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Abstract: Intelligent seamline selection for image mosaicking is an area of active research 

in the fields of massive data processing, computer vision, photogrammetry and remote 

sensing. In mosaicking applications for digital orthophoto maps (DOMs), the visual 

transition in mosaics is mainly caused by differences in positioning accuracy, image tone 

and relief displacement of high ground objects between overlapping DOMs. Among these 

three factors, relief displacement, which prevents the seamless mosaicking of images, is 

relatively more difficult to address. To minimize visual discontinuities, many optimization 

algorithms have been studied for the automatic selection of seamlines to avoid high ground 

objects. Thus, a new automatic seamline selection algorithm using a digital surface model 

(DSM) is proposed. The main idea of this algorithm is to guide a seamline toward a low area 

on the basis of the elevation information in a DSM. Given that the elevation of a DSM is not 

completely synchronous with a DOM, a new model, called the orthoimage elevation 

synchronous model (OESM), is derived and introduced. OESM can accurately reflect the 

elevation information for each DOM unit. Through the morphological processing of the 

OESM data in the overlapping area, an initial path network is obtained for seamline 

selection. Subsequently, a cost function is defined on the basis of several measurements, and 

Dijkstra’s algorithm is adopted to determine the least-cost path from the initial network. 

Finally, the proposed algorithm is employed for automatic seamline network construction; 

the effective mosaic polygon of each image is determined, and a seamless mosaic is 

generated. The experiments with three different datasets indicate that the proposed method 
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meets the requirements for seamline network construction. In comparative trials, the generated 

seamlines pass through fewer ground objects with low time consumption. 

Keywords: seamline selection; relief displacement; digital surface model; orthoimage 

elevation synchronous model; seamline network construction 

 

1. Introduction 

1.1. Background 

The growing demand for richer information and better visual experience in a single image has  

caused the increasing application of seamless image mosaicking in scientific domains, such as massive 

data processing, computer vision, photogrammetry and remote sensing. In remote sensing, this technique 

is applied to different datasets, including satellite [1–3], aerial [4–7], low-altitude [8,9] and  

close-range [10,11] images. In a typical processing pipeline, aerial images are always reprojected onto 

a digital terrain model (DTM) with various camera locations and orientations, and the obtained digital 

orthophoto maps (DOMs) are used for mosaicking [12]. Thus, generating mosaics from DOMs has 

attracted considerable attention. 

The most important idea of image mosaicking is combining two or more images into a larger image 

with minimal visual transition. When applying mosaicking to high-resolution urban DOMs, visual 

transition is mainly caused by three aspects among images: positioning accuracy, tone and relief 

displacement of high ground objects. Positioning accuracy can be improved through high-quality  

bundle block adjustment, whereas tone differences can be addressed by image color balancing and 

feathering [13]. However, relief displacement is relatively more difficult to address in mosaicking. Relief 

displacement mainly occurs because a DTM does not contain elevations for ground objects, such as 

buildings and bridges, thus causing the imperfect rectification of such objects in DOMs. Figure 1a,b 

shows the relief displacements of the same building in different directions. These displacements result 

from imaging from different angles. When the seamline of the mosaic passes through the building in 

Figure 1c, a significant visual discontinuity occurs. 

An ideal solution is the use of true DOMs (TDOMs) rectified with a digital surface model (DSM)  

for mosaicking. However, although TDOMs theoretically have no relief displacement, the automatic 

generation of TDOMs involves many complex technical procedures, such as shadow detection, 

restoration, occlusion detection and compensation [14]. A high-quality DSM is insufficient to create a 

satisfactory TDOM, because automatic production is still immature. Another method is selecting the 

seamline for DOMs through human interaction, but manual intervention may become inappropriate 

when processing with sizable data. Thus, scholars study automatic algorithms for seamline optimization 

and attempt to select the seamline in areas where no obvious ground objects appear on two overlapping 

DOMs, thus minimizing visual discontinuities. 
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Figure 1. Visual discontinuity caused by relief displacement. (a) A building is provided in 

a digital orthophoto map (DOM); (b) the same building is provided in another DOM, where 

the original image is captured from a different angle; (c) the building is provided in the 

mosaicked image of two overlapping images, where the red line indicates the randomly 

selected seamline. 

   

1.2. Related Works 

A typical automatic seamline selection algorithm is developed by estimating the pixel-by-pixel 

differences in overlapping image areas. First, a cost function is created on the basis of one or more 

measurements, and then, a least-cost path is defined as the best seamline through several searching 

methods. In one of the first published algorithms, the gray level difference is determined as the  

measurement [15]. Given that the difference only reflects changes in a single pixel without  

neighborhood information, image gradient difference [16,17] and normal cross-correlation [18,19] were 

selected as measurements in succeeding research. Moreover, in some approaches, image edges [2], 

salient features [20] and distance to nadir points [20,21] are also considered for seamline optimization. 

As regards the least-cost path searching algorithms, path optimization methods based on Dijkstra’s 

algorithm are commonly used [10,22–25]. Meanwhile, numerous algorithms perform well in seamline 

searching. These algorithms include the snake technique [26], bottleneck model [5,6,12], dynamic 

programming [20], ant colony [18] and Floyd–Warshall [27]. 

The overlapping area between two images can be sizable (such as that between aerial images with 

large overlap), indicating that the least-cost path should be determined in a search space of millions of 

pixels. The enormous amount of computation becomes unbearable when constructing a seamline 

network for a large survey area. Thus, one approach to reduce computation is to create an initial seamline 

on the basis of simple topological relationships, such as the Voronoi diagram, and then performing 

optimization within a certain range from the initial seamline [12,28]. Another approach is to remove the 

unwanted areas in the overlap through threshold adjustment [19] or image segmentation [25], after which 

the least-cost path is determined in a restricted sub-area. Both approaches somehow improve efficiency. 

Most seamline selection algorithms are developed on the basis of image gray information analysis. 

However, gray information has limited reliability. Thus, determined seamlines may still pass through 
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some high objects when faced with insufficient texture or uneven tone. Hence, some scholars study 

seamline selection using external data. 

