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Abstract: Mediterranean pine forests in Spain experience wildland fire events with 

different frequencies, intensities, and severities which result in diverse socio-ecological 

consequences. In order to predict fire severity, spectral indices derived from remotely 

sensed images have been used extensively. Such spectral indices are usually used in 

combination with ground sampling to relate detected radiometric changes to actual fire 

effects. However, the potential of the tridimensional information captured by Airborne 

Laser Scanners (ALS) to severity mapping has been less explored. With the objective of 

addressing this question, in this paper, explanatory variables extracted from ALS point 

clouds are related to field estimations of the Composite Burn Index collected in four fires 

located in Aragón (Spain). Logistic regression models were developed and statistically 

tested and validated to map fire severity with up to 85.5% accuracy. The canopy relief ratio 

and the percentage of all returns above one meter height were the most significant variables 

and were therefore used to create a continuous map of severity levels.  
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1. Introduction 

Fire is a global phenomenon [1] with 200–500 million hectares being burned annually [2]. Fires 

affect large areas in a variety of biomes from tropical to boreal being more widespread than any other 

natural disturbance [2,3]. In some ecosystems, e.g., savannas and grasslands, fire plays an ecologically 

significant role in biogeochemical cycles and disturbance dynamics. In other ecosystems, fire may lead 

to the destruction of forests or to long-term site degradation.  

In Mediterranean Europe, fire is a major hazard with an average of 45,000 fires being recorded 

yearly [4]. Therefore, fire constitutes one of the main factors determining the current forest landscape [5], 

with summertime wildfires causing extensive ecological and economic losses [6] over hundreds of 

thousands of hectares of forests, shrub lands and grasslands. In Spain, although the last decade,  

2001–2010, has seen a reduction in the number of fire incidents (averaging 17.127 per year), the 

occurrence of large fires (>100 ha) increased. In 2012, 64% of the total area affected by fires was 

burned in a large fire [7]. Even though Mediterranean species are adapted to natural fire regimes, 

changes in land use and the cumulative effects of anthropogenic disturbances make vegetation 

communities more vulnerable to high-intensity wildfires. In addition, climate change forecasts imply 

an increasing vulnerability of our forests to large-scale fires in the future [8]. In response, scientists 

and fire managers require the most accurate information available regarding the impact of fire on the 

environment. The way fire is distributed throughout the affected area is essential for short-term 

mitigation and restoration treatments, as well as for vegetation recovery monitoring, wildlife studies, 

soil and hydrologic changes, as well as various ecological processes [9].  

In most cases, fire severity and burn severity are used interchangeably to describe fire effects on 

ecosystems in terms of biophysical alteration (e.g., blackening or scorching of tree-leaves, amount of 

fuel consumed, depth of burn, soil exposure, etc.). However, these two terms may imply different 

meanings. Fire severity can be defined as a measure of the immediate fire impact on the environment 

such as tree mortality and the loss of biomass in the forms of vegetation and soil organic material, 

while burn severity can be defined as the degree of ecological change caused by fire [9,10]. The 

Composite Burn Index (CBI) was developed by Key and Benson [11] within the framework of the Fire 

Effects Monitoring and Inventory Protocol (FIREMON) project for pine forests in western USA, to 

sample these changes and to summarize the general effects of a fire at a given plot. The CBI has been 

used and adjusted [9] to a wide range of environments, from Mediterranean to boreal [12–19]. 

Extensive field surveys are often costly and labor intensive, making the use of remotely sensed data 

indispensable for fire severity analysis. The removal of vegetation, the exposure of soil, and changes in soil 

and vegetation moisture content as a result of differences in burn severity, imply changes in the near and 

short-wave infrared regions of the electromagnetic spectrum that can be detected by multispectral remote 

sensing devices. Remote sensing products are not only more cost-effective when compared to  
ground-based methods, but also provide information even in inaccessible areas shortly after fire events [9]. 

The estimation of burn severity from satellite data has been accomplished using per band reflectance 

or vegetation spectral indices derived from optical sensors of different spatial resolutions, from 1 km  

(e.g., Advanced Very High Resolution Radiometer—AVHRR) down to 2 m (e.g., QuickBird), with 

Landsat satellite images (30 m pixel) being the most commonly used [20]. However, estimations from 
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passive satellite sensors are less sensitive to changes in forest structure [21] than active sensors, such 

as Radio Detection and Ranging (radar) [22,23] and Airborne Laser Scanner (ALS) [24]. 

ALS has already been adopted and accepted as a valuable tool in forestry applications due to the 

three-dimensional nature of the data. The laser pulse penetration characteristics and the multi-return 

recording capabilities enable an accurate geometry-related approach in forestry, and by extension in 

wildland fire management [25]. Research focused on this technology has moved from validation  

of ALS measurement effectiveness for forest studies (e.g., [26,27]), to estimation of continuous 

variables such as basal area and biomass (e.g., [28,29]), as well as to forest structure analysis over 

large areas (e.g., [30–33]) and the quantification and assessment of canopy gaps and patches within 

forests (e.g., [24,30,34]). Increasingly, ALS data is being used with the aim of estimating fuel 

parameters, such as crown bulk density or height to live crown, which are commonly introduced as 

inputs in fire behavior models (e.g., [28,35–40]). 

