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Abstracts: More than 20 techniques have been developed to de-noise time-series 

vegetation index data from different satellite sensors to reconstruct long time-series data 

sets. Although many studies have compared Normalized Difference Vegetation Index 

(NDVI) noise-reduction techniques, few studies have compared these techniques 

systematically and comprehensively. This study tested eight techniques for smoothing 

different vegetation types using different types of multi-temporal NDVI data (Advanced 

Very High Resolution Radiometer (AVHRR) (Global Inventory Modeling and Map Studies 

(GIMMS) and Pathfinder AVHRR Land (PAL), Satellite Pour l’ Observation de la Terre 

(SPOT) VEGETATION (VGT), and Moderate Resolution Imaging Spectroradiometer 

(MODIS) (Terra)) with the ultimate purpose of determining the best reconstruction technique 

for each type of vegetation captured with four satellite sensors. These techniques include 

the modified best index slope extraction (M-BISE) technique, the Savitzky-Golay (S-G) 

technique, the mean value iteration filter (MVI) technique, the asymmetric Gaussian (A-G) 

technique, the double logistic (D-L) technique, the changing-weight filter (CW) technique, 

the interpolation for data reconstruction (IDR) technique, and the Whittaker smoother 

(WS) technique. These techniques were evaluated by calculating the root mean square 

error (RMSE), the Akaike Information Criterion (AIC), and the Bayesian Information 
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Criterion (BIC). The results indicate that the S-G, CW, and WS techniques perform better 

than the other tested techniques, while the IDR, M-BISE, and MVI techniques performed 

worse than the other techniques. The best de-noise technique varies with different 

vegetation types and NDVI data sources. The S-G performs best in most situations. In 

addition, the CW and WS are effective techniques that were exceeded only by the S-G 

technique. The assessment results are consistent in terms of the three evaluation indexes for 

GIMMS, PAL, and SPOT data in the study area, but not for the MODIS data. The study 

will be very helpful for choosing reconstruction techniques for long time-series data sets. 

Keywords: MODIS; AVHRR; PAL; GIMMS; SPOT VGT; NDVI; noise reduction; 

reconstruction techniques 

 

1. Introduction 

Analysis of Normal Difference Vegetation Index (NDVI) time-series data is becoming increasingly 

important for ecological research on environmental dynamics and climate change [1–3], vegetation 

dynamics [4–8], land cover change [9–11], and animal species distribution [12]. Analyzing NDVI 

time-series data has been a useful tool for studying climate, vegetation, and animal distribution, and 

performance at large spatial and temporal scales [13]. Although NDVI data sets are pre-processed to 

reduce noise from sensor resolution and calibration, digital quantization errors, ground and 

atmospheric conditions, and orbital and sensor degradation, some noise is still present in the 

downloadable data sets, including noise that results from cloud cover, poor atmospheric conditions, 

and unfavorable sun-sensor-surface viewing geometries [13–19]. Though the standard maximum value 

compositing technique (MVC) [14] was used for the main data sets, (e.g., the vegetation index 

products from Global Inventory Modeling and Map Studies (GIMMS), Advanced Very High 

Resolution Radiometer (AVHRR) data, Pathfinder AVHRR Land (PAL) data, Satellite Pour l’ 

Observation de la Terre Vegetation (SPOT) VEGETATION (VGT) data, and TERRA or AQUA 

Moderate Resolution Imaging Spectroradiometer (MODIS) data), these data sets still include some 

residual noise. Therefore, NDVI time-series data need to be smoothed before being used. 

Several methods have already been developed to reconstruct NDVI time series. They can be 

grouped into five types: (1) threshold methods, including the best index slope extraction technique 

(BISE) [20] and the modified BISE technique (M-BISE) [21]; (2) filter-based methods, including 

running medians (4253H) [22], the ARMD3-ARMA5 filter technique [23], the Savitzky-Golay filter 

technique (S-G) [24], the mean value iteration filter (MVI) technique [25], the changing-weight filter 

(CW) technique [26], and phenology-preserving filtering (PP) [27]; (3) function fitting methods, such 

as the fast Fourier transform (FFT) [28], the temporal window operation (TWO) [29], the harmonic 

analysis of time series (HANTS) [30], double logistic function fitting (D-L) [31–34], and asymmetric 

Gaussian function fitting (A-G) [35]; (4) comprehensive methods [36–38]; and (5) other methods,  

such as wavelet transform (WT) [39], data assimilation (D-A) [40], the Whittaker smoother (WS) 

technique [41–43], and iterative interpolation for data reconstruction (IDR) [44]. 
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Comparisons of these techniques have shown that each has its own advantages and  

drawbacks [15,20,24,25,39,44,45]. Viovy et al. [20] compared the BISE and MVC techniques and 

concluded that BISE is superior to MVC in terms of de-noising. Jönsson and Eklundh [35] 

demonstrated that A-G is superior to BISE and the Fourier-based technique. Chen et al. [24] 

demonstrated that S-G, BISE, and the Fourier-based transformation (FT) are effective techniques for 

constructing high-quality NDVI time-series data sets, and they showed that S-G is the best of those 

three techniques. However, Jönsson and Eklundh [46] explained that the A-G technique could 

outperform an S-G filter and an alternative harmonic analysis. Later, Ma and Veroustraete [25] 

reported that the MVI performed better than the M-BISE and FT. Beck et al. [33] showed that the new 

version technique of D-L is better than both the FT and A-G because it can handle outliers effectively 

and estimate phenological event parameters. Lu et al. [39] developed the WT technique and compared 

it with the BISE, FT, and S-G techniques. The results indicated that the WT is the best for removing 

noise. Later, Hird and McDermid [15] demonstrated that the general superiority of the D-L and  

A-G function-fitting techniques over four alternative filtering techniques (S-G, 4523H, MVI, and 

ARMD3-ARMA5) by performing an empirical comparison. Julien and Sobrino [44] presented the IDR 

technique and showed that it can provide the best profile reconstruction for most land cover classes 

(compared with HANTS and D-L). More recently, Atkinson et al. [45] found that it was necessary to 

tune the A-G, D-L, FT, and WS techniques according to the number of annual growing seasons to 

produce reliable fits. Zhu et al. [26] presented the CW technique and showed that it was more effective 

than A-G, D-L, and S-G in preserving the curve shape, as well as the timing and amplitude of the local 

maxima/minima in the time series, for a broad range of phenologies. Jiang et al. [27] developed the PP 

technique based on CW, and showed that it performs much better than the CW filter for different 

levels of noise. 