Wan et al. [24,27] attempted to use existing vector roads to generate seamlines. In their research, the 

vector roads in the overlapping area are overlaid with an extracted skeleton to create a weighted graph, 

and the least-cost path is selected as the seamline on the basis of this graph. Seamlines away from most 

high ground objects can be selected on the basis of road information, and computational complexity  

is considerably decreased. However, automatically obtaining reliable vector road data could be difficult, 

and manual mappings are always required to produce the vector data. 

Ma et al. [29] used point cloud data from the light detection and ranging (LiDAR) system to identify 

high ground objects as obstacles and attempted to guide seamlines to avoid these obstacles. The results 

exhibit an improvement in both efficiency and quality with the use of LiDAR data. However, for ground 

objects with relief displacement, the elevation from LiDAR is asynchronous with the same object in a 

DOM (see the analysis in Section 2.1). Given the influence of these deviations, the seamline generated 

with the LiDAR data can theoretically pass through the ground object. 

1.3. Proposed Approach 

A new automatic seamline selection algorithm using DSM data is proposed in this study. Given that 

a DSM elevation is not completely synchronous with that of a DOM, a new model, called an orthoimage 

elevation synchronous model (OESM), is derived and introduced [30]. In an OESM, the elevation of an 

object in a DOM becomes accordant with the actual height of the same object in a DSM, even in areas 

where relief displacement occurs. In our approach, an OESM is successfully applied to the seamline 

network construction of DOMs for the first time. First, a series of morphological processing steps is 

performed for the OESM data in the overlapping area, and an initial path network is obtained for 

seamline selection. Second, a cost function is defined on the basis of measurements, including the total 

path length, original path width and distance from the node to the skeleton. Dijkstra’s algorithm is 

adopted to determine the least-cost path. Finally, the new seamline selection method is employed for 

automatic seamline network construction. The effective mosaic polygon (EMP) of each image is 

determined, and a mosaic image is generated. The experiments from three different regions demonstrate 

that the proposed method meets the requirements for seamline network construction. In comparative 

trials, the generated seamlines pass through fewer ground objects with low time consumption. 

2. Methodology 

The proposed approach can be divided into three parts: (1) the principle and the generation of an 

OESM using DSM and DTM data; (2) the seamline selection method based on OESMs for two 

overlapping DOMs; and (3) the seamline network construction for large areas. Each process is further 

described below. 

2.1. Orthoimage Elevation Synchronous Model 

Rectification with a DTM for DOMs can only eliminate the effect of the perspective projection of  

the terrain, but relief displacement still exists with various ground objects, such as houses, bridges and 
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trees. Although a DSM contains the elevation information of such objects, the elevation values are 

actually partly misplaced relative to the corresponding objects, because of relief displacement. To assign 

an accurate elevation value for every DOM unit, an OESM is derived and introduced. An OESM can 

reflect the actual elevation of each DOM unit. In an OESM, terrain elevations are from a DTM, whereas 

object elevations are from a DSM. 

The OESM principle is shown in Figure 2. ஽ܲௌெ is the point on the DSM pertaining to a building 

point. After connecting the perspective center ܵ  to ஽ܲௌெ , the point on the DTM ( ஽்ܲெ ) and the 

corresponding point on the DOM ( ஽ܲைெ) can be calculated through the intersection of ܵ ஽ܲௌெ and DTM. 

By replacing the elevation of ஽்ܲெ (ܼ஽்ெ) with the elevation of ஽ܲௌெ (ܼ஽ௌெ), the coordinate of the 

corresponding point on the OESM ( ைܲாௌெ) is obtained. For the terrain point of the DSM, the elevation 

of the intersection point is equivalent to the DTM, such that the elevation of the OESM is accordant  

with that of a DTM in this case. The figure shows that the OESM can reflect the actual elevation 

information of the DOM. 

Figure 2. Geometric relationship of DSM, DTM, DOM, and the proposed OESM. ܵ is the 

perspective center; ௜ܲ , ஽ܲௌெ , ஽்ܲெ  and ஽ܲைெ  are the corresponding points of the original 

image, DSM, DTM and DOM, respectively; and ைܲாௌெ is the corresponding point of the 

proposed orthoimage elevation synchronous model (OESM). 
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The solution for the intersection point ( ஽்ܲெ) of ܵ ஽ܲௌெ and DTM is described as follows: 

The geometric relationship of ܵ and an arbitrary object point can be represented as: [ܺ, ܻ, ܼ]் = [ ௌܺ, ௌܻ, ௌܼ] ் + λ ∙ [δܺ, δܻ, δܼ]் (δܼ ≠ 0) (1)

where ܺ , ܻ  and ܼ  are the coordinates of the object point; ௌܺ , ௌܻ  and ௌܼ  are the coordinates of the 

perspective center; [δܺ, δܻ, δܼ]் is a unit vector along the ray connected by S and the object point; and λ is the scaling coefficient. 

For points ஽ܲௌெ and ஽்ܲெ in Figure 2:  ቊ[ܺ஽ௌெ, ஽ܻௌெ, ܼ஽ௌெ]் = [ ௌܺ, ௌܻ, ௌܼ] ் + λ஽ௌெ × [δܺ, δܻ, δܼ]்[ܺ, ܻ, ܼ஽்ெ]் = [ ௌܺ, ௌܻ, ௌܼ] ் + λ஽்ெ × [δܺ, δܻ, δܼ]்  (2)

Given that [ܺ஽ௌெ, ஽ܻௌெ, ܼ஽ௌெ]் and [ ௌܺ, ௌܻ, ௌܼ]	் are known, [δܺ, δܻ, δܼ]் can be solved. 