In this context, the present study aims to develop a methodology that combines field data, 

represented by CBI estimations, and information derived from multiple-return ALS data, to assess fire 

severity for forest management purposes using multivariate analysis, specifically logistic regression. 

The following questions were addressed: 

1. What is the empirical relationship between field-measurements of burn severity and ALS data 

variables derived from point height distribution and number of returns? 

2. Which is the best model that will allow for the estimation of fire severity continuously?  

2. Material and Methods 

In this study, fire severity was evaluated over the area covered by four wildfire events in  

2008–2009. In order to characterize the spatial variability of the impact caused by fire, a wide range of 

variables were generated using ALS data. Then, a multivariate statistical analysis was carried out  

in order to evaluate which ALS-derived measurements present the strongest relationship with  

ground-assessed severity. The last but not least purpose was to map the spatial distribution of fire 

severity. Validation procedures were adopted to evaluate the quality, reliability, robustness, and degree 

of fitting of the results.  

2.1. Study Area  

The Autonomous Region of Aragón, located in northeastern Spain (Figure 1), stretches from the 

Pyrenees range, in the north, to the Iberian range, in the south. Aragón is the northernmost semi-arid region 

in Europe, although it is crossed by the Ebro River Valley at its center. The geological diversity of this area 

results in high topographic variation: The Pyrenees rise to more than 3000 m.a.s.l. and extend their 

foothills, the pre-Pyrenees, southward to the Ebro basin, gradually decreasing in elevation up to 100 m.a.s.l.  

In the central sector of the Ebro Valley, annual precipitation is low, averaging 350 mm and mostly 

occurring in autumn and spring. Its Mediterranean continental climate [41] presents cold winters, with 

monthly mean temperature about 7 °C, and hot, dry summers, with mean temperatures about 24 °C. 

However, altitude and topographic barriers modify this general pattern of extreme aridity at the edge of 
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the Ebro Basin by increasing humidity and diminishing temperatures, while keeping the same pattern 

of seasonal rain and drought as the center of the Ebro valley. 

Approximately, 50% of the 1.5 million hectares of forested areas in Aragón are composed of 

coniferous forest, 35% correspond to mixed forest, and the rest is covered by deciduous forest.  

Open forests, with less than 20% of tree cover, and shrublands occupy another one million hectares. 

Over the last few decades, the area covered by forest increased as a result of afforestation projects and 

agricultural abandonment. The main tree species are Pinus halepensis P. Mill., Pinus sylvestris L., 

Pinus pinaster Soland., non Ait., Quercus ilex L., and Quercus pyrenaica Willd. The species  

Quercus coccifera L., Juniperus oxycedrus L. subsp. macrocarpa (Sibth. & Sm.) Ball, and  

Thymnus vulgaris L. are commonly encountered in shrublands [20]. 

Figure 1. Study area and Composite Burn Index (CBI) field plots location. MODIS 

vegetation fractional cover (VFC) images and high spatial resolution ortophotography  

(PNOA-2012) are used as backdrop. 

 

Wildfires have significantly increased in the last twenty years, both in number and total area.  

The increase was related not only to weather conditions, but also to human activity. In Aragón, 

approximately 5000 ha are affected annually by fire. Almost 3000 ha of this burned land are forested 

areas. In exceptional years such as 1994 and 2009, the affected area reached up to 30000 ha. In 2008 and 

2009, eight large fires (>100 ha) were declared in Aragón and the total affected area was around 23,000 ha, 

most of which was burned in 2009. All of the fires affected pine forests after a period of extremely dry 
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and hot weather. In six of those fires the cause of ignition was lightning while the remaining two were 

ignited due to anthropogenic activities [20]. Four of these fires (Figure 1) were analyzed in this study as a 

consequence of their significant environmental impact due to their large extension (Table 1). 

Table 1. Fire events and the corresponding field plots analyzed.  

Fire Date Cause Burned Area (ha) CBI Plots 

Zuera August 2008 Human 2200 70 
Jaulín July 2009 Lightning 1800 29 
Aliaga July 2009 Lightning 9000 36 

Los Olmos July 2009 Lightning 500 34 
  Total 13,500 169 

2.2. Field Data Collection  

Field data were collected within two months after each fire utilizing the Composite Burn Index (CBI) 

field protocol, which takes into account the visible and averaged burn severity condition found in a 

plot [11]. Circular plots of 30 m diameter were laid out in areas of homogeneous fire effects using a 

Trimble GeoExplorer GPS with a positioning error at the center of the plot lower than 1 m after 

differential correction. Digital photos were taken from the center of each plot to the four cardinal 

directions to provide qualitative information about vegetation structure and soil conditions. The CBI 

assessment is a somewhat subjective estimation of the entire averaged burn severity across five forest 

strata: substrates, herbaceous vegetation, large shrubs and small trees, intermediate trees, and dominant 

and co-dominant canopy trees. The CBI for the whole plot area is based on synoptic scores ranging 

from 0 (not-burned) to 3 (completely burned) as described by Key and Benson [11]. To reduce any 

assessor bias, CBI assessments were conducted by the same two individuals.  