Although many studies have focused on NDVI noise reduction techniques comparison, there are still 

some aspects that need to be improved and completed. First, previous work has been restricted by a small 

selection of the available noise reduction techniques, and the majority of the literature compares two or 

three techniques, typically, single novel technique is compared to one or two widely-known  

techniques [15]. Only a few studies compare more than three techniques, such as the studies by 

Atkinson et al. [45], Hird and McDermid [15], and Jiang et al. [27]. Hird and McDermid [15] 

compared six NDVI de-noising techniques, two of which (the ARMD3-ARMA5 filter and the 4253H) 

were rarely used in the literature. Moreover, approximately ten new techniques have been developed in 

the last decade, and some of these new techniques have not been rigorously compared against other 

techniques, IDR has not been compared to A-G, and WS has not been compared to S-G, and CW. 

Second, previous comparisons have been focused on the pixels or regional scale, and few studies have 

paid attention to vegetation types, which could be important for selection optimum noise-reduction 

techniques [33,45]. Third, almost all noise-reduction technique comparisons have been based on one 

sensor. Few published studies have tested the differences between sensors. Finally, previous evaluations 

have principally relied on qualitative rather than quantitative assessments, and they generally have not 

addressed factors that could affect the performance of noise-reduction techniques [15]. Currently, 

few studies refer to the effects of different evaluation methods on assessment of outcome. 

The main purpose of the present study was to support other basic studies by comparing eight 

techniques for representing time-series NDVI data to support other basal studies. These techniques 
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include the A-G, M-BISE, CW, D-L, IDR, MVI, S-G, and WS techniques. Several studies have 

indicated that the A-G and D-L are superior to other fitting techniques and filters [15,33,35,46]. The  

S-G has been widely used in the literature [47–50] due to the advantages cited by Chen et al. [24]. 

Additionally the A-G, D-L, and S-G have been made available as software that can be easily 

downloaded freely from the website [51]. The M-BISE and the MVI techniques are simple and 

effective de-noising techniques that can be implemented readily with a few lines of code. The CW, 

IDR, and WS are innovative techniques that have been used recently for time-series reconstruction 

using remote sensing data. The potential advantages of these techniques could lead to widely 

application in the future. 

Four widely used long time-series NDVI data sets were used in this study (Table 1 [52–55]). All of 

these data sets were reconstructed using the eight techniques mentioned above combined with 

information about the vegetation types in the study area. Three statistical indexes were used to evaluate 

the reconstruction results. The aims of this research were to identify the optimal de-noising technique 

for each vegetation type and data set in the study area; then to analyze the differences between the 

optimal techniques for each vegetation type and the data set; and finally to explore the effects of 

different evaluation methods on the results. 

Table 1. Long time-series Normalized Difference Vegetation Index (NDVI) data sets used 

in the study. 

Products Time Period 
Temporal/Spatial 

Resolution 
Sensors Data Source 

GIMMS January 1982–December 2006 15 d/8 km AVHRR Cold and Arid Regions Science Data Center [52] 

Pathfinder 
July 1981–July 1994  

January 1995–December 2000 
10 d/8 km AVHRR Cold and Arid Regions Science Data Center [53] 

SPOT 

VEGETATION 

(S10) 

April 1998–April 2013 10 d/1 km 
SPOT 

VGT 
VITO Earth observation [54] 

MOD13A2 February 2000–February 2013 16 d/1 km 
Terra/ 

MODIS 
The Land Processes Distributed Active Archive Center [55] 

2. Method 

2.1. Study Area  

The Heihe River Basin, in the middle of the Hexi Corridor of Gansu Province, is the second largest 

inland river basin in China. It is located between 97°1′–102°0′E and 37°7′–42°7′N, with an area of 

approximately 143,000 km
2
. The elevation in the Heihe River Basin ranges from 5500 m in the south 

to 1000 m in the north [56]. It consists of three regions: the upper mountainous area (the source of the 

Heihe River), the middle oasis area (including towns, such as Zhangye and Jiuquan), and the lower 

terminal arid area around Ejina [57], from an upstream to downstream, the environment changed from 

glacier, to frozen soil, alpine meadow, forest, irrigated farmland, a riparian ecosystem, and a desert 

(the Gobi) [58]. Figure 1 shows the location and vegetation types of the study area. 
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Figure 1. The vegetation types and the distribution of the sample points used for the 

comparison of the reconstruction techniques in the Heihe River Basin. 

 

2.2. Data and Processing 

Four long time-series NDVI data sets of remote sensing were used in this study, and detailed 

information about the data sets is shown in Table 1. All of these NDVI data sets were compiled for 

multi-day data using the MVC technique. To ensure data quality, a series of processes have been 

performed for these data sets. GIMMS data sets had been corrected for calibration, view geometry, and 

volcanic aerosols and were verified using a stable desert control point [59,60]; PAL data sets  

pre-processing steps include navigation, inter-satellite calibration and partial correction for Rayleigh 

scattering [61]; The MODIS data (MOD13A2) have been performed atmospherically corrected 

bidirectional surface reflectance that had been masked for water, clouds, heavy aerosols, and cloud 

shadows, and the accuracy had been assessed over a widely distributed set of locations and time 

periods via several ground-truth and validation efforts [62]. The processes of SPOT VGT NDVI data 

sets include atmospheric correction, radiometric correction, and geometric correction [63]. A subset 

was extracted for SPOT VGT NDVI using VGTExtract software (version 2.1.0), a free vegetation 

extraction tool produced by VITO. The status maps were used to identify useful NDVI. For 

MOD13A2, the MODIS Reprojection Tool was used to extract the desired bands and to re-project 

them as WGS 1984. Quality assurance products from Terra MODIS were used to eliminate the 

obvious error noised data. Only pixel reliability values of 0 and 1 were accepted as reliable pixel. The 

continental GIMMS and pathfinder NDVI data sets were provided by the Cold and Arid Regions 

Science Data Center [52,53]. Pixels with obvious error NDVI data, such as values less than 0 or null 

values, were replaces by the mean value of the same time of multiyear for all of the four NDVI data 

sets. After the obvious errors were removed, the data were fitted with each of the techniques. 
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The 2001 Vegetation Map of China [64], with a spatial resolution of 1 km, was used to identify the 

main vegetation types in the study area. To thoroughly analyze the reconstruction results for the main 

types of vegetation, pixels with 80% to 100% cover of the same vegetation type were extracted as 

representative homogeneous pixels in the study area. All of the homogeneous pixels for grassland, 

meadow, crops, desert, and shrub areas were selected for further analysis. 

