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Abstract: The application of remotely sensed estimates of canopy minus air temperature 

(Tc-Ta) for detecting crop water stress can be limited in semi-arid regions, because of the 

lack of full ground cover (GC) at water-critical crop stages. Thus, soil background may 

restrict water stress interpretation by thermal remote sensing. For partial GC, the 

combination of plant canopy temperature and surrounding soil temperature in an image 

pixel is expressed as surface temperature (Ts). Soil brightness (SB) for an image scene 

varies with surface soil moisture. This study evaluates SB, GC and Ts-Ta and determines a 

fusion approach to assess crop water stress. The study was conducted (2007 and 2008) on a 

commercial scale, center pivot irrigated research site in the Texas High Plains.  

High-resolution aircraft-based imagery (red, near-infrared and thermal) was acquired on clear 

days. The GC and SB were derived using the Perpendicular Vegetation Index approach. 

The Ts-Ta was derived using an array of ground Ts sensors, thermal imagery and weather 

station air temperature. The Ts-Ta, GC and SB were fused using the hue, saturation, 

intensity method, respectively. Results showed that this method can be used to assess water 
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stress in reference to the differential irrigation plots and corresponding yield without the 

use of additional energy balance calculation for water stress in partial GC conditions.  

Keywords: cotton; water stress; irrigation; remote sensing; soil brightness; ground cover; 

temperature; fusion technique 

 

1. Introduction 

The Crop Water Stress Index (CWSI) method for assessing water stress in plants is based on the 

observation that plant stomata close as a natural crop response to the depletion of soil moisture. The 

resulting decrease in latent heat flux from the plants gives rise to an increase in leaf and canopy 

temperature. Canopy temperature (Tc) minus air temperature (Ta) has been shown to be an effective 

indicator of crop water stress [1]. The application of Tc-Ta to irrigation management can be achieved 

through the use of commercially available infrared sensors that can be mounted in the field. In 

practice, however, measurement of Tc-Ta at a few locations may not provide an adequate indication of 

water stress conditions that are representative of a field, particularly if the field contains appreciable 

spatial heterogeneity in soil moisture conditions resulting from variation in soil physical properties. An 

alternative is the use of satellite- or aircraft-based remote sensing imagery within the thermal infrared 

(TIR) spectral range, which is capable of capturing the spatial variability in surface temperature. 

Several criteria must be met for remote sensing imagery to be effective in irrigation management. 

These include high spatial and temporal resolutions and the delivery of the data to the user shortly after 

they were acquired [2]. Historically, aircraft-based imagery has been better at meeting these criteria 

than satellite-based imagery. Aircraft imagery can be available for analysis in a matter of hours after its 

acquisition. Recently, imagery from Landsat has become available on the day following its acquisition, 

which is an improvement in its availability from what it was in the past (1–2 weeks). However, the 

acquisition frequency of 16 days, plus the possible loss of images due to cloud cover, makes it difficult 

to directly apply Landsat data for irrigation applications. Direct application of CWSI based on remote 

sensing imagery has been limited to situations where the crop has attained a ground cover (GC)  

near 100% [3]. When the GC is significantly below 100%, the measurement of canopy temperature is 

confounded by the temperature of the surrounding background of plants. Thus, what is often measured 

by the remote sensing system is surface temperature (Ts), which includes the effects of plants and 

adjacent soil. It is common for irrigated production systems located in arid or semi-arid regions to not 

reach full ground canopy cover as a result of their relatively high evapotranspiration (ET) demand and 

lack of sufficient irrigation. For effectively using remote sensing imagery in CWSI-based irrigation 

scheduling, there is a need to separate the effects of the canopy and soil spectral responses [4] and 

account for the significant contribution of exposed soil in the surface energy balance of the crop [5].  

The Vegetation Index-Temperature Trapezoid (VITT) method [6] was developed to address the 

problem of incomplete canopy cover. In it, a vegetation index (VI) acting as a surrogate for GC is 

plotted vs. Ts-Ta. In this two-dimensional space, a trapezoidal figure is identified with vertices 

corresponding to four critical states of the plant canopy: (1) non-stressed plants with 100% GC;  

(2) fully stressed plants with 100% GC; (3) wet bare soil (0% GC); and (4) dry bare soil (0% GC). The 
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locations of these vertices can be estimated from energy balance calculations or, in some cases, can be 

directly observed. It is hypothesized that all observed combinations of Ts-Ta and GC for a crop should 

lie within the VITT. Because the relationship between the VI and GC may be site-specific, the 

evaluation of the VITT at one location may not be directly applicable to other locations. This can 

hinder the general applicability of this method [7].  

Interpretation of VI under conditions of incomplete GC is confounded by soil brightness (SB) 

effects. The contribution of SB to an image is determined by a number of factors, including soil parent 

material, organic matter and soil moisture [8–13]. When values of surface reflectance (or image digital 

counts) in the near-infrared (NIR) spectral band are plotted vs. corresponding values in the red spectral 

band, points representing bare soil tend to lie along a straight line in this two-dimensional space [14]. 