Thus, for a given ܼ஽்ெ, we can obtain:  λ஽்ெ = (ܼ஽்ெ − ௌܼ)/δܼ (3)

and then:  [ܺ, ܻ]் = [ ௌܺ, ௌܻ] ் + λ஽்ெ × [δܺ, δܻ]் (4)

The calculation of ܼ஽்ெ is an iterative approximation process, the principle of which is described in 

Figure 3. First, ஽ܲௌெ is projected vertically onto a DTM to obtain an initial elevation value (ܼ଴), and 

then, the coordinates of ଴ܲ(ܺ଴, ଴ܻ, ܼ଴) can be calculated according to Formulas (3) and (4). ଴ܲ is also 

projected onto the DTM, and the elevation of ଴ܲᇱ (ܼଵ) can then be obtained. Again, ଵܲ( ଵܺ, ଵܻ, ܼଵ) can be 

calculated according to Formula (3) and (4). Thus, the coordinates of the intersection point can be 

approximated as ஽்ܲெ(ܺ௡, ௡ܻ, ܼ௡) when |ܼ௡ − ܼ௡ିଵ| is small enough. 

Figure 3. Iteration process of calculating the intersection point of ܵ ஽ܲௌெ and a DTM. 

 

In fact, the iterative method adopted in our approach could be divergent or incorrect in some cases. 

According to Sheng’s research, the iteration will be convergent only if the terrain slope angle is smaller 
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than the view elevation angle [31]. However, in aerial photogrammetry, the minimum view elevation 

angle always has a relatively large value (which is at least 55° in our experimental datasets); meanwhile, 

a steep slope is generally infrequent in urban areas. Therefore, the method will work properly in most 

cases. In actual processing, if the iteration times of a DSM point exceed a large number, then the point 

will be treated as an invalid point, and the elevations of the corresponding point in OESM will remain 

as the DTM elevation. 

From the above discussion, the OESM generation procedure using a DSM and a DTM is as follows:  

(1) A blank OESM is created with the same range and grid size as those of the DTM. 

(2) The coordinates for each point projected from the DSM to the DTM are calculated, and the 

elevation value of the projected point is replaced with that of the DSM point using the 

aforementioned method. The point with an updated elevation is then added to the created OESM. 

When two or more DSM points are projected onto the same grid in OESM, the principle of  

Z-buffer [32] is adopted to determine which points are occluded by others. The distances from 

the projection center to all of the points are calculated; the point with a minimum distance is 

considered visible, and its elevation will be assigned to the OESM grid, whereas other points are 

regarded as occluded. 

(3) After completing the projection for all DSM points, a Delaunay triangulated irregular network  

is constructed using all of the added grid points [33], and the complete OESM can be obtained 

through interpolation. 

Figure 4 shows the overlying views between a DOM and the elevation contours of a DSM or OESM. 

To eliminate the terrain effect, both DSM and OESM are normalized by deducting the elevation value 

of the corresponding position in a DTM. Given that small displacement occurs when projecting DSM 

points onto OESM grids, a certain height error may be brought to the normalized OESM when deducting 

DTM elevation. However, the error would be limited in most cases, because terrain undulation is 

generally flat within a small area, especially in urban areas. Evidently, for a similar building, the 

elevation contours of a DSM accumulate around the building toft and cannot correctly reflect the 

elevation change in a DOM, whereas the OESM elevation contours accurately reflect the elevation 

change of walls and is thus appropriate for building edges. Hence, an OESM is obviously more suitable 

than a DSM for seamline selection apart from buildings. 

2.2. Seamline Selection between Two DOMs 

Given the existing rotation angle from the imaging altitude of the camera, the image file of a DOM 

always has some blank areas around the boundary. As shown in Figure 5, the effective area of the image 

should be extracted for mosaicking. In our research, the Moore–Neighbor tracing algorithm [34] is 

adopted to obtain the boundary pixels of the effective area, and simplification is performed on the basis 

of the Douglas–Peucker algorithm [35] to reduce the number of boundary points. A seamline is selected 

from the overlap between the effective areas of two images. Before selection, the two intersection points 

of the effective areas are determined as the start and end points, whereas the straight skeleton of the 

overlap is extracted as the initial seamline [36]. In our method, the final seamline selected should be as 

close as possible to the initial seamline, because the relief displacement of the ground object becomes 
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great while approaching the image boundary, and the straight skeleton can be located in the middle part 

of the overlap with an arbitrary shape. 

Figure 4. Overlying views between a DOM and the elevation contours of a DSM or OESM. 

(a–c) The DOM and the elevation renderings of the normalized DSM and OESM in the same 

area, respectively; (d) the image in the red rectangular area; and (e,f) the overlying views 

between a DOM and the elevation contours of a DSM or OESM in the red rectangular  

area, respectively. 
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Figure 4. Cont. 

After determining the overlapping area of two DOMs, OESM data are used to generate an initial path 

network for seamline selection. First, with the use of existing DSM and DTM data, the OESM data of 

the two images are calculated. Second, the normalized OESM is obtained by deducting the DTM 

elevation in the same area. After normalization, OESM only maintains the height information above  

the terrain. The normalized OESM of the two images can then be added up and binarized using the 

following equation:  ݃(ݔ, (ݕ = ൜255, ℎଵ(ݔ, (ݕ + ℎଶ(ݔ, (ݕ > ௛ܶ0, ݁ݏ݅ݓݎℎ݁ݐ݋  (5)

where ℎଵ(ݔ, ,ݔ)and ℎଶ (ݕ ,ݔ)݃ ,are the height values of two normalized OESM data at the same point (ݕ is the gray value of the corresponding point in the binary image and ௛ܶ (ݕ  is the given height 

threshold determined by the height of the lowest object that needs to be avoided. In our approach, ௛ܶ is 

set to 2.0 m. Figure 6a shows the binary image of the overlapping area in Figure 5 obtained through the 

above method. 

The black region in the binary image indicates the area with a lower height than ௛ܶ. Most of the high 

ground objects can be avoided if the seamline is chosen from the black region. For the black region 

positioned between two white regions (such as road areas), extracting the middle line of the black region 

as the seamline is appropriate, because although the height at the edge of the white region is lower than ௛ܶ, this area can still be very close to ௛ܶ. Therefore, the Hilditch algorithm [37] is used to thin the black 

region and to obtain the middle lines for all of the black regions. Figure 6b shows the thinning result. 
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Figure 5. Determining the overlapping areas among DOMs and the extraction of the straight 

skeleton for the overlap. The red dashed line is the effective area of the top DOM. The green 

dashed line is the effective area of the bottom DOM. The white dotted line is the overlapping 

area between two DOMs. The white solid line is the extracted straight skeleton. 