2.3. Candidate Time Series Reconstruction Techniques and Parameters 

Eight de-noising techniques were selected for this research, and the main objective of each 

technique is shown in Table 2. All of these techniques have been used or have the potential to be used 

in real applications. Detailed descriptions of the techniques can be found in the literature (Table 2). All 

of the techniques run by compiling Interactive Data Language code (IDL), except for A-G, D-L, and 

WS, the A-G and D-L are run in TIMESAT [46] and the WS is run in Matlab. 

Table 2. Summary of the NDVI time-series reconstruction techniques selected for comparison. 

Candidate Techniques (ab.) Description References 

Modified-best index slope 

extraction (M-BISE) 

Compares the current term value with the previous and the next term within a predefined  

sliding window, and replaces these values with the mean value of the previous and the  

next values if the percentage difference is greater than a predefined threshold. 

[20,21] 

Asymmetric Gaussian  

function-fitting (A-G) 

Fits local, nonlinear functions at intervals around the local maxima and minima, then 

merges these into a global function describing the full NDVI time series. 
[35] 

Double logistic function fitting 

(D-L) 

Uses six parameters to model the NDVI time series with a double logistic function. These 

parameters are the winter NDVI (wNDVI), maximum NDVI (mNDVI), two inflection 

points, one as the curve rises (S) and one as it drops (A), and the rate of increase or 

decrease (mS and mA) of the curve at the inflection points. 

[33] 

Savitzky-Golay filtering  

(S-G) 

Based on a simplified least-squares-fit convolution for smoothing and computing 

derivatives of a set of consecutive values (a spectrum). The convolution can be 

understood as a weighted moving average filter with weighting given as a polynomial of 

a certain degree. The weight coefficients, when applied to a signal, perform a polynomial 

least-squares fit within the filter window. This polynomial is designed to preserve higher 

moments within the data and to reduce the bias introduced by the filter. 

[24] 

Mean value iteration filtering 

(MVI) 

Iteratively compares each date with the average of the dates before and after it, replacing  

the date with this average if the difference is above a certain threshold. The maximum  

difference date value will be removed in an iteration process. Iteration will stop when all 

differences are less than the threshold. 

[25] 

Whittaker smoother (WS) 

Based on penalized least squares, fits a discrete series to discrete data and penalizes  

the roughness of the smooth curve. In this way, it balances the reliability of the data and 

roughness of the fitted data. 

[41,43,45] 

Iterative interpolation for data 

reconstruction (IDR) 

Creates an alternative NDVI time series by computing the mean of the immediately  

preceding and following observations and comparing it to that of the original time  

series, replacing the original data with the alternative time-series data if the maximum  

difference between the alternative and original time series is above a certain threshold. 

[44] 

Changing-weight filtering (CW) 
Filters an NDVI time series with a three-point changing-weight filter and replaces the  

local maximum/minimum points in a growth cycle. 
[26] 
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The parameters used for the techniques greatly affect the reconstruction results. As described by 

Atkinson et al. [45], for any of the tested techniques, finding a single set of technique parameters that is 

appropriate for the study area can be challenging for a landscape that is diverse and complex. To obtain 

the optimum parameters for each of the eight techniques, different fitting criteria were set to reconstruct 

the NDVI time-series for the four sensors over the five main vegetation types in the study area. 

By comparison, we used 0.1 as the threshold for the M-BISE technique and a 20% multi-year 

average for the MVI filter threshold. For S-G, m (the half-width of the smoothing window) was 4, 

d  (the degree of the polynomial) was 6, and the IDR threshold was 0.02. These values are similar to 

their authors’ recommended. For WS, λ was 15 because the entire research area contains single-season 

vegetation types [45]. There were three parameters for the CW technique: the window width was 7 for 

MODIS and GIMMS data and 9 for the SPOT and PAL data. The threshold for removing a false local 

maximum and minimum point and a noise point were the same for the four data sets, 0.1 and 0.05, 

respectively. The D-L and A-G techniques were adjusted interactively in the TIMESAT software to 

arrive at close fitting results. In TIMESAT, the median filter option with a parameter value of 2 was 

chosen to remove spikes and noise. 

2.4. Technique Evaluation 

Three statistical indicators were used to evaluate the performance of each noise reduction 

technique: (1) the root mean square error (RMSE); (2) Akaike’s Information Criterion (AIC); 

and (3) Bayesian Information Criterion (BIC). 

RMSE is a well-accepted absolute goodness-of-fit indicator for continuous response variables that 

describes the difference between the observed and predicted values in the appropriate units [65].  

Here, the RMSE indicates the difference between the mean NDVI time series obtained from the eight 

noise- reduction techniques (assumed to be accurate) and the corresponding experimental time series to 

which noise reduction has been applied [15]. It is calculated using Equation (1). 

2

1( *( ) ( ))
RMSE

N

t VI t VI t

N

 
  (1) 

where VI* is the resultant NDVI value, VI is the mean NDVI value obtained from the eight  

noise- reduction techniques (mean NDVI), and N is the number of time points. 

The Akaike’s Information Criterion (AIC) [66] and the Bayesian Information Criterion (BIC) [67] 

are criteria used for selecting technique from a finite set of techniques. Both criteria are closely related 

and can measure the efficiency of the parameterized technique in terms of predicting the data, but the 

BIC penalizes the free parameters more severely than does the AIC. The AIC and BIC evaluation 

index have used to evaluate the performance of de-noised techniques by Atkinson et al. [45]. They are 

calculated using Equations (2) and (3), respectively. 

