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Abstract: The integration between vegetation data, human disturbance factors, and  

geo-spatial data (Digital Elevation Model (DEM) and image data) is a particular challenge 

for vegetation mapping in mountainous areas. The present study aimed to incorporate the 

relationships between species distribution (or vegetation spatial distribution pattern) and 

topography and human disturbance factors with remote sensing data, to improve the 

accuracy of mountain vegetation maps. Two different mountainous areas located in 

Lancang (Mekong) watershed served as study sites. An Artificial Neural Network (ANN) 

architecture classification was used as image classification protocol. In addition, canonical 

correspondence analysis (CCA) ordination was applied to address the relationships 

between topography and human disturbance factors with the spatial distribution of 

vegetation patterns. We used ordinary kriging at unobserved locations to predict the CCA 

scores. The CCA ordination results showed that the vegetation spatial distribution patterns 

are strongly affected by topography and human disturbance factors. The overall accuracy 

of vegetation classification was significantly improved by incorporating DEM or four CCA 

axes as additional channels in both the northern and southern study areas. However, there 

was no significant difference between using DEM or four CCA axes as extra channels in 
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the northern steep mountainous areas because of a strong redundancy between CCA axes 

and DEM data. In the southern lower mountainous areas, the accuracy was significantly 

higher using four CCA axes as extra bands, compared to using DEM as an extra band. 

In the southern study area, the variance of vegetation data explained by human disturbance 

factors was larger than the variance explained by topographic attributes. 

Keywords: mountain vegetation; DEM; topography; human disturbance factors; CCA; 

ordinary kriging 

 

1. Introduction 

Remote sensing of vegetation in rugged and mountainous areas is severely affected by topographic 

effects [1,2]. Environmental factors such as topography, soil, water, and climate influence vegetation 

distribution in mountainous area [3–5]. Numerous authors have shown the relationships between 

ecosystem structure and composition and topographic features, such as elevation, slope angle, aspect 

and indices of relative moisture based on potential solar radiation and topographic redistribution of 

precipitation [6–9]. Topographic effects cause a difference in radiance values between inclined and 

horizontal surfaces. This causes the same land cover type on opposite facing slopes to have different 

spectral values and different land cover types to have similar spectral values [10]. 

Incorporating ancillary data has been proven to be efficient in reducing topographic effects and 

enhancing image classification accuracy. Digital Elevation Model (DEM) data are a commonly used 

type of ancillary data in mountainous areas. To improve image classification in mountainous terrain, 

DEM data have been used in four different ways: 

 To reduce the topographic effect by topographic normalization techniques [1,11–21]; 

 As an additional ―channel‖ increasing forest map accuracy [9,22–25]; 

 Combined with expert knowledge or a decision tree enhancing classification accuracy [26–28]; 

 Integrating the prior probability of the relationship between elevation and vegetation distributions 

improving image classification [29–34]. 

The spatial distribution pattern of mountainous vegetation is the result of complex interactions 

between natural processes and human influences [4,35]. Besides the topography as such human 

disturbance factors are also a key factor influencing distribution of vegetation types [36–39]. 

Identifying the factors controlling the distribution, abundance and diversity of species at local scale is 

one of the central objectives in community ecology [40,41]. Ordination and classification are the two 

main techniques for analyzing effects of environmental factors on plant community data [42]. Both 

techniques organize community data on species abundances independent of the habitat template [43]. 

These studies, however, merely examined the relationships between plant community or vegetation 

data and the environmental or topographic attributes. Interactions between the spatial components of 

the vegetation, such as spatial distribution pattern and the geographical distribution of the ecological 

and human disturbance factors have hardly been addressed [35]. Bio [44] recommended that the spatial 
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components of plant species response should be an integral part of the exploratory data analysis  

and mapping. 

Remote sensing methods mainly focus on developing linkages between spectral response and 

surface features (such as vegetation types or land-use/land-cover types) at a broad range of spatial 

scales. Mapping plant communities by image classification however, is often limited by spectral 

similarities among essentially different communities [9,45,46]. To overcome this issue, environmental 

response models have been used to predict or produce potential vegetation maps in high mountainous 

areas [3–5,35,37]. However, environmental response models are insufficient to map actual vegetation 

patterns due to their limited capability to handle vegetation distribution prone to disturbance and 

perturbation [45,47,48]. In mountainous areas the integration between plant community data, human 

disturbance factors and geo-spatial data (DEM and image data), all featuring different spatial scales,  

is a particular challenge for vegetation mapping [35,43,45]. Hence there is an obvious need to establish 

the link between theories and practices of ecological research strategies on one side and remote sensing 

image analysis on the other side [43,49]. 

Zhang et al. [34] reported that incorporating the relationships between vegetation and environmental 

factors into image classification requires further investigation. This study aims to add relationships 

between vegetation spatial distribution pattern (SDP), and environmental/human disturbance factors to 

the remote sensing image classification process. Two mountainous study sites were selected that differ 

in terms of climate, ecology, geography, and population density. Selection of two study sites rather 

than one enables to establish whether the specific characteristics of these mountain zones are a 

determining factor in the success of the experimental approach. 

The objectives of this study are 

 To quantify the relationships between vegetation SDP and topography and human disturbance 

attributes by using ordination analysis; 

 To map mountain vegetation by integrating ordination models into remote sensing (Landsat 

Thematic Mapper) image analysis; 

 To test the effectiveness of this mapping approach by evaluating its accuracy against two 

alternative classification strategies: (1) ordinary image classification without ancillary information 

(null model); and (2) classification with a DEM as extra input channel; and finally; 

 To determine whether the significant differences of the two mountain zones are determinant in 

the outcomes of the experimental procedures. 

2. Material and Methods 

2.1. Study Area 

The two research sites are situated in the Lancang (Mekong) watershed, Yunnan province, China 

(Figure 1). They are located in the northern and southern part of this watershed and feature large 

differences. The northern part is a very steep mountainous area marked by the presence of four of 

Southeast Asia’s largest rivers: Yangtse, Mekong, Irrawaddy and Salween. The southern part of the 

watershed is a tropical region containing Xishuangbanna Dai Autonomous Prefecture and is one of the 

most important areas in China in terms of biodiversity [50]. 
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Figure 1. Location of the two study areas. 