These authors showed that soils with various parent materials, textures, soil moisture contents and 

organic matter contents could be accommodated by a single line, commonly called the “bare soil line”. 

The position of a soil along the bare soil line is a measure of its relative brightness and is related to 

factors, such as soil texture and soil moisture content. Thus, SB can provide additional information 

regarding the nature of the soil background. 

This article presents a new approach based on the hypothesis that the inclusion of SB information as 

an additional dimension to the known relationship between GC and Ts-Ta will demonstrate an ability 

to detect and assess crop water stress. Our objectives include: (1) evaluating SB, GC and Ts-Ta from 

remote sensing image data for a range of crop water stress conditions; and (2) developing a fusion 

approach to assessing crop water stress that makes use of this information. The approach was 

evaluated and tested using field data for cotton (Gossypium hirsutum L.) from the semi-arid Texas 

High Plains and high-resolution airborne multispectral remote sensing imagery. In the field studies, 

various levels of crop water stress were established through differential irrigation over two  

consecutive years. 

2. Materials and Methods 

The study was conducted during 2007 and 2008 in the Texas High Plains at the Texas A&M 

AgriLife Research and Extension Center at Halfway, TX (34.184°N, −101.940°W). The soil at the 

study site is a Pullman clay loam (fine, mixed, superactive, thermic Torrertic Paleustolls ) [15]. Cotton 

was planted on 17 May 2007, and 19 May 2008, with a rate of 100,000 seeds ha
−1

 in a 19-ha field with 

1-m row spacing. The field was equipped with a low-energy precision-application (LEPA) center-pivot 

irrigation system. The field was circular and was divided into four 70° sections (blocks). Each of these 

sections was split into three smaller wedge-shaped subplots. The 3 treatments were arranged according 

to a complete randomized block design within each of the four blocks. The three irrigation treatments 

were: (1) irrigation at 3.4 mm∙d
−1 

(HighIrr); (2) irrigation at 1.7 mm∙d
−1 

(LowIrr); and (3) a “dryland 

check”, which received no irrigation (dryland). Irrigation started at the squaring stage and was applied 

once per week. The LEPA system had flow valves that were manually opened and closed as the pivot 

passed over a treatment plot to produce the desired rate. Daily values of reference ET (ET0), crop ET 

(ETc), precipitation and air temperature were obtained from a weather station maintained by the Texas 

High Plains Evapotranspiration (TXHPET) Network [16] at the halfway location. Cumulative ETc, 
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rainfall and irrigation for the three treatments are presented in Figure 1 for the two study years, along 

with the timing and amounts of rainfall. 

The Ts was measured hourly using four TIR (Exergen Corp model IRT/c.03, 15° field of view) 

sensors with custom-built enclosures [17] and installed on a frame placed in the plots, such that the 

array of sensors spanned the cotton canopy from the center of one row to the center of the next row, as 

shown in Figure 2. The sensors were located 20-cm apart and approximately 1-m above the ground on 

the frame. The average of the four TIR sensors represented an observation of Ts. Individual TIR 

sensors were calibrated by regressing their observations against corresponding temperature 

measurements obtained using a commercial hand-held infrared thermometer (Everest Interscience, 

Inc.) when both types of devices were pointed at a calibration panel with a surface reflectance of either 

0.50 or 0.95 (Labsphere, Inc., Atlanta, GA, USA) positioned just below the sensor frame.  

Figure 1. (Top) Cumulative crop evapotranspiration (ET), rainfall and applied total water 

(irrigation plus rainfall) for the high irrigated (HighIrr), low irrigated (LowIrr) and  

non-irrigated (dryland) treatments plotted vs. the day of year (DOY); (Bottom) the amount 

and timing of daily precipitation events. The results are presented for the 2007 and 2008 

growing seasons from planting (vertical line with date) to crop maturity. Arrows indicate 

the dates on which airborne remote sensing imagery was acquired. 

 

High-resolution multispectral imagery of the study plots in the red, NIR and TIR were collected on 

selected dates during the study. Imagery was acquired on clear days at midday using the Texas Tech 

Airborne Multispectral Remote Sensing System (TTAMRRS) [18]. This system was flown aboard a 

fixed-wing Cessna 172 Skyhawk aircraft. The aircraft was modified to allow TTAMRRS to acquire 

imagery in a nadir-pointing direction through a hole in the floor of the passenger cabin. Imagery was 

acquired at an approximate altitude of 915-m above ground to achieve a surface spatial resolution of 

0.4 m for the red and NIR bands and 2 m for the TIR band.  
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Figure 2. Array of sensors used to monitor surface temperature (Ts): (left) high irrigation 

treatment; (right) dryland treatment. 

 

For converting image digital counts (DC) to reflectance, a pair of calibration tarps (8 m × 8 m) with 

a known reflectance (9% and 60%) was used. These tarps were placed on the ground near the research 

field prior to the overflights of the aircraft carrying TTAMRSS so that the tarps would appear in the 

acquired imagery. 