Concerning fire effects in Aragón, low severity areas were characterized by scorched trees blackened at 

the base, charred to partially consumed litter while the understory layer was affected in a patchy pattern. 

The foliage and smaller twigs of the understory were partially to completely consumed, while branches 

were mostly intact. The tree crowns remained largely unaffected. In moderate severity areas, part of the 

understory layer was preserved. The needles or leaves and the small stems of the short shrubs (<1 m height) 

were consumed, whereas the tall shrubs (>1 m height) presented scorched foliage. The tree crowns were 

partially scorched, which resulted in incomplete foliage loss. For moderate–high severity areas, the 

consumption of the understory layer increased, whereas the tree crowns were usually scorched, with the 

foliage being retained only partially. The loss of branches and twigs was small for the overstory. The 

understory layer lost the twigs and small branches, especially the small shrubs (i.e., less than 1 m tall). In 

high severity areas, the combustion of the litter, understory layer, and tree crown elements (i.e., needles and 

twigs) was complete. At the highest severities, small- and medium-sized branches were also consumed. For 

more detail on the field sampling, see Tanase et al. [20].  

A selection of 169 from the initial 247 plots collected by Tanase et al. [20] was used in order to 

avoid areas where post-fire forest management activities, impacting canopy structure, had been carried 

out. For this reason, the 169 sampled plots do not represent proportionally the entire severity range 

(Figure 2). Table 2 shows the number of plots located in each severity range and how most of the plots 

were located in unburned or high severity areas.  



Remote Sens. 2014, 6 4245 

 

 

Figure 2. Frequency histogram of the CBI values.  
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Table 2. CBI field plots used as ground data by fire severity range and site (N = 169).  

 Severity Synoptic Scores 

Fire 
Unburned 
(CBI = 0) 

Low 
(CBI ≤ 1)

Moderate 
(1 < CBI ≤ 2)

Moderate-High 
(2 < CBI ≤ 2.5) 

High 
(CBI > 2.5) 

Zuera 16 2 11 5 36 
Jaulín 13 0 3 6 7 
Aliaga 9 0 8 9 10 

Los Olmos 4 0 5 3 22 
Total 42 2 27 23 75 

2.3. ALS Acquisition  

The ALS data were provided by the Spanish National Plan for Aerial Orthophotography (PNOA) [42] 

and captured, in several surveys conducted between 1 August 2010 and 5 February 2011, using two 

distinctive airborne sensors, Leica ALS60 and ALS50-II laser scanners. Data were delivered in LAS 

binary file format containing X and Y coordinates (UTM Zone 30 ETRS 1989), ellipsoidal elevation Z 

(ETRS 1989), with up to four returns measured per pulse, and intensity values from a 1064 nm 

wavelength laser. The resulting ALS nominal point density was 0.5 points/m2 with a vertical accuracy 

of less than 0.20 m. It should be noted that no difference exist between the ALS datasets in terms of 

sensing characteristics (i.e., operating principles) because PNOA mission ensures homogeneous flight 

campaigns and products. Moreover, the seasonality did not affect the coherence of the acquisitions 

because the study site is covered entirely by evergreen vegetation. 

ALS Processing 

The ALS data set was provided in fifty-six 2 × 2 km tiles of raw data points which needed  

pre-processing before being filtered. Outliers and noise were removed with the open-source BCAL LiDAR 

module, developed by Idaho State University, Boise Center Aerospace Laboratory (BCAL), implemented 

in ENVI 5.0 (Boulder, CO, USA). Afterwards, the point cloud was filtered using MCC-LIDAR 2.1 

command-line tool for processing discrete-return ALS data in forested environments [43]. The process 

classifies data points iteratively as ground or non-ground using the Multiscale Curvature Classification 
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(MCC) algorithm developed by Evans and Hudak [44]. According to Montealegre et al. [45], this 

classification algorithm, based on identifying non-ground points that exceed positive curvature 

thresholds across multiple scales, balances commission and omission errors in forestry applications. 

Subsequently, a high-resolution (1 m) bare earth digital elevation model (DEM), was created from the ground 

points using ANUDEM interpolation implemented in ArcGIS 10.1 software (ESRI, Redlands, CA, USA). 

ANUDEM uses a thin plate spline method where a smooth surface is constructed from the irregularly 

spaced ALS points [46]. Finally, the ALS point elevations were normalized by subtracting off the 

elevation of the underlying terrain, represented by the DEMs previously created, to obtain estimates of 

aboveground height for each return. This subtraction was performed using FUSION LDV 3.30 open 

source software [47], developed by the Remote Sensing Applications Center (USDA).  

With the aim of getting statistical information about the laser returns in order to estimate fire 

severity, a full suite of independent variables (Table 3) commonly used in vegetation modelling [48] 

was generated with “ClipData” and “CloudMetrics” commands included in FUSION LDV 3.30 [49] 

and with “LAS Dataset” tool in ArcGIS 10.1. The computation was performed at plot level  

(30 m diameter). A flowchart of the ALS data processing is presented in Figure 3.  

Table 3. ALS-derived variables description. 