 

The northern study area is located in the Weixi and Lanping counties and ranges from latitude: 

26°7'12"N–27°53'24"N; longitude: 98°58'12"E–99°37'48"E (Figure 1). This study area covers the 

northern part of the Hengduan Mountain range of the eastern Himalayas and belongs to the World 

Heritage site of the Three Parallel Rivers of Yunnan Protected Area. The Hengduan Mountain region 

is one of the most biologically diverse temperate ecosystems on Earth [51–53]. It is important not only 

for biodiversity but also for its water resources. This area is a typical steep mountainous area,  

with altitudes ranging between 1,500 and 4,500 m. The yearly average temperature 11.3 °C, and 

average annual rainfall is 954 mm. Because of the altitude differences, the climate varies significantly 

with elevation. The climate can be divided into four zones from the bottom to the top of the mountain: 

warm temperate, temperate, cold temperate and sub-frigid [54]. This vertical climate zonation highly 

influences the vegetation spatial distribution pattern. In addition, many minority ethnic groups, such as 

Tibetans, Naxi, Bai, Lisu, are living in the northern study area [51]. 

The southern study area in the Xishuangbanna prefecture of China’s Yunnan Province is located 

between 22°00'N–23°50'00"N and 100°00'12"E–102°00'E and covers about 50,000 ha (Figure 1). It 

belongs to the lower catchment of the Lancang River. Xishuangbanna is home to the richest biological 

and ethnic diversity (i.e., Thai, Lahu, Jinuo, and Jingpo people) in China. The maximum altitude is 

about 2,000 m. The climate of the region is strongly seasonal. The monthly average temperature ranges 

between 16.4°C and 22.0 °C. Between May and October the South-West Monsoon air masses brings 

about 80% of annual rainfall, whereas the dry and cold air of the Southern edges of the jet stream 

dominates the weather pattern between November and April. Annual rainfall varies between 1,200 mm 

in the Lancang valley and 1,900 mm at altitudes above 1,500 m. 
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2.2. Software 

Canoco 4.5 was used to perform ordination. ArcView 3.2 and ArcGIS 9.1 were used to calculate 

topographic attributes and to perform ordinary kriging. Artificial Neural Networks (ANN) 

classification was conducted with LNNS, a neural network simulation program developed at the 

Laboratory of Forest Management and Spatial Information Techniques (FORSIT), Ghent University, 

Belgium. LNNS is freely available at http://dfwm.ugent.be/forsit [55]. Idrisi Andes was used to assess 

accuracy comparison between different classification strategies. 

2.3. Data 

2.3.1. Image Data 

Each study area is covered by a 30 m resolution Landsat Thematic Mapper 5 (TM) image (Table 1). 

The available Landsat images are third level products of the China Remote Sensing Satellite Ground 

Station (http://www.rsgs.ac.cn/English/Standard%20Product.htm). Basic radiometric and geometric 

preprocessing was done by the image provider. Gitas and Devereux (2006) [56] mentioned that 

topographic correction should be regarded as an essential element of any classification methodology. We 

compared six different topographic normalization methods (Cosine correction, Minnaert correction, C-

correction, SCS correction, two-stage topographic normalization, and slope matching technique) for their 

effectiveness in enhancing vegetation classification in mountainous environments. However, none of these 

topographic correction methods could significantly improve overall classification accuracy (Zhang et al., 

2011) [57]. Therefore, in this study, none of the topographic correction techniques was applied. 

Table 1. Satellite image data and number of training classes and subclasses. 

Study Areas Path/Row Date Sensor 
Number of 

Classes 

Number of 

Subclasses 

Northern study area 132-41 26 December 2003 Thematic Mapper 5 10 41 

Southern study area 130-45 1 March 2004 Thematic Mapper 5 10 46 

2.3.2. Vegetation Data 

Different land cover classes including vegetation and non-vegetation classes (i.e., water, burned 

land, and cast shadow) were discerned (Tables 2 and 3). In view of this study, their selection was based 

on a twofold rationale. The first relates to the major vegetation communities in both study areas, while 

the second is driven by the vegetation classes that can be discerned from Landsat TM imagery. 

2.3.3. DEM, Topographic Maps and Derived Attributes 

The 25 m resolution DEM data produced by the China State Bureau of Surveying and Mapping was 

made available for this study (http://www.sbsm.gov.cn/). The DEM was re-sampled to 30 m and projected 

into the Universal Transverse Mercator (UTM) projection system, zone 47, WGS84 (World Geodetic 

System 1984). In this study, topographic maps produced in the 1970s by Chinese military at a scale of 

1:100,000 were used providing useful information with respect to villages, towns, rivers, roads and land cover. 
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Table 2. The dominant vegetation classes and dominant species in the northern study area. 

Code Classes Dominant Species 

FSF Fir and spruce forest 
Picea likiangensis, Picea brachytyla, Abies georgei, Abies georgei var. smithii, 

Abies forrestii, Abies ferreana. 

PF Pine forest Pinus yunnanensis, Pinus densata, Pinus armandi, Corylus yunnanensis 

OF Oak forest Quercus aquifolioides, Quercus gilliana, Quercus pannosa. 

MF Mixed forests 

Pinus yunnanensis, Pinus armandii, Quercus aquifolioides, Quercus gilliana, 

Betula utilis, Acer cappadocicum, Acer davidii, Picea likiangensis,  

Picea brachytyla, Sorbus sp., Abies georgei, Pseudotsuga forrestii, Tsuga sp., 

Abies georgei var. smithii, Abies forrestii. 

LDF 
Low density forest 

and tall shrubs 
Pinus yunnanensis, Salix myrtillacea, Corylus yunnanensis. 

DSM 
Dwarf shrub  

and meadow 

Elsholtzia capituligera, Incarvillea arguta, Bauhinia brachycarpa, 

Rhododendron tapetiforme, Rhododendron telmateium,  

Rhododendron phaeochrysum, Salix annulifera, Salix hirticaulis,  

Salix myrtillacea, Vitex microphylla, Potentilla sp., Polystichum sp.,  

Juncus sp., Carex sp., Poa sp., Plantago sp., Heleocharis yokoscensis,  

Polygonum lapathifolium, Polygonum calostachyum. 

AL Agricultural land Juglans sp., Zea mays L. 

SN Snow  

WT Water  

CS Cast shadow  

Table 3. The dominant vegetation classes and dominant species in the southern study area. 

Code  Classes  Dominant Species  

ORT Old rubber trees  Hevea brasiliensis 

YRT Young rubber trees Hevea brasiliensis 

EF Evergreen forest 

Cyclobalanopsis delavayi, Castanopsis hystrix, Castanopsis mekongensis, 

Lithocarpus truncatus, Litsea glutinosa, Actinodaphne henryi, Schima wallichii, 

Syzygium yunnanensis, Elaeocarpus austro-yunnanensis, Paramichelia baillonii, 

Engelhardtia sp. Machilus salicina, Symplocos cochinchinensis, Olea rosea, 

Aporusa sp. Pinus khasya var. langbianensis, Lithocarpus sp. Quercus dentata, 

Betula alnoides, Quercus acutissima, Cyclobalanopsis kerrii, Quercus variabilis. 