 

Figure 6. Binarization and thinning results for the OESM data of the overlapping areas in 

Figure 5. (a) Binary image of the overlapping area in Figure 5 in which the white region is 

the higher area and the black region is the lower area; (b) thinning result of the black  

region of (a). 

 
(a) 
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Figure 6. Cont. 

 
(b) 

The above thinning result is the initial path network, from which the final seamline is extracted 

according to the following procedures:  

(1) Candidate nodes and segments are determined from the network. First, intersection points with 

at least three paths crossing are selected as candidate nodes, as shown in the blue solid dots in 

Figure 7a. Next, the lines connected by two neighboring candidate nodes are considered as segments. 

(2) The useless nodes and segments are removed. First, the two candidate nodes nearest to the 

endpoints of the initial seamline (the skeleton) are chosen as the entrance and exit points, 

respectively (as shown in the red solid dots in Figure 7b). Subsequently, every candidate node is 

checked by assessing whether such a node can be connected to the entrance and exit through 

several segments. If the node is disconnected from the entrance or exit, this node is deleted. After 

removing all of the useless nodes, the segments that meet the condition that any endpoint is no 

longer a candidate node are also deleted. Figure 7b shows the path network without the redundant 

nodes and segments. 

(3) The least-cost path is determined as the seamline from the simplified network. 

Figure 7. Procedures for obtaining the seamline from the initial path network. (a) Selection 

of the candidate nodes, where the blue solid dots represent the intersection points with at least 

three paths crossing; (b) the path network after removing the redundant nodes and segments, 

with the red solid dots representing the entrance and exit points; (c) the least-cost path 

determined on the basis of Dijkstra’s algorithm; the red solid dots represent the nodes of the 

determined path. 

 
(a) 
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Figure 7. Cont. 

 

(b) 

 
(c) 

In our approach, the local cost between any two connected nodes is defined as:  ݐݏ݋ܥ(݅, ݆) = ,݅)ܮ ݆) × ,݅)ܦ ݆)/ܹ(݅, ݆) 
where ݅ and ݆ represent two neighboring and connected nodes. ݐݏ݋ܥ(݅, ݆) is the cost value between ݅ and ݆. ܮ(݅, ݆) is the path length (pixel numbers) in the network between ݅  and ݆ ,݅)ܦ . ݆)  is determined by 

calculating the vertical distance from ݅ and ݆ to the skeleton segments. Only if the perpendicular foot lies 

within the skeleton segment will the distance from the node to the segment be considered valid. As 

shown in Figure 8a, ݅ has two valid distances (ܦଵ and ܦଶ), whereas ݆ has only one valid distance. The 

largest value of the valid distances will be assigned to ܦ(݅, ,݅)ܦ .(݆ ݆) represents the distance of the path 

from the initial seamline, which is proportional to the cost value. ܹ(݅, ݆)  is used to describe the  

pre-thinning width of the path segment. As shown in Figure 8b, ܹ(݅, ݆) is obtained through the following 

method: (1) the middle point of the path is determined, and its pixel coordinates are obtained; (2) on the 

basis of morphological methods, the middle point is dilated using a circle element until the dilated and 

while regions intersect; and (3) the diameter of the dilated circle is extracted as ܹ(݅, ݆). A great ܹ(݅, ݆) 
means a small cost. 

Based on the above defined cost function, the least-cost path can be obtained by using Dijkstra’s 

algorithm. Figure 7c shows the final determined seamline. 

The EMPs of the two DOMs can be determined by updating the effective area with the seamline. 

Figure 9 shows the mosaicking result by filling the images according to the EMP. The result indicates 

that the selected seamline is located at low elevated places, and most high ground objects, such as 

buildings and tall trees, are successfully avoided. 
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Figure 8. Calculation methods for ܦ(݅, ݆) and ܹ(݅, ݆). (a) The red polyline is part of the 

skeleton. The blue polyline is a path segment, and the blue solid dots are nodes of the 

segment. (b) The white region is the higher area, and the black region is the lower area. The 

orange solid dot is the middle point of the path, and the light orange area is the dilated region 

of the middle point. 
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Figure 9. Mosaic result of the two DOMs. The green lines show the determined effective 

mosaic polygons (EMPs) for the images. The yellow crosses and characters indicate the nadir 

points and file names of the images. 
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2.3. Construction of the Seamline Network 

For DOM mosaicking applications in actual production, the input data always comprise a series of 

images captured in a large flight area, and the expected mosaicking result is composed of more than two 

images. To obtain a seamline network for multiple DOMs, the strip information recorded in flight is 

used in our approach. The steps of seamline network construction are as follows: 

(1) According to the flight order, the seamline between each of two adjacent DOMs in one flight 

strip is selected successively. When the seamline between the first image and the adjacent image 

is determined, the two images are treated as a mosaic. If another image exists in the same strip, 

a new seamline is determined between the mosaic and the newly-added image, and a new mosaic 

with three images is obtained. Therefore, all of the images along the same strip are processed, 

and the EMPs for these images are determined. 

(2) With the use of the same method, the seamline between each two adjacent strips is selected 

according to the strip order. Every time a seamline between two strips is determined, the EMPs 

of all of the preprocessed images are updated with the newly-added seamline. 

Figure 10 shows an example of the seamline network construction for two strips, where every strip 

contains three images. 

Figure 10. Construction of a seamline network. (a) Construction process for images in one 

strip; (b) construction process for adjacent strips. The red part represents the determined 

EMPs. The blue part represents the newly-added image. The green line represents the  

newly-selected seamline. 01, 02 and 03 represent the three images in the first strip, while 11, 

12 and 13 represent the three images in the second strip. 