 AIC 2 ln( )k n RSS   (2) 

 BIC = ln( ) ln( )n RSS k n  (3) 
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where, k is the number of free parameters in the technique, n is the number of input data points, and 

RSS is the residual sum of squares between the mean NDVI data and the fitted technique. A lower 

value for AIC and BIC would indicate a preferable technique. 

For M-BISE, MVI, and IDR required only one free parameter. For S-G and CW, two and three free 

parameters were needed, respectively. For the A-G and D-L techniques, seven and six parameters were 

needed, respectively. For WS, the free parameter is 9.37 when λ is 15 according to Atkinson et al. [45]. 

3. Results  

3.1. Visual Assessment of the Fitted Curves 

Figures 2–5 present the sample pixel results for the five vegetation types in the four NDVI data sets 

for the study area. The sample positions are shown in Figure 1. 

Figure 2. Eight techniques fitted to GIMMS NDVI time-series data acquired  

from homogeneous pixels of (a) meadow; (b) crop; (c) grassland; (d) shrub; and  

(e) desert vegetation. 
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Figure 2. Cont. 

 

Figure 3. Eight techniques fitted to PAL NDVI time-series data acquired  

from homogeneous pixels of (a) meadow; (b) crop; (c) grassland; (d) shrub; and  

(e) desert vegetation.  
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Figure 3. Cont. 

 

Figure 4. Eight techniques fitted to SPOT VGT NDVI time-series data acquired 

from homogeneous pixels of (a) meadow; (b) crop; (c) grassland; (d) shrub; and  

(e) desert vegetation. 
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Figure 5. Eight techniques fitted to MODIS NDVI time-series data acquired from homogeneous 

pixels of (a) meadow; (b) crop; (c) grassland; (d) shrub; and (e) desert vegetation. 

 

Due to space limitations, only the results for one year (2000) are shown in the figure. It was 

observed that most de-noising techniques were effective for reconstructing high-quality NDVI  

time-series data sets. The results closely resemble the profiles of vegetation growth, especially for 

crops, grass, shrubs, and meadows. However, some obvious differences were found in the 

reconstructed NDVI time-series created with the eight techniques. For example, the WS technique 

produced the smoothest fitted curve, but it showed a lower maximum NDVI than other techniques 

(Figure 2a–d; Figure 4a,b; and Figure 5a). The S-G technique obtained most close the upper envelope 

for the input NDVI values in almost all cases. It is hard to judge the results for some techniques 

because the fitting curves results approximately match the other curves. Therefore, we quantify the 
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differences between the eight techniques by using the RMSE, the AIC and the BIC in the 

following section. 

3.2. Quantitative Evaluation and Regional Application 

The RMSE, the AIC, and the BIC were calculated at the pixel level for the eight techniques for all 

of the data sets after reconstruction. All of the homogeneous pixel samples for each vegetation type 

were used to calculate the mean value of the three indexes to further analyze the fit of the techniques. 

To test the performance of the eight techniques at the regional scale, the RMSE was used as an 

example to display the differences between the techniques in the study area. 

3.2.1. GIMMS NDVI 

Table 3 shows the RMSE, the AIC, and the BIC for each of the eight techniques for the five 

vegetation types of GIMMS NDVI time-series data.  

Table 3. RMSE, AIC, and BIC values for the eight techniques of Global Inventory 

Modeling and Map Studies (GIMMS) NDVI time-series data from January 1982 to 

December 2006 (best-fitting technique shown in bold). 

Evaluation 

Index 
a
 

Vegetation 

Type 

Technique 
b
 

A-G M-BISE CW D-L IDR MVI S-G WS 

RMSE shrub 0.0071 0.0081 0.0055 0.0067 0.0104 0.0082 0.0055 0.0061 

 crop 0.0123 0.0174 0.0093 0.0114 0.0214 0.0153 0.0087 0.0122 

 desert 0.004 0.0045 0.0033 0.0038 0.0058 0.0047 0.0033 0.0031 

 grassland 0.0128 0.0166 0.009 0.0118 0.0199 0.0152 0.0088 0.0126 

 meadow 0.0162 0.0192 0.0101 0.0152 0.0238 0.0175 0.0102 0.0165 

AIC shrub −2330 −2206 −2559 −1421 −2407 −2170 −2564 −2600 

 crop −1549 −1192 −1833 −802 −1653 −1262 −1908 −1619 

 desert −2889 −2791 −3111 −1968 −2929 −2728 −3080 −3216 

 grassland −1441 −1184 −1851 −759 −1545 −1247 −1873 −1493 

 meadow −1161 −996 −1711 −573 −1241 −1074 −1696 −1161 

BIC shrub −6137 −6040 −6384 −6219 −5717 −6004 −6393 −6429 

 crop −5357 −5026 −5658 −5465 −4780 −5096 −5737 −5448 

 desert −6697 −6624 −6936 −6740 −6304 −6562 −6909 −7045 

 grassland −5249 −5018 −5676 −5357 −4800 −5081 −5702 −5322 

 meadow −4968 −4829 −5536 −5053 −4581 −4908 −5525 −4990 

a Root mean square error (RMSE), the Akaike’s Information Criterion (AIC), and the Bayesian Information Criterion 

(BIC). The smaller the value, the better the fit; b Techniques: Asymmetric Gaussian (A-G) technique, the modified-best 

index slope extraction (M-BISE) technique, the changing-weight filter (CW) technique, the double logistic function  

(D-L), the iterative interpolation for data reconstruction (IDR) technique, the mean value iteration (MVI) technique, the 

Savitzky-Golay filter (S-G) technique, and the Whittaker smoother (WS) technique. 

  



Remote Sens. 2014, 6 2036 

 

 

The technique performance differs based on the three evaluation indexes. For crop, desert, grassland 

and meadow, the optimal techniques are S-G, WS, S-G, and CW, respectively, in terms of the three 

evaluation indexes. However, the best technique is different for shrub in terms of the three evaluation 

indexes, the optimal technique is S-G for RMSE and AIC, while it is WS for BIC. At the same time, 

the worst technique is also different in terms of the three evaluation indexes, for the five vegetation 

types both RMSE and BIC indicate that IDR perform worst, while it is D-L for AIC. For all the eight 

techniques, the accuracy differs for different vegetation types. For example, the WS technique 

performs better than the D-L technique for shrub and desert areas, but the situation is reversed for other 

three vegetation areas. Overall, the S-G, CW and WS techniques are effective for the GIMMS NDVI 

time series data. The IDR, M-BISE, and MVI techniques perform worse than other techniques for most 

vegetation types. Evaluation indexes can affect the assessment results for some vegetation types. 