LDF 
Low density forest 

and tall shrubs 

Pinus khasya var. langbianensis, Pyrus pashia, Phoebe minutiflora,  

Myrica esculenta, Colona floribunda and Vaccinium bracteatum. 

DF Deciduous forest 

Ficus altissima, Toona sinensis, Nephelium chryseum, Altingia excelsa,  

Bischofia javanica, Colona floribunda, Bombax ceiba, Erythrina stricta,  

Bauhinia variegata, Dendrocalamus strictus, D. brandisii,  

Cephalostachyum pergracile, Indosasa sinica, Schizostachyum funghomii,  

and Dinochloa puberula. 

SGL Shrub and grass land 
Trema orientalis, Dalbergia obtusifolia, Docynia indica, Eurya groffii,  

Saccharum sinense, Leucosceptrum canum, Eupatorium coelestinum. 

AL Agricultural land  

BL Burned land  

WT Water  

CS Cloud and shadow  
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The topographic maps can provide land cover information because the plant community’s types did 

not change notably, especially in the remote mountainous areas. Moreover, human disturbance factors, 

such as road (small roads and trails), villages, rivers, and towns can easily be derived from topographic 

maps by digitization. 

To analyze the relationship between topographic attributes and vegetation spatial distribution 

pattern, eight topographic attributes were derived from the DEM data. The applied topographic 

attributes can be divided into primary and secondary attributes. Primary attributes include elevation, 

slope, aspect, plan and profile curvature, and topography position index, and are calculated directly 

from the derivatives of a topographic surface [58]. The secondary attributes, computed from two or 

more primary attributes, include a solar and a wetness index. No erosion index could be computed as 

the rainfall data was not available. Details of the computed attributes are listed in Table 4 [59–65]. 

Table 3 lists the dominant vegetation classes and dominant species in the southern study area. 

Table 4. Short description of the selected topographic factors. 

Code Factors Descriptions 

ELEV Elevation 
Elevation is one of most important topographic factors in regulating 

mountain vegetation patterns [39,59,60]. 

SLO Slope 

Slope also is one of important topographic factors for mountain vegetation 

patterns because it will influence features such as soil moisture, wind, and 

solar radiation [37,59–61]. 

ASP Aspect Vegetation spatial distribution can be affected by slope aspect [3,4,59]. 

PRF Slope profile curvature 

This index measures the rate of change of potential gradient and hence is 

important for characterizing changes in flow velocity and sediment 

transport processes [58]. It also potentially indicates soil moisture [37]. 

PLF Planiform curvature This index is related to converging/diverging flow and soil water content [62]. 

TPI Topographic position index 

Topographic position index is the basis of the topography classification 

system and is simply the difference between a cell elevation value and the 

average elevation of the neighborhood around that cell [63]. This index 

can affect the vegetation patterns in mountainous areas [4,59,64]. 

CTI Compound topographic index 
CTI is a steady state wetness index [62]. Wetness index has been shown to 

affect vegetation spatial patterns [3,4]. 

PADIR 
Potential annual direct 

incident radiation 

PADIR is a solar index, and was developed by McCune and Keon [65]. 

Solar radiation is the primary atmospheric control over soil moisture 

status between precipitation events in vegetation not receiving melt water 

and appears to influence the local adaptation of vegetation [3]. 

2.3.4. Human Disturbance Factors 

Forestry, agriculture, economic development, transport infrastructure are some of the disturbance 

drivers that influence vegetation spatial distribution pattern and landscape pattern at large regional 

scales [38]. Numerous studies have shown that population density and proximate factors are important 

driving forces for both land cover and vegetation pattern change as well as for deforestation [66–69]. 

As it pertains to the distribution of the population over a region, the surface density of villages was 

computed through GIS analysis [70]. Secondly, proximate factors such as distance to settlements and 
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markets (villages and towns) were considered [66,68]. In rural areas in China, farmland and rural 

settlements are the most important land use classes [71]. Most of the farming activities tend to cluster 

into the villages [72]. In addition, mining, road and dam construction are important human 

interventions in the landscapes of both study areas. These activities are directly related to the 

occurrence of roads and rivers. Distance to roads and rivers reflect the landscape accessibility. Serneels 

and Lambin [66], and Overmars and Verburg [68], demonstrated that land use and land cover change 

was strongly related to distance to roads and rivers, while Nagendra et al. [73] claimed that accessible 

areas featured a higher degree of deforestation and fragmentation. Therefore and thirdly, distance to 

roads and rivers were included as human disturbance factors in the current analysis (Table 4). Most of 

the digital line (rivers and roads) and point (villages and towns) data were derived from the 

topographic maps. Because the topographic maps date back to the 1970s, an update, especially for the 

road database, was required. This was accomplished using the traffic map of Yunnan published in 

2007 (http://www.ynbsm.gov.cn/emapshow.asp?col=ynly). The roads were divided into two categories: 

wide (width ≥ 3 m) and narrow (width < 3 m) roads. The rivers were categorized into three levels based 

on the standards of China’s river system (http://nfgis.nsdi.gov.cn/nfgis/english/default.htm) (Table 5). 

Table 5. Human disturbance factors. 

Code Proximate Drivers Unit 

SDV Surface density of villages km
2
 

CDV Cost distance to villages m 

CDT Cost distance to towns m 

CDLC Cost distance to Lancang River m 

CDMR Cost distance to mid-class level river m 

CDS Cost distance to streams m 

CDLR Cost distance to large (wide) roads m 

CDSR Cost distance to small (narrow) roads m 

Distance is a basic concept inherent to any geographical space. Euclidian distance, the simplest 

distance measurement, is widely used to calculate the distance of a location to the nearest destination 

of interest [66,68,74,75]. However, Euclidean distance is computed by using the Pythagorean 

Theorem, which is not very realistic when representing effective spatial accessibility [76]. Typically in 

a mountainous environment, the distance between two points over a sloping surface is significantly 

larger than over a flat path. Another critical issue is that of friction which impedes movement [77]. 

