completeness (COTT’) " truepositives+ false negatives (7)
Quality (Qual.) = L b (8)

true pos+ false pos+ falseneg

with true positives being the number of vehicles detected, false positives the number of non-vehicle
detections and false negatives the number of vehicles missed. In the tracking evaluation, true positives
is the number of vehicles tracked correctly, false positives the number of incorrectly tracked vehicles
and false negatives the number of vehicles detected, but not tracked (vehicles that are not tracked during
image bursts due to occlusion are not counted as false positives). In total, 104 images from several
campaigns were evaluated for detection quality. For the tracking, 104 image bursts were examined. The
quality value here is considered to be the strictest criterion, since it contains both possible detection
errors, namely false positives and false negatives.

Figure 6 shows a typical result of the traffic extraction. It was obtained online and in real time
during the Cologne campaign on 17 September 2011 (3K+), at the three-leg interchange “Heumar”. The
correctness, completeness and quality values of the vehicle detection are 98.2%, 86.6% and 85.2% in
this specific scene. The correctness, completeness and quality parameters of the tracking result obtained
from that scene are 96.8%, 98.1% and 95.1%.

5.1. Results of Vehicle Detection

Vehicle detection was validated manually. In each first image of a burst, the number of false detections
and non-detections was counted. Table 2 shows the evaluation result of the vehicle detection on a dataset
from Cologne in 2009 (3K system). It contains a mix of suburban, motorway and urban core scenes. The
average quality of the Cologne 2009 detection results was 83%. During the BAUMA 2010 campaign in
Munich (3K system), the average quality of vehicle detection was 86% (Table 3). In the Cologne 2011
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campaign, which took place in mixed weather conditions, the total quality of the detection was 77%
(Table 4). The top image in Figure 7 shows the limitations of the original detector in a complex scene.
This image shows the maximum outlier of the detection quality during the campaign. The cables of the
bridge result in a higher number of false positives due to the fact that the Haar-like features are very
sensitive strong edges. There are also false detections in the case of vehicle-like objects, e.g., shadows of
road signs or marked parking lots, which have similar dimensions as cars. To improve the detection rate,
the results are checked visually after the end of the campaign. If there seem to be many errors, vehicles
and their tracks are manually acquired and used for re-training the classifiers. The false positives were
used as new/additional negatives examples. In the lower image of Figure 7, the results after the retraining
process can be seen. The quality of the data obtained in the scene has been improved significantly.

Figure 6. Typical result of the traffic data extraction obtained online during the Cologne
campaign 2011 (3K+ system). It shows traffic congestion at the ‘“Heumar” three-leg

interchange. Vehicle velocities are color coded.
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Table 2. Evaluation of vehicle detection quality on Cologne 2009 data (3K system).

Scene Suburban & Motorways Urban Core Total
Images evaluated 73 6 79
True Positives 5545 2911 8456
False Positives 613 429 1042
False Negatives 424 317 741
Correctness 90% 87% 89%
Completeness 93% 90% 92%
Quality 84% 80% 83%

Table 3. Evaluation of vehicle detection quality on BAUMA2010 data at Munich

(3K system).
True False False Compl. Corr. Qual.
Positives Positives Negatives (%) (%) (%)
BAUMAL 1221 39 90 93.1 96.9 904
BAUMA?2 743 9 134 84.7 98.8  83.9

Total 1953 48 224 89.7 95.6  86.1

Table 4. Evaluation of vehicle detection quality on Cologne 2011 data (3K+ system).

True False False Compl. Corr. Qual.
Positives Positives Negatives (%) (%) (%)

Detection 1741 356 165 91.3 83.0 770

Figure 7. (Top) Results of original vehicle detection on a complex bridge scene that resulted
in a low quality of 48% (Cologne campaign 2011 with 3K+ system). (Bottom) Results of
vehicle detection on the same scene after retraining the AdaBoost classifier.
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5.2. Results of Vehicle Tracking

Campaign vehicle tracking was evaluated manually in three steps on each first and second image
of an image burst. First, the number of detected cars that can be tracked was determined. This is the
number of cars that were not occluded in consecutive image pairs. This number is typically lower than
the number of detected cars, since the overlap between the first and second image of an image burst
is usually less than 100%. Vehicles outside the overlap region cannot be tracked. Furthermore, there
are few vehicles that are detected in the first image, but occluded by other image objects in the second
image. These vehicles also cannot be tracked. The loss of vehicles in tracking due to the image overlap
of consecutive images within a burst could be compensated for by increasing the overlap of image bursts.
Subsequently, the number of false positives (i.e., the number of vehicles that were incorrectly tracked)
and false detections were counted.