01 02 030201 02 0301
 

(a) 

02 0301

11 1312

01 02 03

11 12 13
 

(b) 

3. Experiments and Results 

3.1. Data Preparation 

Three datasets from different areas were used in the experiments to evaluate the performance of the 

proposed approach. The first dataset contained 24 images with a size of 17,310 × 11,310 pixels, and the 

test area was in Katowice, Poland, with medium-sized buildings. The second dataset contained 14 images 

with a size of 7680 × 13,824 pixels, and the test area was in Vaihingen, Germany, with small-sized 
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buildings. The third dataset contained 56 images with a size of 11,500 × 7500 pixels, and the test area 

was in San Francisco, USA, with numerous densely-distributed buildings. The details of the 

experimental datasets are shown in Table 1. 

Table 1. Overview of test datasets. 

Dataset 

ID 
Location Camera 

Focal 

Length 

Flying 

Height 

Forward 

Overlap 

Side 

Lap 
Resolution 

Spectral 

Bands 

1 Katowice UltraCam X 100.5 mm 1200 m 70% 70% 8 cm R-G-B 

2 Vaihingen DMC 120 mm 900 m 60% 60% 8 cm IR-R-G 

3 San Francisco UltraCam D 105.2 mm 1800 m 60% 30% 15 cm R-G-B 

Before mosaicking, all images were processed through image dodging and color balancing to 

minimize illustration differences. Aerial triangulation and bundle block adjustment were performed 

using ground control points to obtain the exterior orientation parameters of both datasets. To obtain  

a DSM, semi-global matching [38] was performed between the overlapping images in each strip. After 

generating and combining the DSM of the entire area, a filtering algorithm based on adaptive 

triangulated irregular network models [39] was adopted to obtain the ground points from the DSM.  

The DTM was generated by interpolating the ground points into a regular grid. To ensure the accuracy 

of the DTM, some manual intervention was required. With the resulting DSM and DTM, the OESM can 

be computed according to the method in Section 2.1. 

All of the images were orthorectified to the 1984 World Geodetic System using the DTM, and the  

ground sampling distances of the DOMs in the datasets were 0.1, 0.1 and 0.2 m. With the use of the 

abovementioned OESM data, the seamline network was generated, and a seamless image mosaic was 

achieved for each dataset. 

3.2. Evaluation and Comparison 

All of the aforementioned algorithms were implemented using the C++ language. The Computational 

Geometry Algorithms Library was used to extract the straight skeleton in the overlapping area.  

A portable computer with a 64-bit Windows 7 operating system, a quad-core Intel Core i5-2520M CPU, 

2.5 GHz and 4 GB memory was utilized for the experiments. 

Given that the positioning accuracy of the DOMs in the same dataset was consistent, most visual 

discontinuities were caused by the seamlines passing through obvious objects (such as buildings). 

Therefore, similar to the evaluation method in other relevant studies [25,29], the mosaic results were 

evaluated by manually checking the number of times that seamlines passed through obvious objects.  

The difference was that when several grouped objects were crossed by a single seamline, such a seamline 

was only considered to pass through the objects once, because the visual discontinuity that occurred in 

such cases only resulted in one instance of manual editing in actual production. 

Comparative experiments were conducted with three different methods. To evaluate the performances 

of these methods fairly, all of the methods were tested in a single thread, and only the processing time 

for the seamline network generation (not including the times of image filling and feathering) was 

recorded for comparison. The three methods were:  
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(1) Without any optimization, the straight skeleton of the overlapping area was directly used as the 

seamline. In actual production, this method (or a similar method) is often used to generate an 

initial seamline network. Afterwards, manual editing is adopted on this basis. 

(2) Based on the image gray information, the seamline in the overlapping areas with minimal gray 

difference was selected. OrthoVista is one of the most powerful gray-based image mosaicking 

software; thus, the mosaicking function of the OrthoVista software [40] was adopted for comparison. 

(3) The proposed OESM method. 

We refer to these methods as geometry-based, gray-based and OESM-based. 

The mosaic results of the three datasets are shown in Figures 11–13. According to the results, 

compared with the other two methods, the seamlines from the OESM-based method were more 

reasonable and successfully avoided intersecting most of the obvious objects. As shown in Table 2,  

in the OESM-based method, the obvious objects were intersected 9, 15 and 80 times. These values were 

evidently less than those of other methods. The processing time of the geometry-based method was 

significantly less than that of the other methods at the cost of seamline optimization. Comparing the 

almost similar seamline optimization performances, the OESM-based method was more efficient than 

the gray-based method. 

Figure 11. Mosaic results of the three methods for Dataset 1. (a) Overview of the mosaicked 

images. The blue lines are the seamlines constructed through the geometry-based method; 

the yellow lines are the seamlines constructed through the gray-based method; and the red lines 

are the seamlines constructed through the OESM-based method. (b) Detailed seamlines in 

the cyan rectangular areas of (a) selected through the three methods. The orange circle marks 

the visual continuities from the seamlines. 

 
(a) 
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Figure 12. Mosaic results of the three methods for Dataset 2. (a) Overview of the mosaicked 

images. The blue lines are the seamlines constructed through the geometry-based method; 

the yellow lines are the seamlines constructed through the gray-based method; and the green 

lines are the seamlines constructed through the OESM-based method. (b) Detailed seamlines 

in the cyan rectangular areas of (a) selected through the three methods. The orange circle 

marks the visual continuities from the seamlines. 

(a) 

(b) 
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Figure 13. Mosaic results of the three methods for Dataset 3. (a) Overview of the mosaicked 

images. The blue lines are the seamlines constructed through the geometry-based method; 

the yellow lines are the seamlines constructed through the gray-based method; and the red 

lines are the seamlines constructed through the OESM-based method. (b) Detailed seamlines 

in the cyan rectangular areas of (a) selected through the three methods. The orange circle 

marks the visual continuities from the seamlines. 

(a) 

(b) 
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Table 2. Comparison of the results of the different methods. 