Figure 6 presents the RMSE values calculated for all pixels in the GIMMS NDVI data sets using 

the eight techniques. All of the techniques show good fitting results (i.e., low RMSE values). The 

performances of the eight techniques in Figure 6 are similar to the performances described in Table 3. 

Overall, the S-G (Figure 6g) and CW techniques (Figure 6c) performed best; most of the study areas 

are green in the results (representing lower RMSE values). The WS (Figure 6h) and D-L (Figure 6d) 

techniques were the next best, showing more yellow areas in Figure 6d,h. The M-BISE (Figure 6b) and 

IDR (Figure 6e) techniques performed worst, producing more red areas than the other techniques 

(representing higher RMSE values). 

Figure 6. Root mean square error (RMSE) values of GIMMS NDVI for the eight 

techniques: (a) the asymmetric Gaussian (A-G) technique; (b) the modified-best index 

slope extraction (M-BISE) technique; (c) the changing-weight filter (CW) technique; 

(d) the double logistic function (D-L) technique; (e) the iterative interpolation for data 

reconstruction (IDR) technique; (f) the mean value iteration (MVI); (g) the Savitzky-Golay 

filter (S-G) technique; and (h) the Whittaker smoother (WS) technique. 
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3.2.2. PAL NDVI 

There are a few differences between the results for the GIMMS NDVI data and the PAL NDVI data 

(Table 4). The three indexes show that the S-G technique performs best for crop, grassland and 

meadow, while WS technique performs best for desert. However, the best technique is different for 

shrub in terms of the three evaluation indexes, the optimal technique is S-G for RMSE, while it is WS 

for AIC and BIC. For all vegetation types, the S-G and WS techniques performs better than the A-G 

and the D-L techniques in terms of the three evaluation indexes. The IDR perform worse than the other 

techniques for all vegetation types. The eight techniques performed consistently for most situations 

according to the three evaluation indexes, but there were subtle differences between shrub and desert. 

Table 4. RMSE, AIC, and BIC values for the eight techniques for the Pathfinder AVHRR 

Land (PAL) NDVI time-series data from July 1981 to December 2000 (except August 

1994–December 1994) (best-fitting technique shown in bold). 

Evaluation 

index 
a
 

Vegetation 

type 

Technique 
b
 

A-G M-BISE CW D-L IDR MVI S-G WS 

RMSE shrub 0.0143 0.019 0.0137 0.0131 0.0251 0.0197 0.0093 0.0103 

 crop 0.0198 0.027 0.0152 0.0181 0.033 0.024 0.0119 0.0148 

 desert 0.0066 0.0099 0.0073 0.0062 0.0139 0.0101 0.0052 0.0048 

 grassland 0.0196 0.0269 0.0173 0.0182 0.0334 0.0249 0.0119 0.0149 

 meadow 0.0228 0.0277 0.0178 0.0209 0.0331 0.026 0.0122 0.0174 

AIC shrub −1528 −1128 −1545 −1656 −788 −1087 −2036 −2037 

 crop −950 −580 −1310 −1075 −316 −698 −1636 −1377 

 desert −2514 −2038 −2393 −2587 −1675 −2053 −2828 −3059 

 grassland −985 −574 −1147 −1087 −289 −662 −1648 −1392 

 meadow −777 −536 −1102 −900 −309 −606 −1605 −1174 

BIC shrub −5962 −5589 −5997 −6094 −5249 −5547 −6492 −6493 

 crop −5383 −5041 −5761 −5513 −4777 −5159 −6092 −5833 

 desert −6948 −6499 −6844 −7025 −6136 −6514 −7284 −7515 

 grassland −5419 −5035 −5599 −5525 −4750 −5123 −6104 −5848 

 meadow −5211 −4997 −5554 −5338 −4770 −5067 −6061 −5630 

a
 Root mean square error (RMSE), the Akaike’s Information Criterion (AIC), and the Bayesian Information 

Criterion (BIC). The smaller the value, the better the fit; 
b
Techniques: Asymmetric Gaussian (A-G) 

technique, the modified-best index slope extraction (M-BISE) technique, the changing-weight filter (CW) 

technique, the double logistic function (D-L), the iterative interpolation for data reconstruction (IDR) 

technique, the mean value iteration (MVI) technique, the Savitzky-Golay filter (S-G) technique, and the 

Whittaker smoother (WS) technique. 

Figure 7 shows the RMSE calculated for each pixel of the PAL NDVI data sets using the eight 

techniques. Overall, the S-G (Figure 7g) and WS techniques (Figure 7h) perform best. The next best 

are the A-G (Figure 7a), the CW (Figure 7c), the D-L (Figure 7d), and the MVI (Figure 7f) techniques, 

and it is hard to determine which is better because their performances vary with different areas. Again, 

the IDR (Figure 7e) perform worst for this data set, and next to it is the M-BISE (Figure 7b). 
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Figure 7. Root mean square error (RMSE) of the PAL NDVI for the eight techniques: 

(a) the asymmetric Gaussian (A-G) technique; (b) the modified-best index slope extraction  

(M-BISE) technique; (c) the changing-weight filter (CW) technique; (d) the double logistic 

function (D-L) technique; (e) the iterative interpolation for data reconstruction (IDR) 

technique; (f) the mean value iteration (MVI); (g) the Savitzky-Golay filter (S-G) 

technique, and (h) the Whittaker smoother (WS) technique. 

 

3.2.3. SPOT VGT NDVI 

For the SPOT VGT NDVI data, the S-G technique is also the best reconstruction technique for 

shrub, crop and meadow, and the WS technique outperforms the other six techniques for desert (Table 5) 

in terms of three evaluation indexes. However, the best technique is different for grassland in terms of 

the three evaluation indexes, the optimal technique is S-G for RMSE, while it is WS for AIC and BIC. 