Several researchers have shown the utility of modeling cost distance that takes into account the spatial 

heterogeneity [76,78,79]. Hence, we measured the cost distance of a cell to the destinations of interest 

taking into account the existing friction based on slope angles (Table 5). There are a number of ways to 

assign friction coefficients to slopes. Here, an empirically binomial equation (Equation (1)), which was 

developed from sample data of walking times in mountains in the Middle Himalaya of Nepal, was used 

to model friction magnitudes for slope [77]: 

Y = 0.031 × X
2
 – 0.025X + 1 (1) 

where Y is friction and X is the slope derived from DEM. Afterward, the cost distance is measured as 

the least cost (in terms of effort, expense, etc.) when moving over a friction surface [80]. 
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2.3.5. Training and Validation Data 

Three field surveys (September to October 2004 in the northern study area; March 2004 and 

September to October 2006 in the southern study area) were carried out. During field surveys, at 

several spots that were thought to be of a relevant size with regard to the spatial resolution of the 

available images, the present vegetation type, as well as a GPS measurement of the co-ordinates and 

elevation, were recorded. For each point, we also recorded the dominant vegetation type (Tables 2 and 3), 

the cover percentage and estimated height of vegetation types. In addition, human impact, such as 

harvest residue, fire, logging or grazing was recorded. Other features that were recorded, include 

vegetation groups (e.g., coniferous or broad-leaved, evergreen or deciduous, etc.), vertical structure of 

plant communities (e.g., subcanopy forest regeneration), and succession stages (such as weeds, 

pioneers, or climax vegetation types). They were used to establish the main characteristics and 

variability of the vegetation cover, and to acquire reliable field data for both training the classifiers and 

evaluating the accuracy of the classification results. Furthermore, at each point several photographs 

were taken in different directions to ensure the possibility of future comparison after the field work 

was completed. The field data were supplemented with manually digitized reference pixels. As a 

specific vegetation class might consist of several spectral subclasses, training data for each different 

spectral subclass was assembled in a ground truth digitizing stage [81]. There exists, for example, 

―pine forest on shaded slopes‖, ―pine forest on sunny slopes‖, ―old rubber trees‖ and ―young rubber 

trees‖. The number of spectral subclasses of the two images is listed in Table 1. The ground truth 

polygons were converted into a raster map with a cell size of 30 m × 30 m. Then, this map was 

randomly divided into training set, test set, and validation set be used in an artificial neural networks 

classification protocol. The test set was used to evaluate the algorithm’s convergence while the 

validation data served for independent accuracy assessment. The number of pixels of the training sets 

and validation sets for each class is listed in Table 6. Moreover, in order to measure the topographic 

effects on spectral patterns of vegetation classes, histograms of digital number (DN) values of 

vegetation classes were examined (Figure 2). 

Table 6. The number of pixels of the training and validation sets for each class in the both study areas. 

 The Northern Study Area The Southern Study Area 

Code of 

Classes 

Number of 

Training Pixels 

Number of 

Validation 

Pixels 

Code of 

Classes 

Number of 

Training 

Pixels 

Number of 

Validation 

Data 

FSF 2,779 2,736 ORT 3,302 3,321 

PF 9,540 9,594 YRT 1,727 1,695 

OF 1,813 1,815 EF 23,866 23,981 

MF 4,539 4,423 LDF 2,386 2,383 

LDF 6,319 6,230 DF 2,472 2,439 

DSM 6,898 6,933 SGL 4,838 4,710 

AL 23,851 23,800 AL 9,310 9,408 

SN 3,912 3,777 BL 1,715 1,623 

WT 1,138 1,176 WT 1,217 1,250 

CS 2,327 2,383 CS 241 267 
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Figure 2. The frequency distribution of digital number (DN) values of the training data in 

the Thematic Mapper near infrared (NIR) band (band 4). FSF: fir and spruce forest; 

PF: Pine forest; OF: oak forest; MF: mixed forest; LDF: low density forest and tall shrub; 

DSM: dwarf shrub and meadow; AL: agricultural land. 

 

2.3.6. Classification Algorithm Selection 

Since the beginning of the 1990s, artificial neural networks (ANN) have been applied in the 

analysis of remote sensing images [82]. Many authors have reported considerable advantages of ANN 

over conventional methods (e.g., Verbeke et al. [55], Mas and Flores [83]). One of the main 

advantages of ANN classifiers is that they are independent of the distribution of the class-specific data 

in feature space [84]. Figure 2 clearly shows that the DN distributions of the ground truth data of some 

classes (i.e., fir and spruce forest, pine forest, and mixed forest) deviate from a Gaussian model. 

Considering the non-normality and heteroscedasticity of the ground truth data ANNs were used to 

perform image classification. After classification, the subclasses were merged into 10 broad land cover 

classes based upon ancillary information (GPS points, topographic maps, DEM data, and plant 

community data) and field ecological expertise (Tables 2 and 3). In addition, in order to build a CCA 

ordination model, a spatial database including vegetation data as well as topographic and human 

disturbance attributes was built. 

2.4. Methods 

2.4.1. Outline 

The mountain vegetation mapping approach of this study contains three main stages: CCA 

ordination analysis (Stage 1), interpolation of CCA axes (Stage 2), and image classification 

incorporating ordination results or DEM data (Stage 3). In Stage 1, the relationship between 

topography and human disturbance factors and vegetation data was identified. In Stage 2, the CCA 

scores for unobserved locations were predicted based on the CCA scores at the sampled locations 
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using ordinary kriging. Next, in Stage 3 an ANN was applied classifying the TM image data 

incorporating ancillary information from the 4 CCA axes or from the original DEM. Finally, 

classification accuracy was assessed. 

Stage 1: Ordination Analysis 

Ordination methods can be divided in indirect ordination or unconstrained ordination (i.e., detrended 

correspondence analysis, DCA and principal component analysis, PCA) and direct ordination or 

constrained ordination (i.e., canonical correspondence analysis, CCA and redundancy analysis, RDA) [85]. 

The direct ordination methods are particularly suited to address relationships between species 

composition and environmental variables. Direct ordination methods have also been applied to  

study the relationships between vegetation SDP and environmental factors, especially topographic 

factors [61,64,86–88]. In this study, the spatial distribution of the known pixels was derived from our 

ground truth data which are homogeneous. In order to build CCA ordination model, a spatial database 

including vegetation data and topographic and human disturbance attributes was built. This spatial 

database included two matrices: vegetation type matrix (to each ground truth polygon a vegetation type 

was assigned) and topography and human disturbance attributes matrix (to each ground truth polygon, 

the average value of topography and human disturbance attributes listed in Tables 4 and 5 were assigned). 