Method 

Number of Times the Seamlines Pass through 
Obvious Objects 

Processing Time (s) 

Dataset 1 Dataset 2 Dataset 3 Dataset 1 Dataset 2 Dataset 3

Geometry-based 236 193 Over 1500 47 20 80 
Gray-based 26 24 325 2618 774 1718 

OESM-based 9 15 80 1186 489 1375 

The proposed method generally constructed the seamline network without passing through most of 

the obvious objects, and the obtained mosaic exhibited minimal visual discontinuity areas. As opposed 

to the comparative methods, the performance and efficiency of the proposed method more suitably met 

the requirements of actual production. 

4. Discussion 

An automatic seamline selection method using DSM data is proposed and applied to urban orthophoto 

mosaicking. The main feature of the proposed method is the use of an OESM calculated through DSM 

and DTM, instead of the direct use of a DSM, for seamless mosaicking. The elevation of the OESM, 

which is completely synchronous with that of DOMs, is applied as a guide for seamline selection. The 

results demonstrate the reliability and efficiency of the proposed method. 

4.1. Seamline Selection Strategy 

In related studies, most seamline optimization methods are developed on the basis of the analysis of 

the gray difference between overlapping images [12,20,25]. The main principle of these kinds of 

methods is selecting the path with minimal gray differences in the overlapped area as the seamline to 

meet the requirements of human vision. However, determining the seamline position on the basis of gray 

analysis may still cause the seamline to pass through obvious objects, because of the randomness and 

uncertainty of gray distribution in an image. For example, for a building with a roof that lacks texture in 

the overlapped area, a path with very low gray differences could be still found through the roof regardless 

of whether certain visual discontinuity results from relief displacement. In contrast to these methods,  

the proposed method selects seamlines on the basis of the elevation of objects, which is more reliable 

than basing on the gray analysis of images. By knowing the accurate elevation, most objects with 

elevations that exceed the designated threshold can be theoretically avoided by the seamlines generated 

through our method. 

A comparison of the path searching strategies indicates that the main difference between our method 

and other methods (such as Chon et al.’s method [19] and Pan et al.’s method [25]) is that we search for 

the path from the connected path network instead of searching pixel-by-pixel. The advantage of this 

approach is evident, because the path network consists of thinning segments extracted from the black 

region, whereas most of the segments are located in the middle of the road. Compared with those  

selected by a pixel-based searching strategy, the seamlines selected by our method will be more regular. 

More importantly, we can infer that the efficiency of our method will be obviously better than those of 

other methods. 
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Wan et al. [24,27] and Ma et al. [29] indicate that better results can be obtained by using external 

data in seamline selection. However, precise vector road data are required in the method of  

Wan et al. [24,27]. Such data are hardly available in actual production. In addition, the research of  

Ma et al. [29] is challenged by unstable LiDAR data sources. Moreover, a DSM elevation is directly 

applied to detect obstacles without considering the influence of the relief displacement of objects, which 

cannot completely enable the seamline to avoid passing through objects theoretically. By contrast, the 

DSM data used in our approach are generated from dense matching stereo images. Given that stereo 

matching is significant in common photogrammetry workflows, a DSM can be obtained from a more 

stable source. Furthermore, an OESM calculated via DSM and DTM can reflect the elevation of objects 

on DOMs accurately. Theoretically, generating a seamline based on OESM is more rigorous than basing 

directly on a DSM. 

In a standard production workflow, our method is practical in mosaicking applications for high-resolution 

urban images. Nevertheless, the proposed method also has limitations. In most cases, a seamline that can 

be selected from the generated path network always exists. However, on a few extremely rare occasions, 

no path can be searched from the path network. A typical situation is that a huge building with a 

minimum height higher than ௛ܶ completely blocks the path between the entrance and exit points. In this 

case, the proposed approach will fail. 

Moreover, using the proposed method for seamline selection in mosaicking applications with  

low-resolution images (such as medium-resolution satellite images) is unnecessary, because the 

influence of relief displacement in this resolution level is almost negligible. Meanwhile, fast mosaicking 

for initially obtained aerial images is required in some applications [41]. Given that the images for 

mosaicking are not orthorectified under this circumstance, the proposed method is likewise inapplicable 

to this case. 

4.2. Accuracies, Errors and Uncertainties 

In the test data, DOMs are rectified with orientation parameters after aerial triangulation and bundle 

block adjustment. Therefore, the positioning accuracy of DOMs is consistent. In many related studies, 

seamline quality is not generally evaluated through accuracy assessment. The quantitative index applied 

in this study is the number of times that seamlines pass through obvious objects. The results indicate that 

the number of times that seamlines pass through obvious objects is evidently less when using our method 

than when using other methods. 

OESM with higher resolution may provide better precision for seamline selection. In our approach, 

the resolution of OESM is consistent with DTM, which is usually five- or 10-times the DOM resolution 

during the conventional production in aerial photogrammetry. However, our method uses the Hilditch 

algorithm to obtain the middle lines for all black regions after binarization. This process reduces the 

position error caused by relatively low OESM accuracy. If we try to create an OESM having the same 

resolution as DOM, the size of OESM will be 25- or 100-times the current size. Consequently, the time 

consumed by OESM generation will significantly increase, and the efficiency of the proposed approach 

could be significantly affected. 

Figure 14 illustrates some situations in which the seamline generated by the proposed method passes 

through obvious objects. Two main situations are derived. First is when very low objects appear, which 
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is mainly affected by the threshold value ௛ܶ  in Section 2.2. Regardless of whether the objects with 

elevations below ௛ܶ can be passed through, the relief displacement of these objects is relatively small, 

which causes minimal visual influence. Second is when objects are located near the overlapping area 

boundary. In fact, visual discontinuities only exist beside the boundary of the entire survey area, because 

if discontinuities appear in the overlap of images along the same strip, they can mostly be eliminated 

through mosaicking between adjacent strips. The remaining discontinuities are difficult to eliminate. 