ALS variables Description ALS Variables Description 

%_num_of_ret_1; _2; _3; 

_4 

% of pulses with one, two, three  

and four returns 

Elev_maximum Maximum height (m) 

%_Class_Unassigned % of object points Elev_mean Mean height (m) 

%_Class_Ground % of ground points Elev_minimum Minimum height (m) 

%_Return_1; _2; _3 % of first, second and third returns Elev_mode Mode height (m) 

Ratio_All_returns_1m (All returns above 1 m)/ 

(Total first returns) × 100 

Elev_P01;_P05;_P10 … _P99 Percentiles (m) of point 

heights distribution 

Ratio_All_returns_2m (All returns above 2 m)/ 

(Total first returns) × 100 

Elev_skewness Skewness of point 

heights distribution 

Ratio_All_returns_3m (All returns above 3 m)/ 

(Total first returns) × 100 

Elev_stddev Standard deviation  

of point heights 

Ratio_All_returns_mean (All returns above mean height)/ 

(Total first returns) × 100 

Elev_variance Variance of point heights 

Ratio_All_returns_mode (All returns above mode height)/ 

(Total first returns) × 100 

%_All_returns_1m; _2m; _3m % all returns above  

1, 2 and 3 m 

Canopy relief ratio ((Mean height—Min height)/(Max 

height—Min height)) 

%_All_returns_mean % all returns above mean 

value of point heights 

Diff_Elev Range of points elevation (m) %_All_returns_mode % all returns above mode 

value of point heights 

Elev_AAD Average Absolute Deviation  

of point heights 

%_First_returns_1m; _2m;_3m % first returns above  

1, 2 and 3 m 

Elev_IQ Interquartile distance  

of point heights 

%_First_returns_mean % first returns above mean 

value of point heights 

Elev_kurtosis Kurtosis of point heights 

distribution 

%_First_returns_mode % first returns above mode 

value of point heights 
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Figure 3. Flow diagram of the ALS data processing. 

 

2.4. Data Analysis  

The steps followed in the methodology used to evaluate the relationship between the dependent 

(CBI) and independent (ALS-derived) variables are presented in Table 4. The Spearman’s rank 

correlation coefficient was used with the purpose of assessing the statistical dependence between plot 

severity and each ALS variable. A linear regression analysis was rejected as the assumption of 

normality of the CBI dataset was not met, even after transforming the variables. Thus, a logistic 

regression analysis, which requires splitting the CBI values into null or low severity and high severity, 

was selected. Therefore, the Kruskal–Wallis test was used for testing whether the mean values and 

distribution of the independent variables in both groups (null or low severity and high severity) are 

statistically different. This test is commonly used to select the most significant variables to be 

introduced in logistic regression analysis when it is not possible to assume normality and 

homoscedasticity of the samples [50]. As mentioned above, the dataset was split into two categories, 

null-low burn severity (CBI value ≤ 1.5) and high burn severity (CBI value > 1.5) to carry out this 

non-parametric method. The selection of the threshold value 1.5 was based on a qualitative analysis of 

the ALS point clouds and corresponding values of severity. The CBI method is based on a visual 

analysis of the magnitude of the environmental change with respect to the presumed pre-fire state. 

Therefore, given the information collected in the CBI forms such as the percentage of canopy mortality 

in big and intermediate trees, the depth of burn, percentage of the foliage altered, and the degree of 

change in vegetation strata, it was analyzed visually how these changes are reflected in the point clouds at 

plot level. Wildfire disturbance influences the horizontal and vertical structure of vegetation [34,51], which is 

recorded by ALS returns (Figure 4). However, as we only had post-fire information and it was not 

possible to estimate the structural change, it was assumed that the pre-fire structure of vegetation was 

homogeneous and similar to areas not affected by fire inside or near the fire perimeter (Figure 5a). 

Figure 5 depicts some examples of normalized point clouds in plots with different CBI values. The loss 

of canopy and the forest opening where logs remain without foliage are the most relevant indicators 

captured by the ALS. As can be observed in Figure 5, point clouds are relatively dense and 

homogeneous for CBI values up to 1.5 and from that value onwards, the amount of returns decrease 
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more significantly because the tree crowns were partially scorched with incomplete foliage loss. 

Therefore, we assumed that ALS was able to distinguish plots with CBI values under 1.5 (null and low 

severity) and above 1.5 (high severity). CBI values above 1.5 present a general trend of loss of 

vegetation structure in the field, which manifests itself in the ALS point clouds.  

Figure 4. Partial views of different Composite Burn Index (CBI) plots depending on its burn 

severity value. Each photograph corresponds to the point cloud showed in the Figure 5. 

 

As mentioned above, logistic regression analysis, one of the most frequently used multivariate 

statistical analysis, was selected due to the non-normal distribution of the variables [52,53]. It enables 

the creation of reliable predictive models from explanatory variables (either continuous or discrete). 

This technique, already used successfully to evaluate several phenomena—e.g., landslide hazard, water 

erosion, sinkhole susceptibility, human-caused ignition, etc.—evaluates the probability of an event 

occurrence (P) by estimating the possibility that a case will be classified into one of two mutually 

exclusive categories as opposed to the other category of the dependent dichotomous variable [54]. 