Table 5 shows the results of the tracking evaluation for the BAUMA campaign. The results of the
tracking were quite good with high values of completeness (97%), correctness (93%) and quality (91%).
On motorway scenes with image sequences taken in good weather conditions, tracking seemed to work
fine. In Table 6, the results of the tracking evaluation of the Cologne campaign 2011, which took place
under unfavorable weather conditions, are shown. The scenes include a mixture of images of downtown,
suburban areas and rural motorways. In this case, an average completeness of 92%, a correctness of
94% and a quality of 88% were obtained. The minimum value of quality observed in two scenes was
71%. In one of these scenes, the exposures were foggy. Based on these results, the tracking algorithm
shows a good performance, even in complex scenes. Vehicle tracking performed best on the Cologne
2009 campaign (Table 7). There, the values for correctness, completeness and quality were 97%, 96%
and 93%.

Table 5. Evaluation of vehicle tracking quality based on BAUMA 2010 data in Munich
(3K system).

Campaign BAUMA1 BAUMA2 Total

Bursts evaluated 29 19 48
True Positives 1002 724 1726
False Positives 75 47 122

False Negatives 36 23 59

Correctness 93% 94% 93%
Completeness 97% 97% 97%
Quality 90% 91% 91%

Table 6. Evaluation of vehicle tracking quality on Cologne 2011 data (3K+ system).

True False False Compl. Corr. Qual.
Positives Positives Negatives (%) (%) (%)

Tracking 1125 62 92 924 94.8  88.0
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Table 7. Evaluation of vehicle tracking quality based on Cologne 2009 data (3K system).

Scene Suburban & Motorways Urban Core Total
Bursts evaluated 49 ) 54
True Positives 2654 2050 4704
False Positives 85 58 143
False Negatives 118 88 206
Correctness 97% 97% 97%
Completeness 96% 96% 96%
Quality 93% 93% 93%

Figure 8 shows the result of tracking in the case of a thin cloud coming into the line of sight between
the first and second image of the camera burst. Although the second exposure is slightly covered by that
cloud, tracking performs well.

Figure 8. Matching result of the vehicle tracking algorithm between the first (left) and

second image (right) of a camera burst in the case of thin clouds (Cologne campaign 2011
with the 3K+ system).

5.3. Overall Accuracy

Individual vehicles have a positioning error that is around a factor of 10 less than their size (RMSEs
of the X'Y -position range from 0.14 m to 0.38 m; please refer to [10]). The velocity accuracy of a single
vehicle tracked using aerial image sequences of this 3K camera system was examined in [85]. It was
found to be below 5 km/h. The uncertainty of moving direction is dependent on the driving velocity.
It is mainly influenced by the positioning error due to the direct georeferencing procedure. For a vehicle
with a velocity of 10 km/h, it may exceed 30° in the extreme case. At a speed of 100 km/h, it is typically
less than 4°.

The overall accuracy of derived traffic densities depends on the completeness, correctness and quality
of the detection. Our detection quality is in the range of 78% (Cologne campaign in 2011) and 86%
(in 2010). A comparison of aerial image-based detection errors and stationary ground detectors, such
as induction loop detectors or traffic cams, is challenging due to the different species of data obtained
(ground sensors deliver punctual information, whereas aerial images provide area-wide data with a low
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time resolution). However, the over-count rate of a highway network is comparable to the false positive
rates obtained by our vehicle detection. In [86], the over-count rate of induction loops of a freeway in
Portland, USA, was found to be 8.3%. In comparison, the correctness of our car detection algorithm was
evaluated to be around 90% in suburban regions (Table 2). This corresponds to an over-count rate of
10%. The detection rate of induction loops straight from the factory varies between 90% and 97% [87].
The completeness of our detection is in the range of 90% to 92%, depending on the complexity of the
scene (higher in scenes with lower complexity, like motorways or highways). As induction loops age,
their quotas decrease. However, the quota of our system is not dependent on aging effects.