Overall, the CW and the WS techniques are effective for all the vegetation types, but it is difficult to 

determine which is better because their performances vary with different vegetation types. The three 

evaluation indexes are highly consistent for all vegetation types except subtle differences in grassland. 

Figure 8 displays the RMSE calculated for each pixel of the SPOT VGT NDVI data set using the 

eight techniques. All of the techniques show good fitting results (i.e., low RMSE values). The S-G 

technique (Figure 8g) performs best, and the next best are the WS (Figure 8h) and CW techniques 

(Figure 8c). The performances of the A-G (Figure 8a) and the D-L techniques (Figure 8d) are next to 

the WS (Figure 8h) and CW techniques (Figure 8c). The performances of the M-BISE (Figure 8b), the 

IDR (Figure 8e), and the MVI techniques (Figure 8f) are relatively poor in the study area. 
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Table 5. RMSE, AIC, and BIC values for the eight techniques for SPOT VGT NDVI  

time-series data from April 1998 to April 2013 (best-fitting technique shown in bold). 

Evaluation 

Indexes 
a
 

Vegetation 

Types 

Technique 
b
 

A-G M-BISE CW D-L IDR MVI S-G WS 

RMSE shrub 0.0111 0.0129 0.0089 0.0111 0.0131 0.0121 0.007 0.0078 

 crop 0.0133 0.0142 0.0091 0.0135 0.0144 0.0145 0.0084 0.0099 

 desert 0.0043 0.005 0.0039 0.004 0.0057 0.0049 0.0033 0.003 

 grassland 0.0128 0.0146 0.0101 0.0125 0.0147 0.0144 0.0083 0.0084 

 meadow 0.014 0.0157 0.0108 0.0138 0.0159 0.0146 0.0086 0.0095 

AIC shrub −1716 −1563 −1897 −1745 −1518 −1605 −2136 −2121 

 crop −1369 −1271 −1719 −1354 −1270 −1248 −1830 −1698 

 desert −2504 −2361 −2607 −2590 −2211 −2377 −2801 −2922 

 grassland −1376 −1238 −1605 −1408 −1235 −1253 −1828 −1839 

 meadow −1292 −1165 −1541 −1321 −1144 −1229 −1795 −1725 

BIC shrub −5083 −4957 −5281 −5116 −4911 −4998 −5525 −5510 

 crop −4737 −4664 −5103 −4725 −4663 −4641 −5219 −5087 

 desert −5871 −5754 −5992 −5962 −5604 −5770 −6190 −6310 

 grassland −4744 −4631 −4989 −4779 −4628 −4646 −5217 −5228 

 meadow −4659 −4558 −4926 −4692 −4537 −4622 −5184 −5113 
a
 Root mean square error (RMSE), the Akaike’s Information Criterion (AIC), and the Bayesian Information 

Criterion (BIC). The smaller the value, the better the fit; 
b
 Techniques: Asymmetric Gaussian (A-G) 

technique, the modified-best index slope extraction (M-BISE) technique, the changing-weight filter (CW) 

technique, the double logistic function (D-L), the iterative interpolation for data reconstruction (IDR) 

technique, the mean value iteration (MVI) technique, the Savitzky-Golay filter (S-G) technique, and the 

Whittaker smoother (WS) technique. 

3.2.4. MODIS NDVI 

As shown in Table 6, the S-G technique performs best for all the five vegetation types in terms of 

RMSE, while the best technique is different for the five vegetation types in terms of the AIC and BIC 

(shrub excepted). The optimal techniques for crop, desert, grassland and meadow are the WS, S-G, WS 

and WS in terms of AIC, respectively, but it is the S-G, A-G, S-G, and A-G in terms of BIC, 

respectively. Overall, both the S-G and the WS techniques are effective techniques for most vegetation 

types using the MODIS NDVI time-series data. The IDR technique performs worst for most vegetation 

types and the M-BISE and the MVI techniques perform second worst. The three evaluation indexes are 

inconsistent for most vegetation types. 

Figure 9 shows the RMSE of each pixel of the MODIS NDVI data set using the eight techniques of 

the study area. All of the techniques show good fitting results (i.e., low RMSE values). The S-G 

(Figure 9g) technique performs best. The IDR (Figure 9e) and the MVI (Figure 9f) techniques perform 

worst in the study area. It is difficult to distinguish which one is better for the rest five techniques 

because the techniques are complementary to each other in different areas. 
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Figure 8. Root mean square error (RMSE) of the SPOT NDVI data for the eight 

techniques: (a) the asymmetric Gaussian (A-G) technique, (b) the modified-best index 

slope extraction (M-BISE) technique, (c) the changing-weight filter (CW) technique, 

(d) the double logistic function (D-L) technique, (e) the iterative interpolation for data 

reconstruction (IDR) technique, (f) the mean value iteration (MVI), (g) the Savitzky-Golay 

filter (S-G) technique, and (h) the Whittaker smoother (WS) technique. 

 

Table 6. RMSE, AIC, and BIC values for the eight techniques for the NDVI time-series 

data of Terra MOD13A2 from February 2000 to February 2013 (best-fitting technique 

shown in bold). 

Evaluation 

Index 
a
 

Vegetation 

Type 

Technique 
b
 

A-G M-BISE CW D-L IDR MVI S-G WS 

RMSE shrub 0.0138 0.0143 0.0119 0.0141 0.019 0.016 0.0089 0.0122 

 crop 0.0182 0.0217 0.0182 0.0194 0.0294 0.0243 0.0125 0.0181 

 desert 0.0043 0.0041 0.0032 0.0035 0.0044 0.0041 0.0028 0.0028 

 grassland 0.0142 0.0181 0.0147 0.0147 0.0219 0.0195 0.0103 0.0136 

 meadow 0.017 0.0175 0.0142 0.0169 0.0234 0.02 0.011 0.0156 

AIC shrub −1454 −1466 −1600 −1538 −1394 −1455 −1687 −1654 

 crop −1648 −1730 −1884 −1786 −1694 −1737 −1923 −1950 

 desert −1301 −1309 −1460 −1385 −1241 −1293 −1558 −1507 

 grassland −1701 −1758 −1903 −1824 −1715 −1764 −1950 −1982 

 meadow −1701 −1769 −1910 −1826 −1722 −1773 −1952 −1978 
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Table 6. Cont. 