In this research, we used logistic regression to establish a functional relationship between the presence 

or not of fire impact within a plot in a binary-coded manner (1 = high burn severity; 0 = absence or low 

burn severity) and the set of the independent variables derived from ALS data. This can be written as:  

[P = exp (B0 + B1X1 +…+ BnXn)/1+ exp (B0 + B1X1 +…+ BnXn)] (1)

where P is the probability of occurrence, B0 is the intercept of the model, Xn is a set of independent 

variables and Bn is a set of n + 1 parameters. 

As the acceptance of a model requires the evaluation of its robustness to small changes of the input 

data, CBI data were split into two different samples. A random selection of 118 cases (70% of the 

sample) was used as a training subset, while the 51 unselected cases were used to test the accuracy of 

the model. Well-balanced samples were considered in terms of proportion of plots with high and low 

fire severity values. A forward stepwise (likelihood ratio) method was applied [55] to the training 

dataset in order to select the explanatory variables and to obtain several models. These models were 

evaluated by computing the Cox and Snell and the Nagelkerke pseudo-R2 tests, the log likelihood  

(-2LL) statistic and the chi-square test in order to calculate how strong the relationship between the 

explanatory variables and the outcome was. The Hosmer and Lemeshow test is similar to a chi-square 

test, and it indicates the extent to which the model provides better fit than a null model with no 
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predictors, i.e., how well the model fits the data, as in log-linear modelling. The significance was 

assessed individually for each independent variable incorporated in the model by means of the Wald 

test [50,54].  

Figure 5. Examples of ALS point clouds at plot level and their correspondence with the 

CBI values. (a) CBI = 0.0; (b) CBI = 1.0; (c) CBI = 1.5; (d) CBI = 2.0; (e) CBI = 2.5; 

(f) CBI = 3.0. 

(a) (b) 

(c) (d) 

(e) (f) 



Remote Sens. 2014, 6 4250 

 

 

The model was selected based on the principle of parsimony that implies a preference of models 

with a smaller number of parameters as each parameter introduced into the model adds some 

uncertainty to it, considering the significance level of individual predictor variables, as well as the 

usefulness of the model.  

Logistic models are frequently used in a classification approach by selecting a given value of the 

response variable (the probability of high fire severity, in our case) and classifying all resulting values 

in one of two groups (1 or 0) according to it. The threshold value is normally the 0.5 probability, as 

usually the two sample groups are similar in size. However, for the case where the two groups are very 

dissimilar in size, the proportion of ones in the sample should be used instead of the 0.5 value [56,57]. 

Thus, value 1 was assigned to the predicted response when probability was greater than the cutoff 

value 0.6, specified by the proportion of CBI plots classified as 1 (CBI value > 1.5) in the observed 

values of the dependent variable.  

The accuracy of selected logistic regression model was tested by cross tabulation associated with 

Cohen’s Kappa index and the receiver operating characteristic (ROC) curves. The first is a statistical 

coefficient of inter-rater agreement that allows knowing if agreement is attributable to chance alone. 

Kappa index ranges generally from 0 to 1 (although negative numbers are possible). According to 

Landis and Koch [58], values of Kappa below 0.40 present poor agreement, from 0.40 to 0.75 are 

considered of good agreement, and above 0.75 generally reflect excellent agreement. In the case of 

ROC curves, the computed values of the area under the ROC curve (AUC) [59], provide a measure of 

goodness-of-fit of the logistic regression model based on the simultaneous measure of sensitivity  

(true positive) and specificity (true negative) for all possible cutoff points. Sensitivity is calculated as 

the fraction of CBI plots that were correctly classified as high burn severity, while specificity is 

derived from the proportion of CBI plots that were properly categorized as low burn severity. The 

closeness of the ROC curve to the upper left corner (AUC = 1) indicates a high accuracy of the model 

(i.e., a correct discrimination between positive and negative cases). In relation to the computed AUC 

value, Hosmer and Lemeshow [52] classify a predictive performance as acceptable (AUC > 0.7), 

excellent (AUC > 0.8) or outstanding (AUC > 0.9).  

Finally, the intercept and the weights of the variables included in the selected regression model 

were implemented in ArcGIS 10.1 using map algebra to generate categorical maps of fire severity.  

The spatial resolution of the maps was 25 m cell size, which was determined by the area of the 

sampled CBI plots. In seeking a useful map to assist land management purposes rather than a 

dichotomous response (presence or absence of fire impact), one of the methods adopted in literature is 

to divide the histogram of the probability map into different categories based on expert opinions [60]. 

This type of changing continuous data into two or more categories does not take into account the 

relative position of a case within the probability map and is neither fully automated nor statistically 

tested. Thus, in this study, we also considered alternative classification systems that use natural breaks, 

equal intervals and standard deviations. In addition, we also tested a manual classification of the 

probability values based on a direct relationship with the categories established by the CBI protocol: 

Unburned (CBI = 0), Low (CBI ≤ 1), Moderate (1 < CBI ≤ 2), Moderate–High (2 < CBI ≤ 2.5) and 

High (CBI > 2.5). The selection of the final classification approach was based on its suitability to the 

information and the scale of investigation. 
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Finally, it should be noted that due to the lack of pre-fire information our model is only valid in 

areas that were covered by homogeneous pine stands before fire occurrence, so the final map only 

represent estimates of severity for those areas.  