DCA was used in a preliminary test to assess the length of the environmental gradients of the  

axes [85]. If that value was larger than 4.0, unimodal methods (DCA, CA, or CCA) was used. On the 

other hand, if the longest gradient was shorter than 3.0, the linear method (PCA or RDA) was 

considered to be a better choice [89]. In the range between 3 and 4, both types of ordination methods 

are assumed to be applicable. 

In both study areas, the lengths of the environmental gradients are larger than 4 (Table 7); the CCA 

ordination procedure was carried out to investigate relationships between topographic attributes and 

vegetation spatial distribution pattern at both study areas. The core of direct constrained ordination by 

CCA developed by Ter Braak [90] is a weighted multivariate linear regression of community gradients 

on environmental variables [91]. First, the main variation in the species (or vegetation) data is analyzed 

by indirect gradient ordination (e.g., correspondence analysis, CA); Secondly, the indirect gradient 

ordination axis is used to relate to the environmental variables by multiple regression of the site scores 

on the environmental variables [90]. A joint plot (biplot) showed the general vegetation types and their 

correlations with topographic and human disturbance variables. The relationships between vegetation 

data and topographic/human disturbance variables can be estimated by perpendicularly projecting 

vegetation points (triangles) onto the arrows (topographic and human disturbance variables). The 

lengths of the arrows are used to compare the size of such an effect across the topographic and human 

disturbance variables. The approximated correlation between topographic and human disturbance variables 

is equal to the cosine of the angle between the corresponding arrows (Leps and Smilauer, 2003) [85]. 

The significance of the relationships between vegetation variables and topographic/human disturbance 

variables was determined by Monte Carlo permutation tests (Legendre and Legendre, 1998) [92]. 

In addition, the intraset correlations between topography and human disturbance variables and 

canonical axes in CCA were used as indicators of which variables were more important in structuring 
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the ordination (Ter Braak, 1986) [90]. Therefore, a multiple linear regression was used to address those 

intraset correlations.  

Table 7. Summary table of DCA applied to vegetation training data. 

Study Areas  DCA1 DCA2 DCA3 DCA4 Dispersion of All EV 

Northern study area 
Eigenvalues (EV) 1.000 1.000 0.826 0.067 9.000 

Lengths of gradient 0.000 0.000 4.877 4.151  

Southern study area 
Eigenvalues (EV) 1.000 0.842 0.444 0.077 9.000 

Lengths of gradient 0.000 6.501 6.087 5.619  

Stage 2: Spatial Interpolation of CCA Axes Scores 

CCA analysis reduced the vegetation data and environmental (topography and human disturbance) 

variables into four independent ordination axes. The four CCA axes explained the vegetation and 

environment data by recording the dispersion of vegetation and environmental (topography and human 

disturbance) variables scores. The spatial interpolation of 4 CCA environment axes scores at the 

sampled locations was carried out by using kriging [35,91,93,94]. This geostatistical approach assumes 

that the spatial correlation structure between points (samples), which are closer together have more 

similar values than those that are further apart [95]. Firstly, semivariogram analysis was used to 

explore the spatial correlation of the four CCA scores (Figure 3); Secondly, to assess spatial 

correlation, a model was fitted to the semivariogram with spherical, exponential, or Gaussian functions 

as candidate models resulting in estimated prediction standard errors. If the prediction standard errors 

are valid the root-mean-square standardized errors (RMSSE) should be close to 1 [95]. From the 

calculation of the RMSSE a spherical model was used to fit the semivariogram of axis1, axis3, and 

axis4, while the exponential model was used to fit the semivariogram of axis2 [90]. 

Afterward, ordinary kriging was used to predict CCA scores at unobserved locations (Burrough and 

McDonnel 1998) [93]. It is the most robust and often used method because it minimizes the variance 

error between the model and the estimate [96]. The kriging interpolation is a weighted average of the 

observed values    
 which is used to estimate the value of    

, identified at a specific location x0 where 

there are no measured values [93,95,97]. By using the spatial structure defined by the semivariogram, a 

kriging system of linear equations combining neighboring information can be defined [98]. 

Stage 3: Image Classification 

There are many different types of neural networks for image classification [99]. In this study, 

a three layer neural network was constructed, consisting of one input layer, one hidden and one output 

layer [100]. The number of input neurons corresponded to the number of input layers (image bands 

complemented with DEM or CCA axes). In order to be consistent with the DN value range of the TM 

image data, all of the extra channels (DEM or CCA axes) were normalized on a 0 to 255 value scale. 

The number of neurons in the output layer equaled the number of subclasses while the number of the 

hidden neurons was arbitrary set to twenty. A sigmoid activation function was used with a learning rate 

of 0.001 and momentum of 0.2. 
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Figure 3. Fitted variogram for each extracted canonical correspondence analysis (CCA) 

ordination axis in the northern study area. (a) Semivariance diagram of CCA scores for 

axis 1; (b) Semivariance diagram of CCA scores for axis 2; (c) Semivariance diagram of 

CCA scores for axis 3; (d) Semivariance diagram of CCA scores for axis 4. 

  
(a) (b) 

  
(c) (d) 

2.4.2. Accuracy Assessment 

The accuracy of the classifications was assessed using confusion or error matrices and Kappa 

statistics (KHAT) [101]. In addition, in order to test the null hypothesis of no differences between 

different images classification strategies, the pair-wise Z-statistic was calculated [102–104]. 

3. Results 

3.1. Ordination Results 

From the Monte Carlo permutation test, except for planiform curvature (PLF) and cost distance to 

streams (CDS), all topographic and human disturbance variables were significantly correlated with the 

vegetation and non-vegetation spatial distribution pattern data in the northern study areas (Table 8). 

In the southern study area, topographic position index (TPI), Slope planiform curvature (PLF), and 

slope profile curvature (PRF) were not significantly correlated with the vegetation data (Table 8). The 

results of CCA are shown in two diagrams for the two study areas (Figures 4 and 5). Vegetation 

classes are represented by triangles, and topography and human disturbance factors are represented by 
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arrows. The length of arrows indicate that elevation (ELEV) and surface density of villages (SDV) are 

the two most important driving factors determining vegetation spatial distribution pattern in both study 

areas (Figures 4 and 5). Profile (PRF) and planiform (PLF) curvature have relatively small effects on 

the vegetation spatial distribution pattern. 

Table 8. Statistical significance of topography and human disturbance variables for 

vegetation spatial patterns in the two study areas. 