Evaluation 

Index 
a
 

Vegetation 

Type 

Technique 
b
 

A-G M-BISE CW D-L IDR MVI S-G WS 

BIC shrub −2365 −2221 −2255 −2326 −2202 −2270 −2406 −2283 

 crop −2095 −1990 −1994 −2070 −1885 −2072 −2254 −1999 

 desert −3091 −2755 −2804 −3008 −2801 −2779 −2861 −2941 

 grassland −2107 −2016 −2047 −2096 −1969 −2072 −2218 −2061 

 meadow −2111 −1939 −1943 −2085 −1873 −1972 −2095 −2020 
a
 Root mean square error (RMSE), the Akaike’s Information Criterion (AIC), and the Bayesian Information 

Criterion (BIC). The smaller the value, the better the fit; 
b 

Techniques: Asymmetric Gaussian (A-G) 

technique, the modified-best index slope extraction (M-BISE) technique, the changing-weight filter (CW) 

technique, the double logistic function (D-L), the iterative interpolation for data reconstruction (IDR) 

technique, the mean value iteration (MVI) technique, the Savitzky-Golay filter (S-G) technique, and the 

Whittaker smoother (WS) technique. 

Figure 9. Root mean square error (RMSE) of MODIS NDVI for the eight techniques: 

(a) the asymmetric Gaussian (A-G) technique, (b) the modified-best index slope extraction 

(M-BISE) technique, (c) the changing-weight filter (CW) technique, (d) the double logistic 

function (D-L) technique, (e) the iterative interpolation for data reconstruction (IDR) 

technique, (f) the mean value iteration (MVI), (g) the Savitzky-Golay filter (S-G) 

technique, and (h) the Whittaker smoother (WS) technique. 
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4. Discussion 

4.1. Performance of the Reconstruction Techniques  

Overall, the S-G, CW, and WS techniques show better reconstructed effects than the other 

techniques, and the IDR technique shows generally poor performance in terms of RMSE, AIC, and 

BIC for most vegetation types in the Heihe River Basin (Table 7). These findings are inconsistent with 

these of Hird and McDermid [15] who stated that A-G and D-L techniques perform better than S-G in 

terms of RMSE. In our study, the A-G technique performs better than S-G only for some vegetation 

types (desert and meadow) of MODIS NDVI in terms of BIC (Table 6). However, the findings are 

supported by Zhu et al. [26] and Jiang et al. [27], and both of the results indicated that the S-G 

technique performs better than the A-G and D-L techniques in terms of RMSE under different noise 

levels. Though Julien and Sobrino [44] revealed that the IDR technique performs better than the 

HANTS and the D-L techniques in terms of the distance to the raw data and the proximity to its upper 

envelope, IDR performed worst among the eight techniques in most of our test cases. 

Table 7. Performance orders of the eight techniques for different data sources in terms of 

RMSE, AIC, and BIC. 

Data Source 
Vegetation 

Type 
The Eight Techniques in Order of Fit a 

GIMMS 

NDVI 

shrub WS S-G CW D-L A-G M-BISE MVI IDR 

Crop S-G CW D-L WS A-G MVI M-BISE IDR 

desert WS CW S-G D-L A-G M-BISE MVI IDR 

grassland S-G CW D-L WS A-G MVI M-BISE IDR 

meadow CW S-G D-L WS A-G MVI M-BISE IDR 

PAL NDVI 

shrub WS S-G D-L CW A-G M-BISE MVI IDR 

Crop S-G WS CW D-L A-G MVI M-BISE IDR 

desert WS S-G D-L A-G CW MVI M-BISE IDR 

grassland S-G WS CW D-L A-G MVI M-BISE IDR 

meadow S-G WS CW D-L A-G MVI M-BISE IDR 

SPOT VGT 

NDVI 

shrub S-G WS CW D-L A-G MVI M-BISE IDR 

Crop S-G CW WS A-G D-L M-BISE IDR MVI 

desert WS S-G CW D-L A-G MVI M-BISE IDR 

grassland WS S-G CW D-L A-G MVI M-BISE IDR 

meadow S-G WS CW D-L A-G MVI M-BISE IDR 

MODIS NDVI 

shrub S-G WS CW A-G D-L M-BISE MVI IDR 

Crop S-G WS CW A-G D-L M-BISE MVI IDR 

desert WS S-G CW D-L A-G M-BISE MVI IDR 

grassland S-G WS A-G CW D-L M-BISE MVI IDR 

meadow S-G CW WS D-L A-G M-BISE MVI IDR 

a Techniques: Asymmetric Gaussian (A-G) technique, the modified-best index slope extraction (M-BISE) technique, the 

changing-weight filter (CW) technique, the double logistic function (D-L), the iterative interpolation for data 

reconstruction (IDR) technique, the mean value iteration (MVI) technique, the Savitzky-Golay filter (S-G) technique, and 

the Whittaker smoother (WS) technique. The techniques shown at the beginning of the row perform better than those at 

the end. 
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Except for the S-G and the IDR techniques, the performance of other techniques is relatively 

unstable, meaning that they change for different vegetation types and data sources. For example, for 

SPOT VGT NDVI data sets, the CW and the WS are effective techniques for all vegetation types, 

performing worse than the S-G technique (desert and grassland excepted) and better than the rest five 

techniques (Tables 4 and 7). But for GIMMS NDVI data sets these techniques’ performance changed 

with vegetation types. The WS technique performed better than the D-L for shrub and desert 

vegetation, while the reverse is true for the other three vegetation types of MODIS NDVI. The D-L 

and the A-G techniques performed similarly to each other. The D-L technique outperforms the A-G 

technique for all vegetation types of GIMMS and PAL NDVI, but for MODIS and SPOT VGT NDVI, 

the situation is changed with vegetation types. Thus, it is difficult to judge which is better. This result 

is supported by Jönsson & Eklundh [35,46,68] who argued that the two techniques complement each 

other and that they may be suitable in different areas depending on the behavior of the NDVI signal. 