Table 4. Methodological steps performed to estimate the logistic regression model and 

its validation. 

Step Input Test Purpose 

Prior 

analysis 

CBI data and ALS variables Spearman’s coefficient Assess the statistical correlation 

CBI data. Shapiro–Wilk.  Goodness-of-fit test of normality. 

CBI data splitting into two samples: 

Low and High burn severity. Cut-off 

CBI value 1.5. 

Kruskal–Wallis. 
Test whether two samples have 

different means. 

Multivariate 

statistical 

analysis 

Training dataset (70%) of CBI 

data and ALS variables. 

Logistic regression. 
Predict the outcome of CBI categories 

based on predictor LiDAR variables. 

Log-likelihood (-2LL) and  

Chi X2. Hosmer and Lemeshow 

Assess the fitting of the logistic 

regression model to the observed data. 

Cox and Snell and  

Nagelkerke pseudo-R2. 

Estimate the strength of the 

relationship between the explanatory 

variables and the outcome. 

Wald and chi-square. 

Assess the significance of each 

independent variable incorporated in 

the model and globally. 

Validation 

analysis 

Validation dataset (30%) of CBI 

data and ALS variables. Cut-off 0.6. 

Cross tabulations, Cohen’s 

Kappa index and ROC curves. 

Analyze the performance of the binary 

classification. 

3. Results 

3.1. Correlation Analysis and Logistic Regression Model  

Among the 51 explanatory variables derived from ALS data, 32 had a moderate–high significant 

Spearman’s coefficient. Their correlation coefficients (rho) are reported in Table 5. Height variables, 

such as kurtosis (0.788) or the 25th percentile (−0.767) had the strongest correlation with burn 

severity. In addition, the percentage of all returns above 1 m (−0.757) or the percentage of first returns 

above 1 m (−0.744) also presented high correlation coefficients. In the case of height metrics with 

negative coefficients, higher values of the variable indicate a higher amount of pulses returned by the 

canopy structure implying lower severity values. For example, a higher 25th percentile (e.g., 2 m) 

indicates that 75% of returns present height values above 2 m (lower severity) while a lower 25th 

percentile (e.g., 0.19 m) indicates that 75% of returns present height values above 0.19 m (higher 

severity). This was also the case for variables related to percentage of returns above a height threshold: 

a high percentage of returns from the total number of returns above 1 m implies low severity values 

while lower percentage of returns represent higher severity values. In contrast, variables as kurtosis 

and skewness presented positive coefficients indicating high number of returns from low heights (high 

severity) while negative coefficients corresponded to areas with a higher number of returns from 

higher heights (low severity).  
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Table 5. Spearman’s coefficient (Rho) and Kruskal–Wallis (K.W.) chi-square values for 

selected variables with a statistical significance level p-value ≤ 0.01.  

ALS Variables Rho K.W. Chi2 ALS Variables Rho K.W. Chi2 

Elev_kurtosis 0.788 54.169 Percentage first returns above 3.00 −0.690 39.927 

Elev_P25 −0.767 64.776 Ratio_All_returns_3m −0.690 39.797 

Elev_P30 −0.764 63.550 Elev_mean −0.684 34.138 

%_All_returns_1m −0.757 56.715 Elev_P60 −0.674 42.868 

Elev_P20 −0.754 68.566 %_First_returns_mean −0.673 62.590 

Elev_P40 −0.752 63.802 Canopy relief ratio −0.671 57.964 

Elev_skewness 0.747 64.611 Ratio_All_returns_mean −0.661 64.776 

%_First_returns_1m −0.744 52.460 Elev_P70 −0.653 33.988 

Ratio_All_returns_1m −0.742 51.915 Elev_P75 –0.649 29.533 

%_All_returns_2m −0.736 51.570 Elev_IQ −0.637 29.544 

%_Class_Unassigned −0.729 54.131 Elev_P80 −0.631 24.535 

%_Class_Ground 0.729 54.131 %_All_returns_mean −0.630 67.337 

Elev P50 −0.728 57.146 %_num_of_ret 1 0.623 30.906 

%_First_returns_2m −0.723 47.116 %_num_of_ret 2 −0.622 31.020 

Ratio_All_returns_2m −0.722 46.904 Elev_AAD −0.614 16.834 

Percentage all returns above 3.00 −0.702 43.290 Elev_P90 −0.608 16.450 

Concerning the differences between the two groups (null or low severity and high severity), the 

20th percentile (68.566) and the percentage of all returns above mean (67.337) presented the highest 

Kruskal-Wallis chi-square values, followed by the 25th percentile and the percentage of all returns 

above mean divided by all first returns (64.776 in both cases). In general, low height percentiles 

(between 40th and 20th), height distribution measures such as skewness, and the percentage of returns 

above a certain threshold showed statistically significant differences between high and low severity 

values (Table 6). According to these results, differences between severities are identified by ALS 

variables that are commonly assumed to be related to vegetation structure. 