Code Variables 

Northern Study Area  

(n = 2,085) 

Southern Study Area  

(n = 2,986) 

p-Level F Value p-Level F Value 

ELEV Elevation 0.002 21.88 0.002 13.05 

SDV Surface density of villages 0.002 3.52 0.002 12.84 

CTI Compound topographic index 0.002 18.09 0.002 8.29 

CDLC Cost distance to Lancang River 0.002 15.23 0.018 2.49 

PADIR Potential annual direct incident radiation 0.002 17.16 0.002 4.95 

SLO Slope angle 0.002 4.93 0.002 4.41 

CDLR Cost distance to large roads 0.002 5.05 0.002 12.60 

CDMR Cost distance to mid-class level river 0.002 7.21 0.002 4.81 

CDV Cost distance to villages 0.018 2.51 0.002 5.52 

CDT Cost distance to towns 0.002 6.49 0.002 5.80 

CDSR Cost distance to small roads 0.002 2.71 0.002 4.22 

TPI Topographic position index 0.01 2.81 0.108 1.59 

CDS Cost distance to streams 0.036 2.11 0.002 3.97 

PRF Slope profile curvature 0.094 1.63 0.302 1.15 

ASP Slope aspect 0.002 3.92 0.002 6.66 

PLF Slope planiform curvature 0.846 0.49 0.762 0.62 

Note: The underlined numbers are cases with p > 0.05. 

CCA diagrams also illustrate the relationships between each vegetation class and the set of 

environmental variables. Compared to the other land cover classes, snow (SN) and fir and spruce forest 

(FSF) are predicted to occur at higher elevation and are located relatively far from villages, towns, the 

Lancang River, and roads (Figure 4). Conversely, these two classes have lower surface density of 

village (SDV) values implying that, in the northern study area, snow (SN) and fir and spruce forest 

(FSF) occur at higher altitude with less human disturbance. Water (WT), pine forest (PF) and 

agricultural land (AL) all feature higher surface density of village (SDV) values and lower elevation 

and proximate values. Based on field knowledge, water (WT) (Lancang River), agricultural land (AL) 

and pine forest (PF) always occur at lower elevations where most of villages and roads are present. 

Water (WT) also has the highest compound topographic index (CTI) value and lowest slope degree. In 

contrast, the cast shadow class (CS) has the highest slope value. Figure 4 shows that dwarf shrub and 

meadow (DSM) is close to the center. It means that the dwarf shrub and meadow is weakly correlated 

to elevation and other factors. It can be found at any elevation and anywhere in the study area. 

It includes both natural vegetation (alpine and subalpine shrub/meadow), and vegetation that is 

featuring anthropogenic disturbance (grazing land and abandoned farm land). Mixed forest is also 

close to the center. It also includes both natural vegetation (oak and spruce mixed forest), 
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and vegetation that is featuring anthropogenic disturbance (secondary mixed forest such as pine and 

poplar mixed forest). 

Figure 4. CCA ordination of vegetation classes’ spatial pattern in relation to environmental 

variables in the northern study area. The symbols of vegetation classes are listed in Table 4. 

The symbols of environmental variables are described in Tables 2 and 3. By projecting the 

points of the vegetation classes (triangles) onto the arrows of quantitative environmental 

variable, an approximate ordering of those vegetation classes with respect to that 

environmental variable can be obtained. 

 

Figure 5. CCA ordination of vegetation classes’ spatial pattern in relation to environmental 

variables in southern study area. The symbols of vegetation classes are listed in Table 4. 

The symbols of environmental variables are described in Tables 2 and 3. By projecting the 

points of the vegetation classes (triangles) onto the arrows of quantitative environmental 

variable, an approximate ordering of those vegetation classes with respect to that 

environmental variable can be obtained. 
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In the southern study area, rubber plantation (YRT and ORT) and agricultural land (AL) are 

predicted to have a lower elevation and distance to towns (CDT), villages (CDV), roads (CDSR and 

CDLR), and rivers (CDS, CDMR, and CDLC) (Figure 5). However, these classes have higher values 

for surface density of villages (SDV) and potential annual direct incident radiation (PADIR). 

In contrast, evergreen forest (EF), low density forest (LDF), shrub and grass land (SGL), and burned 

land (BL) have higher elevation (ELEV) values (Figure 4). From field expertise it is known that the 

two anthropogenic classes, rubber plantation (YRT and ORT) and agricultural land (AL), always 

occurs at lower altitudes and close to towns and villages. 

The importance of each ordination axis with respect to the original vegetation pattern is indicated 

by the eigenvalues. For the northern study area, all summed CCA axes explained about 41% of the 

vegetation data variability and about 32% of the variation of the vegetation data was explained by the 

four extracted axes. On the other hand, for the southern study area, about 37% of vegetation data 

variability was assessed by all CCA axes, and the four extracted axes explained about 28%. 

The eigenvalues showed that the explained variability in the vegetation data is for the larger part 

expressed by the first two dimensions. 

We compared the partial CCA ordination results for both study areas. In the northern zone the 

topographic attributes explained about 28% (17.76% + 10.82%) of the total variability of the 

vegetation and non-vegetation data, while human disturbance factors accounted for considerably less 

(23.65% = 12.83% + 10.82%) of the variance (Table 9). However, in the southern study area, the 

variance explained by human disturbance factors (22.86% = 15.63% + 7.23%) was almost equal to the 

variance explained by topographic attributes (21.94% = 14.71% + 7.23%). 

Table 9. Decomposed explained variance in vegetation data. 

Study Areas 
Variance 

Explained 

Partially Explained 

by Topographic 

Attributes 

Partially Explained by 

Human Disturbance 

Attributes 

The Shared 

Explained 

Variance 

Northern study area 41.41% 17.76% 12.83% 10.82% 

Southern study area 37.57% 14.71% 15.63% 7.23% 

3.2. Image Classification 

The poorest ANN classification accuracy was obtained using the 7 TM image bands training 10 broad 

classes (Tables 10 and 11). For both study areas, the highest classification accuracies were obtained 

when classifying all spectral subclasses (41 and 46 for the northern and southern study area 

respectively) incorporating the 4 CCA axes as extra channels (Tables 10 and 11) (Figure 6).  

Pair-wise Z test values are listed in Tables 12 and 13. These values show that classification 

accuracy can be significantly improved by training spectral classes or subclasses as compared to 

training broad classes [81,105]. 
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Table 10. Summary of the TM image (2 December 2003) classification results in the 

northern study area. 