The completeness of our tracking is in the range of 92% to 97% (Cologne 2011 and BAUMA
Campaign 2010), which means that 92% to 97% of the vehicles detected were tracked properly. Overall
system completeness, including detection and tracking, is expressed as the detection completeness times
the tracking completeness. In our case, we end up with a system completeness in the range of 68%
(Cologne 2011) to 81% (BAUMALTI in 2010). In order to measure the velocity of a specific car with
induction loops, it must produce a detection in two consecutive induction loops. With each induction loop
having a completeness of 90% to 97%, the system completeness for measuring velocities from induction
loops is between 81% and 94%. Such dual loop detectors may also produce some false positives. In [88],
it is stated that dual loop sensors tend to underestimate the bin volumes, although overestimation errors
occur occasionally. In cases of false positives, the correctness of the data delivered can drop to a value
of 53%. In comparison, the correctness of our system is expressed as the detection correctness times
the tracking correctness and lies between 68% and 81%. The quality of our airborne-generated traffic
information therefore touches the quality range of induction loop networks, with the advantage that our
system provides a higher spatial coverage.

5.4. Performance

The processing chain for traffic monitoring on the on-board hardware used is real-time capable.
This means that an image burst consisting of three images for each camera’s looking direction can be
processed and analyzed by the processing chain before the recording of the next burst has been finished.
With respect to Section 4.2, total processing times for each burst must not exceed 7 s. These benchmark
tests have been performed with a maximum of 1000 vehicles in the scenes. We assume that this is the
absolute maximum number of vehicles to be found in an image scene of one looking direction (e.g., in
downtown areas of large metropolises). In this case, the computing time for vehicle detection module is
2.5s, and for the tracking module is 2.1 s on the given on-board hardware. With only a few cars in the
image scene, the processing time decreases to values of around 1s for each module. As stated before,
georeferencing and orthorectification are processed at the GPU with typical processing times of 250 ms
for each image. This performance allows us to process images just in time without accumulating a stack
of unprocessed images during operating time. A prioritization of traffic data with respect to image data
during the downlinking process makes it possible to deliver current traffic data to the ground with a
maximum delay of 7 s or less in the case of the microwave downlink system. In the case of the laser link
terminal, the data bandwidth is not a concern.
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6. Conclusions

We propose a solution for automatic extraction of traffic information from airborne images, which
satisfies the increasing demand for accurate and actual traffic data. Thereby, the system maturity has
reached an operational state, which is shown by the system validation performed based on data obtained
during several missions with varying conditions. We obtain aerial image sequences that are fully
automatically analyzed for road traffic content. The analysis is divided into a detection and a tracking
part. In the detection part, a combination of the machine learning algorithms Adaboost and SVM detects
vehicle objects with an average detection quality ranging from 78% in poor weather to 91% in good
weather conditions. During the tracking part, template matching of vehicle objects detected before is
done with a following plausibility check of resulting trajectories. In tracking, an average quality of 88%
to 93% is reached during several campaigns. The whole processing chain from image acquisition to
distribution to end-users is performed in real time on-board the aircraft and on the ground. Traffic data
is brought into the Internet traffic portal with a delay of less than 7 s. This ensures that the traffic data
provided are highly up-to-date. It was shown that the system’s accuracy is almost on par with that of
ground stationary sensor systems. Nevertheless, it turns out that the quality of the traffic data obtained
by our system can be increased with additional detector training. Since our system is independent of
any stationary ground infrastructure, it can be used in cases where no ground infrastructure is available.
This could occur during mass events (if they take place at locations beyond any sensor networks) or
disaster situations (if ground sensor networks are affected). Since the system has the ability to collect
traffic data on all kinds of road categories, it can be used as an additional data source for conurbation
areas. For example, it could be applied in case studies, traffic census or traffic light phase optimization.
Although the operational qualities of the system have been proven in this work, some improvements
could be made. In the actual processing chain, the positions of detected vehicles are allocated to Navteq
segments. A more precise allocation of vehicle positions, not only to road sections, but also to traffic
lanes, would enhance the resolution of traffic simulation. However, the Navteq data does not provide
exact information on traffic lanes. Therefore, the focus of future work will be on lane-specific traffic
extraction in order to enhance the data input for traffic simulations. Moreover, vehicle classes (cars
and trucks) will be distinguished by the employment of two different vehicle detectors. With a future
miniaturization of the system hardware, small aircraft and helicopters as platforms with low operating
costs will be feasible.
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