The logistic regression models created with the training dataset using a forward stepwise method to 

select the explanatory variables are summarized in Table 7. The -2LL and the likelihood ratio (LR) test 

with chi-square (X2) distribution evaluate the fitting of the logistic regression model to the observed 

data. Smaller -2LL values and higher X2 values indicate a better fitting with a statistical significance  

(p ≤ 0.05) [52,54]. Similar to linear regression, the pseudo-R2 values show approximately how much 

variation is explained by the model.  

The final model selected was the second (step 2) due to the principle of parsimony, and because the 

rest of the models included no significant variables. Nagelkerke’s R2 suggests that this model explains 

roughly 66% of the variation and is composed by the percentage of all returns above 1 m and the 

canopy relief ratio as significant ALS-derived variables. The Hosmer and Lemeshow’s goodness-of-fit 

test confirms, since chi-square is not significant, that model two is an adequate fit. Table 8 shows the 

statistical significance of the individual predictors that entered in the selected model. The β 

coefficients of both variables are significant and negative, thereby indicating that the decrease in 

canopy relief ratio values and in the percentage of all returns above 1 m is associated with the increase 

in fire severity. The canopy relief ratio is a quantitative descriptor of the relative shape of the canopy 
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(Table 3) ranging between 0 and 1 and reflecting the degree to which canopy surfaces are in the upper 

(>0.5) or the lower (<0.5) portion of the height interval [61]: for high burn severity, the canopy relief 

ratio value tends to 0, whereas the value is close to 0.5 for low burn severity (see Figure 2). The 

percentage of all returns above 1 m is sensitive to the amount of biomass located above the understory 

layer. If the percentage is low it means that treetops have been scorched by fire, with only tree trunks 

and some branches remaining, which indicates high burn severities.  

Table 6. Most important variables related to the selected CBI field plots used as example 

in Figures 4 and 5.  

ALS Variables 

CBI Plots  

(a) Unburned  

(CBI = 0.0) 

(b) Low  

(CBI = 1.0) 

(c) Moderate 

(CBI = 1.5) 

(d) Moderate 

(CBI = 2.0) 

(e) Moderate–High  

(CBI = 2.5) 

(f) High  

(CBI = 3.0) 

Elev_skewness −0.25 0.01 0.69 1.21 3.27 4.68 

Elev_kurtosis 1.49 1.25 1.86 2.59 12.13 23.91 

Elev_P20 0.19 0.08 0.03 0.01 0.01 0.00 

Elev_P25 2.38 0.20 0.05 0.02 0.02 0.01 

Elev_P30 4.05 1.80 0.07 0.03 0.02 0.01 

Elev_P40 5.45 5.70 1.08 0.06 0.04 0.02 

Elev_P50 6.37 7.11 3.38 0.09 0.05 0.03 

Canopy relief ratio 0.44 0.42 0.29 0.20 0.08 0.06 

%_All_returns_1m 68.77 59.15 46.43 25.76 8.14 4.36 

Ratio_All_returns_mean 70.50 65.80 50.48 30.14 9.63 4.61 

%_First_returns_mean 70.50 65.60 50.48 30.14 9.63 4.61 

%_All_returns_mean 57.57 52.65 40.56 25.76 8.14 4.36 

Table 7. Logistic regression models including the log likelihood (-2LL), model chi2 test 

(LR), degrees of freedom (d.f.), significance level (P), pseudo-R2 statistics and Hosmer and 

Lemeshow test.  

Step/model -2LL 
Model Chi2 Test (LR) Pseudo-R2 Hosmer and Lemeshow

X2 d.f. P (>X2) Nagelkerke’s R2 Chi2 d.f. P 

1 91.871 56.429 1 0.000 0.531 31.607 8 0.000 
2 73.290 75.011 2 0.000 0.658 3.663 8 0.886 
3 53.845 94.456 3 0.000 0.770 3.519 8 0.898 
4 42.790 105.511 4 0.000 0.826 1.139 8 0.997 
5 35.507 112.794 5 0.000 0.860 0.369 8 1.000 
6 29.076 119.225 6 0.000 0.889 3.088 8 0.929 
7 29.681 118.620 5 0.000 0.886 3.704 8 0.883 
8 21.329 126.972 6 0.000 0.921 1.552 8 0.992 
9 17.315 130.986 7 0.000 0.937 1.790 7 0.971 
10 10.239 138.061 8 0.000 0.964 0.185 6 1.000 
11 10.995 137.306 7 0.000 0.961 0.250 6 1.000 
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Table 8. β coefficients, Walt test values, degrees of freedom (d.f.) and their significance  

p ≤ 0.05 computed for the variables of the selected regression model.  

Independent Variables β Standard Error Wald Test d.f. Signif.