On the day after each remote sensing image acquisition, canopy width was measured using a meter 

stick at 20 random locations within each of the irrigation treatment plots. Crop GC was calculated 

using the following relationship,  

100
Cw

GC
Rs

   (1) 

where GC is expressed as a percentage, Cw is the measured canopy width and Rs is the spacing 

between plant rows in the field. These values were compared to corresponding estimates of GC 

obtained from the remote sensing imagery. 

2.1. Image Processing 

Image processing was done using ENVI software (Research Systems Inc., Boulder, CO, USA) [19]. 

For converting image DC values to reflectance, a linear regression equation was developed, 

    Rs DCs     (2) 

where Rs is the scene reflectance, β is the regression slope, DC is the digital count value for the tarp 

and α is the regression intercept. Equation (2) was solved separately for the red and NIR bands. 

For the first image scene collected, the latitude and longitude of known ground control points 

(GCPs) were determined in the scene. All other acquired images were rectified by the image-to-image 

method based on the GCPs. The goodness of fit for the rectifications was evaluated by selecting at 

least 3 identifiable features (e.g., the center pivot point, road intersections and plot corners) with their 

corresponding X, Y coordinates in the red, NIR and TIR images [20]. The images were resampled to a 

common 1-m pixel size by cubic convolution. The red and NIR TTAMRSS imagery originally had 

sub-meter resolution, while the corresponding TIR imagery had a resolution greater than 1 m. 

  



Remote Sens. 2014, 6 4030 

 

2.2. Calculating Soil Brightness 

To determine the soil brightness associated with an image pixel representing partial canopy cover 

(for example, point (X1, Y1) in Figure 3), a 2D scatter plot was created by plotting red reflectance 

values against the corresponding NIR reflectance values. A perpendicular line (blue line in Figure 3) 

was drawn from point (X1, Y1) to the bare soil line (red line). In this case, the equation of the bare soil 

line would be: 

0 1( )Y a a X    (3) 

where a1 is the slope and a0 is the intercept of the soil line. The bare soil line would intercept the  

y-axis at the point (0, a0). The values for Xs and Ys can be calculated from the equations [21]: 

2

1 1 1 0?1

1 1

a Y X a a
Xs

a

 



  (4) 

21 1 1

1 1
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X
s

a

a 





  (5) 

SB was determined as the distance along the bare soil line from (Xs, Ys) to (0, a0). This distance was 

calculated from the equation: 

2 2 ( 0)SB Ys a Xs     (6) 

Figure 3. Typical scatter plot of image pixel reflectances in the red and  

near-infrared bands. 

 

As shown in Figure 3, the point on the bare soil line corresponding to the wettest soil is  

(Xsmin, Ysmin), while the point corresponding to the driest soil is (Xsmax, Ysmax). The value of SB 

corresponding to the wettest soil can be calculated as: 
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whereas the value corresponding to the driest soil can be calculated as: 

2 2( 0)SBmax Ysmax a Xsmax     (8) 

Determining the SBmin and the SBmax reference points in the imagery was achieved by referring to 

the multi-date reflectance values of the relatively moister and drier bare soil surfaces (e.g., center pivot 

pump leak, access roads and pathways between irrigation plots) that were recorded for each of the 

image acquisition dates. The calculated values of SBmin (Equation (7)) and SBmax (Equation (8)) 

were used to normalize the SB using the relationship, 

 100
SB SBmin

SBi
SBmax SBmin


 


  (9) 

where SBi is the normalized SB expressed as a percentage. 

2.3. Calculating Ground Cover 

In order to calculate GC, the standard perpendicular vegetation index (PVI) [22] was calculated 

using an equation 

 
2 1/2(1 0 )

[ 1 0]
 
NIR a Red a

P
a

VI





  (10) 

where a1 and a0 are the slope and intercept of the bare soil line, respectively (refer to Equation (3)). 

Calculation of GC was based on the PVI associated with the reflectance of full canopy [7,23] as: 

  100
FC

PVI
GC

PVI
   (71) 

where PVIFC is the known PVI value for a canopy with 100% GC. 

2.4. Conversion of TIR DCs to Temperature and Calculating Ts-Ta 

The DCs of the TIR imagery were converted to surface temperature (Ts) using a linear regression 

between the TIR image DC of pixels and their corresponding measured temperature ground-truth TIR 

values at the same time the image was acquired in Figure 2, 

   Ts TIR     (18) 

where β and α are the regression slope and intercept, respectively. The image scene differential 

temperature, Ts-Ta, was calculated as the difference between the Ts and air temperature (Ta). 