Given that the entrance and exit of a seamline must be located in the boundary, the seamline almost 

inevitably passes through these objects when such objects appear beside the entrance or exit. The 

experimental results confirm the analysis above, which shows that the objects near the boundary passed 

through the seamlines generated through our method, which is the same case as that of the seamlines 

generated by the other two methods. 

Figure 14. Visual discontinuities (marked by the orange circles) caused by the seamlines of 

the OESM-based method. (a) The low elevated objects that are passed through in Dataset 1;  

(b) the objects near the boundaries that are passed through in Dataset 1; (c) the low elevated 

objects that are passed through in Dataset 2; (d) the objects near the boundaries that are 

passed through in Dataset 2; (e) the low elevated objects that are passed through in  

Dataset 3; (f) the objects near the boundaries that are passed through in Dataset 3. 
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In the proposed method, the most important factor affecting the quality of seamlines is the quality of 

DSM and DTM. Seamline selection is directly affected by the errors in the OESM. These faults are 

caused by the errors in DSM and DTM. However, the influence of the precision of DSM and DTM on 

the seamline network remains uncertain in this study. Furthermore, the three variables used in the cost 

function are not weighted. Variables with different weights may also influence the result. This case is 

not analyzed thoroughly in our approach. 

5. Conclusions 

A new method for automatic seamline network generation using digital surface model (DSM) data 

was proposed. Unlike traditional methods of selecting seamlines on the basis of gray information while 

relying on external data with unstable resources, seamlines are intelligently selected by applying DSM 

data obtained by stereo matching. One of the contributions of this study is the introduction of the new 

concept of the orthoimage elevation synchronous model (OESM), which accurately reflects the elevation 

value of every digital orthophoto map (DOM) unit by recovering the geometrical relationship among the 

DSM, digital terrain model and DOM. 

An initial path network was generated for OESM data through binarization and thinning in the 

overlapping area of two images. With the cost function constructed through measurements, including 

the length, original path width and the distance from the path node to the straight skeleton, the  

least-cost path was determined using Dijkstra’s algorithm. Thereafter, by applying the selection method 

between two images to multiple images in a larger area, the seamline network was generated according 

to the strip information. 

The experiments for three different datasets demonstrated that the numbers of times that the seamline 

network generated through an OESM passed through obvious objects were 9, 15 and 80, which were 

evidently less than the cases of seamlines generated by the geometry-based and OrthoVista methods. 

Under the same test conditions, the efficiency of the proposed method was also better than that of the 

OrthoVista method, given that the amounts of time consumed for the three datasets were 1186, 489 and 

1375 s. In conclusion, the practicality and efficiency of our method can fully meet the application 

demands in actual production. 

However, some further improvements are required. Numerous other path searching algorithms,  

aside from Dijkstra’s algorithm applied in this study, may yield better results in subsequent research.  

In addition, multiple overlaps (more than two images in the overlapped area) are not considered in the 

seamline selection of our approach currently. Hence, the optimal seamline generation based on multiple 

images will be considered in future studies. 

Acknowledgments 

This research was supported by the National Natural Science Foundation of China with Project 

Number 41301519 and the National Key Basic Research and Development Program with Project 

Number 2012CB719904. We acknowledge the Heilongjiang Bureau of Surveying and Mapping for 

providing the Katowice and San Francisco datasets. We also acknowledge the German Society for 

Photogrammetry, Remote Sensing and Geoinformation for providing the Vaihingen dataset. 
  



Remote Sens. 2014, 6 12357 

 

 

Author Contributions 

Qi Chen drafted the manuscript and was responsible for the research design, experiment and analysis. 

Mingwei Sun reviewed the manuscript and was responsible for the research design, experiment and 

analysis. Xiangyun Hu supported the algorithm design of the experiment. Zuxun Zhang proposed the 

basic theory of orthophoto elevation synchronous model and gave relevant technical support. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Helmer, E.H.; Ruefenacht, B. Cloud-free satellite image mosaics with regression trees and 

histogram matching. Photogramm. Eng. Remote Sens. 2005, 71, 1079–1089. 

2. Soille, P. Morphological image compositing. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 

673–683. 

3. Yang, Y.; Gao, Y.; Li, H.; Han, Y. An algorithm for remote sensing image mosaic based on valid 

area. In Proceedings of the IEEE International Symposium on Image and Data Fusion, Tengchong, 

Yunnan, China, 9–11 August 2011. 

4. Afek, Y.; Brand, A. Mosaicking of orthorectified aerial images. Photogramm. Eng. Remote Sens. 

1998, 64, 115–124. 

5. Fernandez, E.; Garfinkel, R.; Arbiol, R. Mosaicking of aerial photographic maps via seams defined 

by bottleneck shortest paths. Oper. Res. 1998, 46, 293–304. 

6. Fernández, E.; Martí, R. GRASP for seam drawing in mosaicking of aerial photographic maps.  

J. Heuristics 1999, 5, 181–197. 

7. Botterill, T.; Mills, S.; Green, R. Real-time aerial image mosaicing. In Proceedings of the IEEE 

International Conference of Image and Vision Computing New Zealand, Queenstown, New Zealand, 

8–9 November 2010. 

8. Zhou, G. Near real-time orthorectification and mosaic of small UAV video flow for time-critical 

event response. IEEE Trans. Geosci. Remote Sens. 2009, 47, 739–747. 

9. Zhang, Y.; Xiong, J.; Hao, L. Photogrammetric processing of low-altitude images acquired by 

unpiloted aerial vehicles. Photogramm. Rec. 2011, 26, 190–211. 

10. Agarwala, A.; Dontcheva, M.; Agrawala, M.; Drucker, S.; Colburn, A.; Curless, B.; Salesin, D.; 

Cohen, M. Interactive digital photomontage. ACM Trans. Graph. 2004, 23, 294–302. 

11. Kang, Z.; Zhang, L.; Zlatanova, S.; Li, J. An automatic mosaicking method for building facade 

texture mapping using a monocular close-range image sequence. ISPRS J. Photogramm. Remote Sens. 

2010, 65, 282–293. 

12. Mills, S.; McLeod, P. Global seamline networks for orthomosaic generation via local search.  

ISPRS J. Photogramm. Remote Sens. 2013, 75, 101–111. 