Classification 

Number 

Classification and 

Training Strategies 
Data Used 

Overall Accuracy 

(OA) (n = 62,867) 

Kappa  

(n = 62,867) 

N1 
ANN by training  

10 classes 
7 bands 83.69% 0.7996 

N2 
ANN Training  

41 subclasses 
7 bands 91.09% 0.8878 

N3 
ANN by training  

41 subclasses 
7 bands, DEM 95.3% 0.9412 

N4 
ANN by training  

41 subclasses 

7 bands, 4 CCA 

interpolated axes 
96.49% 0.9561 

Note: n is the number of pixels. ANN, Artificial Neural Network. DEM, Digital Elevation Model. 

Table 11. Summary of the TM image (1 March 2004) classification results in the southern 

study area. 

Classificatio

n Number 

Classification and 

Training Strategies 
Data Used 

Overall Accuracy (OA)  

(n = 62,867) 

Kappa  

(n = 62,867) 

S1 
ANN by training  

10 classes 
7 bands 85.97% 0.8021 

S2 
ANN by training  

46 subclasses 
7 bands 90.1% 0.8631 

S3 
ANN by training  

46 subclasses 
7 bands, DEM 93.49% 0.9103 

S4 
ANN by training  

46 subclasses 

7 bands, 4 CCA 

interpolated axes 
96.45% 0.9500 

Note: n is the number of pixels. 

Table 12. Pair-wise Z statistic test of the comparisons of the different classification 

strategies in the northern study area. 

Pair-Wise N1 N2 N3 N4 

N1      

N2 −5.64 ***    

N3 −7.04 *** −2.42 *   

N4 −6.87 *** −2.79 ** −0.54  

*** p < 0.001, ** p < 0.01, * p < 0.05 

Table 13. Pair-wise Z statistic test of the comparisons of the different classification 

strategies in the southern study area. 

Pair-Wise S1 S2 S3 S4 

S1     

S2 −3.53 ***    

S3 −5.40 *** −2.20 *   

S4 −8.23 *** −4.45 *** −2.03 *  

*** p < 0.001, ** p < 0.01, * p < 0.05 
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Figure 6. Land cover maps derived from ANN image classification incorporating the four 

CCA axes as extra channels in both study areas. (a) Land cover image classification in the 

northern study area; (b) Land cover image classification in the southern study area. 

 

(a) 

 

(b) 
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4. Discussion 

In steep mountainous terrain, topographic effects may cause the same vegetation type on opposite 

facing slopes to feature different spectral values and different vegetation types to have similar spectral 

values [106]. Figure 7 shows a bimodal distribution of the pine forest (PF) spectral response patterns 

(training data) indicating the presence of two pine subclasses, pine on sunny slopes and pine on  

shady slopes. 

Figure 7. Distribution of DN values for pine forest training data in Landsat 5 TM NIR (band 4). 

 

Table 14. Pearson correlations of CCA axes with topographic and human disturbance attributes. 

Code 
Northern Study Area Southern Study Area 

Axis1 Axis2 Axis3 Axis4 Axis1 Axis2 Axis3 Axis4 

ELEV –0.95 *** –0.16 0.14 0.14 –0.67 *** 0.23 * –0.52 *** 0.14 

SLO –0.39 *** 0.50 *** –0.47 *** 0.10 –0.39 *** 0.60 *** 0.49 *** 0.19 

ASP 0.10 0.29 ** 0.09 0.01 0.38 *** 0.39 *** –0.05 –0.17 

TPI –0.38 *** 0.24 * –0.23 * –0.12 0.63 *** –0.12 –0.28 ** –0.03 

PRF 0.25 * –0.06 0.20 * 0.18 –0.46 *** –0.05 0.16 –0.23 * 

PLF –0.10 0.06 –0.02 –0.09 0.00 0.29 ** 0.12 –0.34 *** 

CTI 0.62 *** –0.36 *** 0.64 *** 0.08 0.32 ** –0.01 –0.16 0.35 *** 

PADIR 0.12 –0.62 *** –0.53 *** 0.02 0.20 * –0.42 *** –0.09 0.70 *** 

CDT –0.34 *** 0.14 –0.18 0.51 *** –0.17 0.60 *** 0.01 0.36 *** 

CDV –0.56 *** 0.12 0.01 0.40 *** –0.09 0.56 *** 0.21 * 0.36 *** 

CDSR –0.12 0.46 *** –0.09 0.28 ** –0.25 * 0.43 *** 0.34 *** 0.21 * 

CDS –0.07 0.17 –0.33 *** –0.09 –0.49 *** 0.36 *** 0.38 *** 0.13 

CDMR –0.25 * 0.64 *** 0.09 0.20 * –0.61 *** 0.06 0.05 –0.03 

CDLC –0.53 *** 0.20 * –0.01 0.71 *** 0.10 0.57 *** –0.50 *** 0.07 

CDLR –0.51 *** 0.28 ** 0.05 0.55 *** 0.05 0.58 *** 0.07 0.39 *** 

SDV 0.86 *** 0.14 –0.23 * –0.35 *** 0.20 * –0.50 *** –0.21 * –0.39 *** 

*** p < 0.001; ** p < 0.01; * p < 0.05. 
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For both the northern and southern study areas, classification accuracy could be significantly 

improved by incorporating DEM or 4 CCA axes as additional channels (Tables 12 and 13). In the 

northern steep mountainous terrain, the importance of the DEM or CCA axes for vegetation mapping 

can be explained by the fact that the distribution of forest types is mainly determined by elevation  

(i.e., CCA axis1 is strongly correlated to elevation (Table 14). Likewise, the spatial distribution of fir 

and spruce forest (FSF), pine forest (PF), agricultural land (AL) and water are strongly affected by 

elevation (Figure 4). In the southern study area, elevation is also the main determining factor for the 

distribution of rubber trees, agricultural land, deciduous forest, and evergreen forest. 

The classification performed without the DEM resulted in unrealistic distributions of some of the 

vegetation classes: e.g., pine forest (PF) and agricultural land (AL) occurring at altitude levels  

above 3,300 m, and even above 4,000 m; and fir and spruce forest (FSF) occurring below 2,500 m 

(Figure 8). Without DEM agricultural land (AL) was confused with alpine and subalpine shrubs and 

meadows (DSM), and pine forest (PF) was always mistakenly classified as fir and spruce forest (FSF) 

(Figure 2). Hence, integrating DEM data in the classification process resulted in a more realistic spatial 

distribution pattern of vegetation classes whose occurrence is determined by altitude, such as fir and 

spruce forest (FSF), pine forest (PF) and agricultural land (AL) (Figure 9). Both pine forest (PF) and 

agricultural land (AL) are no longer found in areas with an elevation above 3,500 m, while the fir and 

spruce forest (FSF) no longer occurs at elevations lower than 3,000 m. 