2.5. Fusion and Evaluation of the Relationship among SB, GC and Ts-Ta 

Visualization by fusion of SB, GC and Ts-Ta for the research plots was carried out using  

ILWIS 3.31 software (ITC) [24]. In this procedure, Ts-Ta, GC and SB were displayed as the hue, 

saturation and intensity (HSI) color model, respectively. The HSI color model is a representation of 

human color perception; hue, dominant wavelength; saturation, purity of color; intensity, average 

2 2 ( 0)SBmin Ysmin a Xsmin    (7) 
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brightness. Respective histogram ranges assigned in the HSI color composite were 0 to 100 for GC,  

0 to 100 for SB and −30 to 30 for Ts-Ta. These numbers represent the full range of values for GC and 

SB in percent, whereas the range of the Ts-Ta was assigned actual temperature values that resulted in 

consistent identification of water stress features by HSI. 

To evaluate these three dimensions, the image scene was converted into a text file. Each set of GC, 

SB and Ts-Ta data in the text files were pooled into a single text file with three columns using a utility 

in Graphis plotting software [23]. The data values in the three columns were considered orthogonal 

coordinates X, Y, Z and plotted in three dimensions. 

3. Results and Discussion 

The seasonal average air temperature between years was similar, but some months showed 

variations between the years (Table 1). In 2008, May and July were warmer by 7.6 °C and 0.5 °C, 

respectively, compared with the same months in 2007, whereas, June, August and September were 

slightly warmer in 2007 than in 2008. The seasonal precipitation and ET0 varied between years  

(Table 1). Year 2008 received 67 mm less precipitation than 2007 and had lower monthly precipitation 

compared with 2007, except in June and August. Cumulative ET0 in 2008 was 162 mm greater than in 

2007, where most of the variation was due to May, which had 120 mm more than the same month in 

2007. In addition, ET0 was consistently higher from May to July in 2008 than during the same period 

in 2007. This higher ET demand in 2008 is also shown in Figure 1, wherein the cumulative amount of 

irrigation in the HighIrr treatment fell, on average, at least 100 mm below the cumulative crop ET. 

This resulted from the lack of rainfall received from planting to mid-June, plus the inability of the 

LEPA irrigation system capacity to meet the ET demand for that year. It is important to note that in 

2007, the applied crop water in HighIrr treatment is close to a 100% crop ET replacement due to the 

higher amount of precipitation received that year. 

Table 1. Seasonal and monthly air temperature, precipitation and ET0 from the Texas High 

Plains ET network weather station near the study site [16]. 

Year May June July August September Season 

Air Temperature (°C), Mean 

2007 18.0 22.6 23.9 24.6 21.8 22.2 

2008 25.6 19.5 24.4 23.6 18.7 22.4 

Precipitation (mm), Total 

2007 90 64 62 52 52 329 

2008 51 80 25 70 36 262 

ET0 grass (mm), Total 

2007 155 190 182 176 135 838 

2008 275 226 203 176 120 1000 

3.1. Soil Brightness 

The distribution of red and NIR pixel reflectance values in the scatter plot displayed the 

characteristic shape (Figure 4A), with the bare soil line lying along the diagonal lower edge and the 
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region of 100% GC at the upper apex. In this study, the soil line equation was not derived from the 

single acquisition date, but rather from several dates, so that a range of bare soil pixel values 

corresponding to varied soil moisture conditions could be used. The resulting soil line (i.e., the 

regression line fit to the bare soil pixels) is shown in Figure 4B. For this soil line, relatively moist soil 

pixels lie along the lower left portion, while relatively dry soil pixels lie along the upper right portion. 

The regression slope (1.03) and intercept (7.10) are similar to the values reported in other studies [14]. 

This suggests that a common soil line equation might be appropriate for use in applications of this nature. 

The identification of a minimum and maximum SB for use in SB normalization is not 

straightforward, as the brightness range can vary from image to image, as a result of the timing and 

magnitude of rainfall or irrigation events. The use of multi-date image data in this study allowed the 

identification of an SB range for use in normalizing SB that encompassed a wide range of soil moisture 

conditions. From the data in Figure 4B, the minimum and maximum SB were determined to be 7.0 

(using Equation (7)) and 56.0 (using Equation (8)), respectively. The SB range is likely specific to a 

soil type, as shown by soil line data previously published for a variety of soils [14].  

Figure 4. Red vs. NIR scatter plot of pixel reflectance from an image scene taken on 

8 August 2007 (A), and the soil line evaluated from multi-temporal image data for 

georeferenced bare soil surfaces (near the pivot pump and adjacent to the plots) with 

varying degrees of moisture (B). 

 

Scene SB for 2007 and 2008 is presented in Figure 5. On 8 August 2007, the wetter soil surfaces 

(due to excessive water released near the center of the pivot) had an SB below 20%, whereas most of 

the SB values shown in the rest of the image had an SB ranging from 40% to 60%. This was because, 

at the time of image acquisition, the pivot had just started to irrigate the northwest quarter of the field. 

For 21 August 2007, the calculated SB was greater (indicating drier soils) than 8 August 2007. 