Beck et al. [33], and Hird and McDermid [15] also obtained similar findings. In general, the D-L and 

the A-G techniques outperform the MVI and the M-BISE techniques. The MVI and the M-BISE 

techniques show pool performance, which only outperform the IDR. It is hard to determine which is 

better because their performances vary with different vegetation types and data sources. However, for 

PAL NDVI data sets, the results are consistency with those of Ma and Veroustraete [25] who indicated 

that the MVI performed better than the M-BISE. 

4.2. Effect of Evaluation Index on the Final Reconstruction Results 

As ground reference measurements are challenging to obtain due to the medium/coarse resolution 

of the imagery, the problem of developing a robust, accurate and fast filter is amplified by the 

difficulty of obtaining reference measurements to use for validation [43]. Thus, choosing an 

appropriate index is very important for the final evaluation of de-noising techniques. To reduce the 

uncertainty associated with relying on one evaluation index, we used three different statistical indexes 

in this study. 

Generally, the results of the three indexes are consistent in most cases, especially for  

worst-performing technique. For this technique, the assessment results for all vegetation types for all 

four NDVI data sets are in complete agreement (Tables 3–6). However, some differences were 

observed in the other techniques. For the GIMMS NDVI data, for example, the WS technique 

performance for shrub vegetation is third according to the RMSE, but, according to the AIC and BIC 

values, it is best. A similar situation was found for desert vegetation of SPOT VGT NDVI data. 

Different evaluation indexes have great effect on evaluation the performance of each technique for 

MODIS NDVI. The performance of the A-G and D-L techniques is different for all vegetation types in 

terms of RMSE, AIC, and BIC. A similar result was found for the CW and WS techniques. Thus, in 

certain situations, the evaluation results may be arbitrary if only one index is used. Comprehensive 

consideration of several indexes is very important. 

4.3. Factors Influencing Performance 

The performance is different between the eight techniques even under the same vegetation type and 

data source according to the above results (Tables 3–6). Thus, one of the main factors affecting the 
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techniques’ performance is the de-noise principle of each techniques. The S-G applies an iterative 

weighted moving average filter to the NDVI time series, with the weight defined by a polynomial of a 

particular degree. This polynomial is designed to preserve higher moments within the data and to 

reduce the bias introduced by the filter [24]. This approach can replace the noise data as well as keep 

the fidelity of the time series. The results of this study also proved that the S-G technique is an 

effective de-noise method. The CW technique designed to replace the noise data by a three-point 

changing-weight filter while preserving the curve shape, as well as the timing and the amplitude of the 

local maxima/minima in the NDVI time series for a broad range of phenologies [26]. In addition, the 

WS is based on penalized least squares to fits a discrete series to discrete data and penalizes the 

roughness of the smooth curve. It balances reliability of the data and roughness of the fitted data. Both 

the CW and WS techniques also can replace the noise data as well as keep the fidelity of the original 

data. The two techniques were also proved effective techniques which only next to the S-G in this 

study. The A-G and D-L techniques are using a series of parameters to model the NDVI time  

series [33,35]. The difference is the A-G is based on asymmetric Gaussian functions while the D-L is 

based on a double logistic function to determine the parameters. That is may be the reason of the 

performance of the two techniques is similar and difficult to judge which is better. The M-BISE, MVI 

and IDR techniques show pool performance in this study. The M-BISE is to look for a spike (i.e., an 

increase immediately followed by a decrease or a decrease immediately followed by an increase) [21]. 

Both the increased range and decreased range greater than a threshold are treated as noise values. 

Therefore, the key to this approach is to set a suitable threshold. However, the noise data are changed 

with time and space. It is difficult to replace all noise data by a fixed threshold. The same problem was 

existed for the MVI and the IDR techniques. The MVI remove the noise data by replacing the 

maximum difference date value by the average of the dates before and after it. Iteration will stop when 

all differences are less than a threshold. The IDR is somewhat similar to the MVI, with the difference 

that the threshold of IDR technique is carried out from the data itself, and not from a comparison to an 

average of different years [44]. 

Vegetation type is also a factor affecting the techniques’ performance. For the five vegetation types in 

our study, the performances of the techniques for each type are unstable for most of the NDVI data. 

Similar findings were found by the research of Atkinson et al. [45] who compared the performances of 

A-G, D-L, FT, and WS for four vegetation types using the Terrestrial Chlorophyll Index (MTCI), the 

RMSE results indicated that the best technique changed with different vegetation types. Hird and 

McDermid [15] also showed that six techniques perform differently for six different vegetation regions. 

Another factor that had an influence on performance was the temporal and spatial resolution of the data. 

Since different data sources, as well as different vegetation types, the characteristic of noise varied. 

Therefore, Hird and McDermid [15] recommend that the strength and character of the noise present in an 

NDVI data set be considered when selecting an approach for time-series noise reduction. 

As this study was focus on the Heihe River Basin, the vegetation types were relatively simple; most 

of the study area was covered by desert. Our findings and conclusions may not be as applicable to 

areas with multiple growing seasons (e.g., subtropical zones). However, our comparison of the 

performances of eight reconstruction techniques was conducted systematically and comprehensively 

using four NDVI data sets covering five different vegetation types, and we determined obtained the 

optimum technique for GIMMS, PAL, SPOT, and MODIS data for the different vegetation types. 
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These findings will be of great reference and actual using values for choosing de-noise techniques and 

their parameter values. 

5. Conclusions 

In this study, the performances of eight de-noised techniques were compared for different 

vegetation types represented in four NDVI data sets in the Heihe River Basin, and the following results 

can be observed: the S-G, CW, and WS techniques perform better than other techniques for almost all 

vegetation types according to the RMSE, the AIC, and the BIC. The IDR, M-BISE, and MVI 

techniques performed worse than the other techniques for most vegetation types using the four sensor 

data sets. The best technique varies with vegetation types and NDVI data sources. However, the S-G 

performs best in most situations, the CW and WS techniques are next to it. The assessment results are 

consistent among the three evaluation indexes for most situations, but subtle differences exist for some 

vegetation types; and comprehensive consideration of several indexes is very helpful to decide the best 

technique for certain situations. 
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