Figure 8. Frequency distribution of fir and spruce forest (FSF), pine forest (PF), and 

agricultural land (AL) obtained by ANN classification without DEM as an extra channel. 

 

Figure 9. Frequency distribution of fir and spruce forest (FSF), pine forest (PF), and 

agricultural land (AL) obtained by ANN classification using DEM as an extra channel. 
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The distributions of the training data for three classes (fir and spruce forest (FSF), pine forest (PF), 

and agricultural land (AL)) in the Landsat TM near infrared (NIR) band are displayed in Figure 10. 

Pine forest (PF) overlaps both with the patterns of fir and spruce forest (FSF) and agricultural land 

(AL) indicating that pine forest is difficult to separate from both classes. Patterns of overlap in the 

DEM values are different: the DEM values of fir and spruce forest (FSF) almost have no overlap with 

those of pine forest (PF) (Figure 11). On the other hand, agricultural land and pine forest overlap 

completely when their altitude distributions are compared. These graphs indicate that incorporating 

DEM values in the image classification process is recommended for vegetation types whose distributions 

are determined by altitude. This corresponds with research work reported by Elummoh et al. [23],  

Liu et al. [26], Ren et al. [28], Zhang et al. [34].  

Figure 10. Frequency distribution of DN value for FSF, PF and AL in Landsat 5 TM 

NIR band. 

 

Figure 11. Frequency distribution of DEM values for FSF, PF and AL. 
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In the northern study area, the improvements to classification accuracy when adding the DEM or 

CCAs were very similar (Table 12). This is quite logical as the CCA ordination results showed that the 

CCA axes are strongly correlated to the computed topographic attributes, particularly for CCA ax1 and 

elevation (r = 0.95) (Table 10), suggesting that CCA axes and DEM data are redundant. 

In the southern study area, the accuracy is significantly higher using 4 CCA axes compared to 

incorporating a DEM as an extra band (Table 13). As mentioned above, in the southern study area, the 

variance explained by human disturbance factors is higher than the variance explained by topographic 

attributes. As vegetation and spatial distribution pattern’s are strongly influenced by human disturbance 

(e.g., rubber plantations, burned land, and agricultural land), classification accuracy can be 

significantly improved by adding ancillary data relating to human influence factors. Figure 12 shows a 

large overlap between the spectral response patterns of young rubber trees and agricultural land in the 

NIR band (Band 4). This overlap can be reduced by using CCA axis2, which is significantly correlated 

with the human influence factors, except for cost distance to middle rivers (Table 14) as an extra 

channel (Figure 13). 

Figure 12. Frequency distribution of DN values for YRT and AL in Landsat TM band 4. 

 

Figure 13. Frequency distribution of CCA scores for YRT and AL in axis2. 
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A large part of the variation in the vegetation data remains unexplained. The explained variability 

depends on the number of vegetation classes and samples [81]. Mountain vegetation is the result of  

a complex interaction between natural processes and human intervention, and it is impossible to 

completely explain the response of the vegetation to a limited set of attributes [4,32]. Additionally, some 

species have a relatively wide ecological amplitude, so there will never be a perfect species-environment 

correlation. Soil is another important biophysical factor for vegetation spatial distribution pattern, but 

this parameter was not included in the research work. Furthermore, the Kriging interpolation scheme 

for CCA axes introduced errors in feature space, which may explain why the CCA scores do add little 

to the accuracy of the image classification. 

Compared with the southern study area, the northern study area is much more rugged: The effects 

of topographic factors on vegetation spatial distribution, hence stronger. However, in the southern 

study area, with its higher population density, the human disturbance is stronger than in the northern 

study area [107]. Anthropogenous effects on the vegetation spatial pattern are stronger than the effects 

of topography in this area. Since the establishment of rubber plantations in 1956 in the southern study 

area (Xishuangbanna prefecture, Yunnan, China), the expansion of rubber plantation has accelerated, 

particularly after 1978 [108–110]. In the southern study area, another important human disturbance 

factor is fire (burned land). Xishuangbanna is the traditional homeland of upland minority people  

(―hill tribes‖) including Dai, Hani (called Akha in Thailand), and Bulang [110]. Hani (Akha) and 

Bulang people traditionally practice shifting cultivation in the uplands and cultivated rice in the 

lowlands [110–112]. From field observations it has been established that the local people commonly 

use fire to clear forest and shrub land for rubber plantation. 

5. Conclusions 

The purpose of this study was to present a novel method for mapping mountain vegetation in 

Lancang Mekong, China, whereby the added value of Canonical Correspondence Analysis (CCA) to 

an Artificial Neural Network (ANN) was investigated. All the topographic attributes were significantly 

correlated with vegetation spatial distribution patterns in both study areas. Elevation and slope were 

established as the two most important influencing factors. In addition, CCA ordination reduced the 

vegetation data and environmental (topography and human disturbance) factors into four independent 

ordination axes. Inclusion of these additional variables improved the classifications up to a maximum 

of 6%. This was particularly the case for vegetation classes strongly affected by topography, such as 

example pine forest, fir and spruce forest in the north, and rubber plantation in the south. Also, with an 

overall accuracy of more than 95% and kappa value of more than 0.95, it was demonstrated that 

inclusion of the CCA ordination model into image analysis holds considerable promise for an 

automated approach of mountain vegetation mapping. It was found important to separate the 

vegetation classes into subclasses based on the spectral response patterns, to implement the training 

stage eventually resulting in improved classification accuracy. In the case of the more rugged terrain in 

the northern study area, elevation (DEM) and CCA axes were equally important since the most 

important factor driving the distribution of vegetation is altitude. For the southern area, the CCA axes 

were more important than the DEM for improving the classification. Accurate mapping of rubber 
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plantations in the south will be very useful for ecosystem conservation, sustainable planning, and 

management of ecologically fragile mountain area. 

As mentioned in the introduction, one of the big challenges for mapping mountain vegetation is the 

scale issue of the integration between plant community data, human disturbance factors and geo-spatial 

data (i.e., DEM and image data). Further work will therefore focus on the question of scale interactions 

and scale gaps concerning the data used for dominant vegetation community mapping, such as  

plant community data, geographic spatial data and multi-resolution image data. Furthermore, it is 

acknowledged that the Kriging interpolation scheme for CCA axes introduces errors in feature space, 

which may partly explain why the CCA scores attribute little to the accuracy of the final image 

classification. Further development of the interpolation scheme may need to be developed in future 

work as well. 
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