Dryland plots in 2008 had consistently higher SB than the HighIrr and the LowIrr treatment plots. On 

this date, the area near the center of the pivot also had SB < 20% (similar to 8 August 2007), which 

demonstrates the ability of the SB method to detect moist or dry soil surfaces in this study. 
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Figure 5. Percent of ground cover (GC) of cotton (C) and sorghum, Sorghum bicolor (S), 

percent soil brightness (SB) and canopy minus air temperature (Tc-Ta) (°C), for two dates 

in 2007 (A,B) and 2008 (C) along with the respective irrigation plots for the highly 

irrigated (HighIrr), low irrigated (LowIrr) and dryland treatment.  

 
Note: sorghum was part of a 6-year (2003–2008) crop rotation and irrigation project and is out of the scope of 

this 2-year (2007–2008) study. 

3.2. Ground Cover 

An increase in GC from 8 August to 28 August in 2007 was observed in the HighIrr plot for cotton, 

but not for sorghum as a result of the senescence of the sorghum leaf canopy (see Figure 5). In the 

dryland plot, cotton GC decreased from 8 August to 28 August 2007, indicating accelerated leaf 

canopy senescence as compared to the HighIrr and LowIrr plots. This is an indicator that drought, in 

most cases, enhances crop senescence [25]. Less rainfall in 2008 resulted in incomplete GC in the 
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HighIrr treatment (Figure 5C), with the maximum GC ranging from 40% to 60%. Cotton plants in 

dryland plots were severely damaged by water stress in the northern parts of the field. 

The relationship between estimated and measured GC is shown in Figure 6. Estimated and observed 

GC showed a good agreement (i.e., 1.02 slope) and a high coefficient of determination. The slope and 

intercept are not statistically different from one and zero (α = 0.05), respectively. 

Figure 6. Estimated vs. measured ground cove (GC) for the various irrigation plots in the 

research site (2007–2008). 

 

3.3. Surface and Air Temperature 

The difference in Ts-Ta among irrigation treatment plots in both years corresponded to the amount 

of irrigation applied to the plots. As expected, the HighIrr treatment had the coolest average surface 

temperature, followed by the LowIrr treatment and the dryland plots. In 2007, plots in the portion of 

the field that had been irrigated by the pivot on the day the image was acquired had a surface 

temperature lower than or equal to the air temperature (Figure 5A,B).  

High canopy temperatures in 2008 were indicative of the extreme drought conditions in that year. 

There was more exposed soil in 2008 than in 2007. The irrigated plots had a maximum of only 56% 

GC, with the exposed soil surface contributing to the increased canopy temperature through sensible 

heat transfer to the canopy and surrounding environment [5]. Development of the VITT approach for 

determining crop water stress was intended to account for partial crop canopy cover [6] in semi-arid 

regions, like the Texas High Plains. The Ts-Ta approach applied to a partial canopy situation is known 

to have problems, due to the effect of partial GC on the energy balance of the crop [26,27].  

3.4. Fusion of Soil Brightness, Ground Cover and Temperature  

Color composites of Ts-Ta, GC and SB assigned as hue (H), saturation (S) and intensity (I) are 

shown in Figure 7. The non-living features, such as bare soil, are represented in shades of gray; drier 
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soils appear brighter gray, whereas wetter soils appear darker gray. This representation of non-living 

features is an attribute of the HSI approach, whereby the fused product is considered easier to interpret 

by human visual perception [20,28].  

With regard to crop water stress, the non-stressed crop was displayed in green, moderately stressed 

crop in blue and stressed crop in pink. In 2007, the dryland (non-irrigated) treatment was consistently 

classified as stressed (Figure 7A,B). Most of the deficit irrigation treatment (i.e., LowIrr) was 

classified as moderately stressed, with some smaller portions classified as non-stressed or stressed. The 

HighIrr treatment in 2007 was generally classified as non-stressed. The HighIrr treatment in 2007 had 

available water (rainfall + irrigation applied) that was not markedly different from the crop ETc 

(Figure 1 and Table 1). Specifically, towards the end of August (28 August 2007), the HighIrr 

treatments were classified as non-stressed and, in some portions, moderately stressed (Figure 7B). On 

8 August 2007 (Figure 7A), the same plots were classified as non-stressed or moderately stressed, with 

a few areas classified as stressed.  

On 30 July 2008, the irrigated treatments (HighIrr and LowIrr) on the north portion of the center 

pivot were generally classified as stressed, with some small areas of the plots classified as moderately 

stressed (Figure 7C). In the southwestern portion of the field that year, both the HighIrr and LowIrr 

treatments were classified as stressed or moderately stressed. The cotton crop in the dryland plots in 

2008 were stressed due to a lack of rainfall, and only a small number of cotton plants survived, 

resulting in low GC, which was mostly classified as non-living (bare soil in the north portion of the 

field in Figure 5C). These plots had the highest Ts-Ta over the three dates. The irrigated treatments 

(southwestern portion) were classified as either stressed or moderately stressed. At the time the image 

was acquired, all plants were experiencing water stress.  