13. Sun, M.W.; Zhang, J.Q. Dodging research for digital aerial images. Int. Arch. Photogramm. Remote 

Sens. Spat. Inf. Sci. 2008, 37, 349–353. 



Remote Sens. 2014, 6 12358 

 

 

14. Zhou, G.; Chen, W.; Kelmelis, J.A.; Zhang, D. A comprehensive study on urban true orthorectification. 

IEEE Trans. Geosci. Remote Sens. 2005, 43, 2138–2147. 

15. Milgram, D.L. Computer methods for creating photomosaics. IEEE Trans. Comput. 1975, 24, 

1113–1119. 

16. Zomet, A.; Levin, A.; Peleg, S.; Weiss, Y. Seamless image stitching by minimizing false edges. 

IEEE Trans. Image Process. 2006, 15, 969–977. 

17. Pan, J.; Wang, M. A seam-line optimized method based on difference image and gradient image. In 

Proceedings of the International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011. 

18. Zhang, J.; Sun, M.; Zhang, Z. Automated Seamline Detection for Orthophoto Mosaicking Based on 

Ant Colony Algorithm. Geomat. Inf. Sci. Wuhan Univ. 2009, 6, 675–678. (In Chinese) 

19. Chon, J.; Kim, H.; Lin, C. Seam-line determination for image mosaicking: A technique minimizing 

the maximum local mismatch and the global cost. ISPRS J. Photogramm. Remote Sens. 2010, 65, 

86–92. 

20. Yu, L.; Holden, E.J.; Dentith, M.C.; Zhang, H. Towards the automatic selection of optimal  

seam line locations when merging optical remote sensing images. Int. J. Remote Sens. 2012, 33, 

1000–1014. 

21. Hsu, S.; Sawhney, H.S.; Kumar, R. Automated mosaics via topology inference. IEEE Comput. 

Graph. Appl. 2002, 22, 44–54. 

22. Davis, J. Mosaics of scenes with moving objects. In Proceedings of the IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, USA, 23–25 June 1998. 

23. Efros, A.; Freeman, W. Image quilting for texture synthesis and transfer. In Proceedings of the 28th 

Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA,  

12–17 August 2011. 

24. Wan, Y.; Wang, D.; Xiao, J.; Wang, X.; Yu, Y.; Xu, J. Tracking of vector roads for the determination 

of seams in aerial image mosaics. IEEE Geosci. Remote Sens. Lett. 2012, 9, 328–332. 

25. Pan, J.; Zhou, Q.; Wang, M. Seamline Determination Based on Segmentation for Urban Image 

Mosaicking. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1335–1339. 

26. Kerschner, M. Seamline detection in colour orthoimage mosaicking by use of twin snakes.  

ISPRS J. Photogramm. Remote Sens. 2001, 56, 53–64. 

27. Wan, Y.; Wang, D.; Xiao, J.; Lai, X.; Xu, J. Automatic determination of seamlines for aerial image 

mosaicking based on vector roads alone. ISPRS J. Photogramm. Remote Sens. 2013, 76, 1–10. 

28. Pan, J.; Wang, M.; Li, D.; Li, J. Automatic generation of seamline network using area Voronoi 

diagrams with overlap. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1737–1744. 

29. Ma, H.; Sun, J. Intelligent optimization of seam-line finding for orthophoto mosaicking with LiDAR 

point clouds. J. Zhejiang Univ. Sci. C 2011, 12, 417–429. 

30. Zhang, Z.; Zhu, J.; Hu, X. Measurable orthoimage elevation synchronous model and its application 

in mapping. Acta Geodaetica et Cartographica Sinica 2014, 43, 5–12. 

31. Sheng, Y. Theoretical analysis of the iterative photogrammetric method to determining ground 

coordinates from photo coordinates and a DEM. Photogramm. Eng. Remote Sens. 2005, 71,  

863–871. 



Remote Sens. 2014, 6 12359 

 

 

32. Amhar, F.; Jansa, J.; Ries, C. The generation of true orthophotos using a 3D building model in 

conjunction with a conventional DTM. In Proceedings of the International Archives of 

Photogrammetry and Remote Sensing, Stuttgart, Germany, 7–10 September 1998. 

33. Lee, D.T.; Schachter, B.J. Two algorithms for constructing a delaunay triangulation. Int. J. Comput. 

Inf. Sci. 1980, 9, 219–242. 

34. Ghuneim, A.G. Contour Tracing 2000. Available online: http://www.imageprocessingplace.com/ 

downloads_V3/root_downloads/tutorials/contour_tracing_Abeer_George_Ghuneim/algorithm.html 

(accessed on 10 November 2014). 

35. Douglas, D.; Peuker, T. Algorithms for the reduction of the number of points required to represent 

a digitized line or its caricature. Cartogr. Int. J. Geogr. Inf. Geovis. 1973, 10, 112–122. 

36. Aichholzer, O.; Aurenhammer, F.; Alberts, D.; Gärtner, B. A novel type of skeleton for polygons. 

J. Univers. Comput. Sci. 1996, 752–761. 

37. Hilditch, C.J. Linear Skeletons from Square Cupboards. Mach. Intell. 1969, 4, 403–420. 

38. Hirschmüller, H. Stereo Processing by Semi-Global Matching and Mutual Information. IEEE Trans. 

Pattern Anal. Mach. Intell. 2008, 30, 328–341. 

39. Sithole, G. Filtering of laser altimetry data using a slope adaptive filter. Int. Arch. Photogramm. 

Remote Sens. Spat. Inf. Sci. 2001, 34, 203–210. 

40. Inpho GmbH and Stellacore Corp. 2010. Orthovista Direct. Available online: 

http://www.orthovista.com/ (accessed on 20 September 2014). 

41. Li, C.; Zhang, G.; Lei, T.; Gong, A. Quick image-processing method of UAV without control  

points data in earthquake disaster area. Trans. Nonferr. Met. Soc. China 2011, 21, 523–528. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