Figure 7. Color composites produced by hue, saturation and intensity (HIS) fusion of  

Ts-Ta (−30 °C to 30 °C), GC (0–100%) and SB (0–100%) for 2007 (A,B) and 2008 (C).  
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The ranges of Ts-Ta, GC and SB values among the three crop water stress classes are summarized 

in Table 2. Ranges were identified based on prior knowledge of the irrigation treatments. The HSI 

fused product, to some extent, corresponded to the irrigation treatments in 2007. It reliably depicted 

the drought conditions in 2008. For 8 August 2007, Ts-Ta values for the non-stressed treatment were 

less than or equal to zero, which would be expected for well-watered plants. Results on 28 August 2007, 

were not the same as those on the preceding observation in early August. In this case, the non-stressed 

plants showed a Ts-Ta value greater than zero, and if this variable were to be used for water stress 

evaluation, then it would have been classified as stressed to varying degrees. It can be noted that the 

non-stressed plants for this date had a GC range of 63%–91% with an SB range of 65%–80%. We 

would suggest that this is an example of the contribution of soil background effects to increased Ts 

(i.e., combined plant and soil temperature).  

Table 2. Ts-Ta, GC and SB ranges corresponding to crop water stress classes. 

Dates Crop Water Stress Classes Ts-Ta (°C) GC (%) SB (%) 

8 August 2007 Non stressed <0–0 40–63 27–51 

 Moderately stressed 3–11 42–72 27–51 

 Stressed >11 28–51 35–62 

28 August 2007 Non stressed <0–6 63–91 65–80 

 Moderately stressed 1–6 28–58 41–67 

 Stressed >10 23–47 57–78 

30 July 2008 Non-stressed none none none 

 Moderately stressed 9–19 44–56 14–32 

 Stressed 19–31 2–51 34–47 

Well-watered conditions did not exist in 2008, due to the low rainfall and high mid-season 

temperatures (see Table 1), resulting in a higher crop ETc (Figure 1) than the irrigation system could 

meet. The resulting crop water stress classes assigned according to the HSI analysis corresponded to 

the resulting lint yield [29]. In 2007, yields in the HighIrr, LowIrr and dryland treatments were 

significantly different and were higher than the corresponding yields in 2008 (Figure 8, [29,30]). 

Yields in the irrigated treatments in 2008, which were classified as stressed or moderately stressed, 

were similar to the LowIrr treatment in 2007, which was classified as moderately stressed. The yield 

data supported the crop water stress classes assigned for each image acquisition year.  

Figure 9 shows Ts-Ta, GC and SB plotted as three orthogonal coordinates, with Ts-Ta representing 

the surface energy balance, GC representing crop growth and SB representing the apparent wetness of 

the soil surface. Combinations of GC and SB data for the imagery for this date (8 August 2007) lie in 

horizontal triangular-shaped distributions layered according to the magnitude of the resulting energy 

balance, as indicated by Ts-Ta. The GC tended to peak at intermediate values of Ts-Ta. Increasing 

apparent soil moistness (i.e., decreasing SB) generally was associated with decreasing Ts-Ta. 

The HSI approach is able to discriminate between the crop water stress classes as inferred from the 

irrigation treatments used in this study and the reported yields. The additional new dimension (i.e., SB) 

to the remotely sensed VITT approach [6] enabled the fusion of surface information (Ts-Ta, GC and 

SB) for detecting crop water stress and segregating bare soil surface from the cotton canopy. 

Moreover, a subtle boundary between non-stressed crop and moderately stressed crop (i.e., between 
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values of zero and one for Ts-Ta) was revealed. This capability resulted because Ts-Ta was assigned to 

the H component, which is known to facilitate detecting slight changes in that component [28]. The 

result of this study indicates that SB helped discriminate the difference between the moderately 

stressed and stressed cotton crop, along with an ability to segregate the non-cropped bare soils from the 

cropped areas. 

Figure 8. Lint yield for the three irrigation treatments in each year [29]. The standard error 

of estimates was calculated using the Procmixed model in SAS [30] with the irrigation 

treatment as the fixed effect and the year as a random effect. The yield difference between 

treatments greater than the least significant difference (LSD0.05) is significant.  

 

Figure 9. GC, SB and Ts-Ta plotted on three orthogonal axes. GC is associated with crop 

growth, SB with apparent soil moistness and Ts-Ta with the surface energy balance. 

Plotted data are for the 8 August 2007, image acquisition date. 
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3.5. Crop Water Stress Analysis Using the VITT-Trapezoid Approach 

Figure 10 shows a VITT-trapezoid analysis of crop water stress using GC and Ts-Ta data from 

Figure 5. The four corners of the trapezoid in terms of GC (Y-axis) and Ts-Ta (X-axis) were known 

using the bare soil surfaces from the SB analysis and their corresponding Ts-Ta. The absence of a pixel 

that represents a Ts-Ta value for 100% GC in this study was estimated by an energy balance method [31]. 

Notable in the VITT analysis is the observation that the non-vegetated bare soil surfaces are not 

distinctive in the crop stress classified image. The pink colors in Figure 10 represent stressed plants 

(moderately- to severely-stressed plants) with a completely dry soil background that corresponds to the 

moderately- to severely-stressed plants in 3D-CWSI (blue and pink representations in Figure 5). The 

VITT approach seems to classify the water stress levels, as indicated by ground truth and irrigation 

treatments, but detecting levels of stress spatially is not effective. For example, the northern part of the 

field that was 100% severely stressed in 2008 (shown in Figure 7C) is classified as both stressed and 

non-stressed crop with dry soil background in the VITT approach (Figure 10). Similar limitations were 

also reported in the literature for semi-arid applications [32]. 

Figure 10. Crop water stress classes for 2007 (A,B) and 2008 (C) using the Vegetation 

Index-Temperature Trapezoid (VITT) approach [6] and classes of stress according to the 

pixel location [31] within the trapezoid. 

 

4. Conclusions 

The HSI color composition method was able to assess the crop water stress of cotton crop from 

remote sensing observations of canopy cover (estimated using the PVI method), the energy balance 

characteristics of a surface (estimated by the difference between surface and air temperature) and the 

apparent moistness of the soil surface (indicated by a measure of SB). This assessment of crop water 
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stress in cotton was based on the applied irrigation treatments and resulting yields. This new approach 

utilizes readily available data (remotely sensed reflectance and temperature and measurements of air 

temperature) and provides an alternative way to determine crop water stress, even in situations of 

partial canopy cover without additional energy balance determinations (involving aerodynamic and 

canopy resistances).  

SB as an additional dimension to GC and Ts-Ta (i.e., the VITT trapezoid approach) shows promise 

in assessing the relative degree of water stress. This inclusion leads to a three-dimensional approach, 

by the HSI method. This approach evaluates water stress that is spatially consistent over years, as 

indicated by the water regime and ETc demand. Additional investigations may validate the approach to 

actual measurements of stress (as from ET measurements) and may reveal the accuracy and 

applicability of this approach. 

Acknowledgments 

The authors wish to acknowledge the USDA-ARS Ogallala Aquifer Initiative for supporting this 

project. We also thank South Plains Precision Ag Inc., of Plainview, TX, for the use of the aircraft that 

allowed the image acquisition with the TTAMRRS. 

Author Contributions 

Jessica Torrion conducted this study and wrote this paper. Stephan Maas provided guidance for data 

gathering/analysis, and edits. Wenxuan Guo supported this research for successful deployment of 

TTAMRRS as well as edits to this paper. James Bordovsky and Andy Cranmer helped the conduct of 

this research on the ground from planting to harvest. They provided crop management and yield data, 

plus, inputs in the methods section. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Jackson, R.D.; Idso, S.B.; Reginato, R.J.; Pinter, P.J. Canopy temperature as a crop water stress 

indicator. Water Resour. Res. 1981, 17, 1133–1138. 

2. Jackson, R.D.; Pinter, P.J.; Reginato, R.J.; Idso, S.B. Detection and evaluation of plant stresses for 

crop management decisions. IEEE Trans. Geosci. Remote Sens. 1986, GE-24, 99–106. 

3. Wanjura, D.F.; Kelly, C.A.; Wendt, C.W.; Hatfield, J.L. Canopy temperature and water stress 

cotton crops with complete and partial ground cover. Irrigation Sci. 1984, 5, 37–46. 

4. Pinter, P.J.; Hatfield, J.L.; Schepers, J.S.; Barnes, E.M.; Moran, M.S.; Daughtry, C.S.T.; 

Upchurch, D.R. Remote sensing for crop management. Photogramm. Eng. Remote Sens. 2003, 69, 

647–664. 

5. Ham, J.M.; Heilman, J.L.; Lascano, R.J. Soil and canopy energy balances of a row crop at partial 

cover. Agron. J. 1991, 83, 744–753. 



Remote Sens. 2014, 6 4041 

 

6. Moran, M.S.; Clarke, T.R.; Inoue, Y.; Vidal, A. Estimating crop water deficit using relation 

between surface-air temperature and spectral vegetation index. Remote Sens. Environ. 1994, 49, 

246–263. 

7. Maas, S.; Rajan, N. Estimating ground cover of field crops using medium resolution multispectral 

satellite imagery. Agron. J. 2008, 100, 320–327. 

8. Galvão, L.S.; Vitorello, I. Variability of laboratory measured soil lines of soils from southeasthern 

Brazil. Remote Sens. Environ. 1997, 63, 166–181. 

9. Gerrard, J. Fundamentals of Soils; Taylor and Francis: London, UK, 2000; p. 230. 

10. Idso, S.B.; Jackson, R.D.; Reginato, R.J.; Kimball, B.A.; Nakayama, F.S. The dependence of bare 

soil albedo on soil water content. J. Appl. Meteorol. 1975, 14, 109–113. 

11. Skidmore, E.L.; Dickerson, J.D.; Schimmelpfennig, H. Evaluating surface-soil water content by 

measuring reflectance. Soil Sci. Soc. Am. J. 1975, 39, 238–242. 

12. Twomey, S.A.; Bohren, C.F.; Mergenthaler, J.L. Reflectance and albedo differences between wet 

and dry surfaces. Appl. Opt. 1986, 25, 431–437. 

13. Whiting, M.L.; Li, L.; Ustin, S.L. Predicting water content using Gaussian model on soil spectra. 

Remote Sens. Environ. 2004, 89, 535–552. 

14. Maas, S.J.; Rajan, N. Normalizing and converting image DC data using scatter plot matching. 

Remote Sens. 2010, 2, 1644–1661. 

15. Soil Survey Staff. Custom Soil Resource Report 2008. Available online: 

http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx (accessed on 1 May 2008). 

16. Porter, D.O.; Marek, T.; Howell, T.A.; New, L. Texas High Plains Evapotraspiration Network TX 

A&M; Univ. Sys. Agric. Res. and Ext. Centers: Bushland, TX, USA, 2006. 

17. Nayak, S. Thermal Imagery And Spectral Reflectance Based System To Monitor Crop Condition. 

Master’s Thesis, Texas Tech Univisity, Lubbock, TX, USA, 2005. 

18. Huang, Y.; Thomson, S.J. Airborne multispectral and thermal remote sensing for detecting the 

onset of crop stress caused by multiple factors. Proc. SPIE 2010, 7824, doi:10.1117/12.864190. 

19. Research Systems Inc. The Environment for Visualizing Images; ENVI, Research Systems, Inc.: 

Boulder, CO, USA. 2003. 

20. Pohl, C.; Van Genderen, J.L. Multisensor image fusion in remote sensing: Concepts, methods and 

applications. Int. J. Remote Sens. 1998, 19, 823–854. 

21. Jackson, R.D.; Pinter, P.J.; Reginato, R.J.; Idso, S.B. Hand-Held Radiometry. In Agricultural 

Reviews and Manuals; USDA: Oakland, CA, USA, 1980; pp. 1–66. 

22. Richardson, A.J.; Wiegand, C.L. Distinguishing vegetation from soil background information. 

Photogram. Eng. Remote Sens. 1977, 43, 1541–1552. 

23. Maas, S. Estimating cotton canopy ground cover from remotely sensed scene reflectance. Agron. 

J. 1998, 90, 384–388. 

24. Koolhooven, W.; Hendrikse, J.; Nieuwenhauis, W.; Retsios, B.; Schouwenburg, M.; Wang, L.; 

Budde, P.; Nijmeijer, R. Integrated Land Water Information System, ILWIS 3.31; ITC: Eschede, 

The Netherlands, 2007. 

  



Remote Sens. 2014, 6 4042 

 

25. McMaster, G.S.; White, J.W.; Weiss, A.; Baenziger, S.P.; Wilhelm, W.W.; Porter, J.R.;  

Jamieson, P.D. Simulating Crop Phenological Responses to Water Deficit. In Response of Crops 

to Limited Water; Ahuja, L.R., Reddy, V.R., Saseendran, S.A., Yu, Q., Eds.; CSSA, ASA, SSSA: 

Madison, WI, USA, 2008; pp. 277–300. 

26. Ham, J.M.; Heilman, J.L. Aerodynamic and surface resistances affecting energy transport in a 

sparse crop. Agric. For. Meteorol. 1991, 53, 267–284. 

27. Matthias, A.D.; Kustas, W.P.; Gay, L.W.; Cooper, D.I.; Alves, L.M.; Pinter, P.J., Jr. Aerodynamic 

parameters for a sparsely roughened surface composed of small cotton plants and ridged soil. 

Remote Sens. Environ. 1990, 32, 143-153. 

28. Carper, W.J.; Lillesand, T.M.; Kiefer, R.W. The use of intensity-hue-saturation transformations 

for merging spot panchromatic and multispectral image data. Photogramm. Eng. Remote Sens. 

1990, 56, 459–467. 

29. Bordovsky, J.P.; Mustian, J.T.; Cranmer, A.M.; Emerson, C.L. Cotton-grain sorghum rotation 

under extreme irrigation conditions. Appl. Eng. Agric. 2011, 27, 359–371. 

30. Little, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, W.W. SAS for Mixed Models; SAS 

Institute, Inc: Cary, NC, USA, 2006. 

31. Clarke, T.R. An empirical approach for detecting crop water stress using multispectral airborne 

sensors. HortTechnology 1997, 7, 9–16 

32. Wang, W.; Huang, D.; Wang, X.D.; Liu, Y.R.; Zhou, F. Estimation of soil moisture using 

trapezoidal relationship between remotely sensed land surface temperature and vegetation index. 

Hydrol. Earth Syst. Sci. 2011, 15, 1699–1712. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 