Canopy relief ratio −12.236 3.451 12.571 1 0.000 
Percentage all returns above 1.00 −0.055 0.013 17.620 1 0.000 

Constant 6.925 1.566 19.546 1 0.000 

3.2. Model Validation  

The discrimination ability of the logistic regression model was tested by a cross-tabulation between 

observed and predicted high (1) and low (0) severity cases. Table 9 shows the percentage of agreement 

between observed and predicted values for both training and validation samples. Value 1 was assigned 

to the predicted value when the obtained probability was greater than the cutoff value (i.e., 0.6) 

quantified as the proportion of CBI plots classified as 1. Similar accuracies are achieved for both 

training and validation datasets with almost 85% of the cases being correctly classified. Furthermore, 

Cohen’s Kappa index summarized in Table 10 demonstrates a good agreement for both training and 

validation datasets (0.681 and 0.565, respectively). 

Table 9. Observed and predicted cross-tabulation for both training and validation datasets. 

Training Dataset Validation Dataset 

Observed 

 Predicted   

Observed 

 Predicted   

 Low High Sum % Correct  Low High Sum % Correct 

Low 32 6 38 84.2 Low 8 5 13 61.9 

High 11 69 80 86.3 High 3 35 38 92.1 

Sum 43 75 118 85.6 Sum 11 40 51 84.3 

Table 10. Cohen’s Kappa index (K) for both training and validation datasets. 

 K Training K Validation 

Value 0.681 0.565 

Standad error 0.071 0.136 

Signif. 0.000 0.000 

Number of cases 118 51 

Figure 6 presents the ROC curves and AUC values for both, the training and validation subsets of 

CBI plots. ROC curves are fairly similar and, consequently, very small differences of AUC values are 

observed with an asymptotic significance less than 0.05. Since, both the classification matrix and AUC 

values indicated that the modelling procedure carried out at sample plot scales has not suffered from 

over-fitting and the model demonstrates robustness. 
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Figure 6. ROC curves and AUC values of the regression model. Fitted ROC curve in 

green. Dashed line for an uninformative test (sensitivity + specificity = 1). (a) ROC 

Training Dataset; (b) ROC Validation Dataset. 

 
(a) (b) 

3.3. Fire Severity Mapping 

The final result of the regression process is the implementation of the model in a GIS environment 

with the aim of obtaining a spatial distribution of the fire severity probability (continuous values 

between 0 and 1) following Equation (2):  

[P = exp (6.925 − 12.236 × Canopy relief ratio—0.055 × Percentage of all returns 

above 1 m)/1 + exp (6.925 − 12.236 × Canopy relief ratio—0.055 × Percentage of all 

returns above 1 m)] 

(2)

The more these numbers are close to 1, the higher the likelihood of finding a zone impacted by high 

fire severity. As mentioned above, a threshold of 0.6 (proportion of 1 in the sample) can be used to 

distinguish between the two categories used to generate the model: areas where fire severity is null or 

low or areas with high fire severity. However, for management purposes, it is sometimes more useful 

to develop categorical maps. A few trials showed that natural breaks-based, equal intervals and 

standard deviation classification systems based on the probability histogram values resulted in 

misleading maps. Since Spearman’s coefficient between CBI values and P probability showed a high 

correlation (0.807, p-value ≤ 0.01) the well-established CBI categories where used to divide the 

probability map in unburned, low, moderate, moderate–high and high fire severity: the average  

p values for each of the CBI classes were computed and subsequently used as central value for each 

severity range. This helped ensuring a better match between the observed values and those predicted 

by the logistic model. Table 11 presents the established categories of CBI value and the probability 

values assigned to them.  

According to the above classification, Table 12 shows the percentage of fire severity within the fire 

perimeter by fire location. The results indicate that in Zuera the percentage of area affected by high fire 

severity was higher (91.16% of the total area inside of the fire perimeter). Conversely, Aliaga 

presented the highest percentage of area unaffected by fire, approximately 5.01%.  
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Table 11. The classification system used to produce fire severity categories and the 

proportions of plots by category. 

CBI Value Class Name Probability Range 

% of Plots Categorized 

According to the CBI 

Method 

% of Plots Categorized 

According to the New 

Probability Ranges 

CBI = 0 Unburned 0.00–0.30 24.85 21.89 

CBI ≤ 1 Low 0.31–0.40 1.18 2.96 

1 < CBI ≤ 2 Moderate 0.41–0.60 15.98 8.88 

2 < CBI ≤ 2.5 Moderate–High 0.61–0.80 13.61 11.83 

CBI > 2.5 High 0.81–1.00 44.38 54.44 

Table 12. Percentage of area by fire severity classification and fire. 

Class Name/Fire Zuera Jaulín Aliaga Los Olmos 

Unburned 1.03% 0.30% 5.01% 4.67% 
Low 0.41% 0.39% 1.31% 1.77% 

Moderate 1.21% 3.56% 3.58% 5.04% 
Moderate–High 6.19% 19.76% 10.04% 10.99% 

High 91.16% 76.00% 80.06% 77.53% 

Figure 7 presents the probability map generated in a raster-GIS environment. Most of the area was 

affected by high or moderate–high burn severity, whereas low burn severity areas were mainly 

encountered along the fire borders. As mentioned above, our model fits well only in areas that were 

covered by homogeneous and continuous pine stands previous to fire occurrence and is only applicable 

to these areas. The lack of pre-fire information resulted in assigning high severity values to sparse 

canopy woodlands and crop lands which had to be masked out for the analysis.  

4. Discussion 

In the Mediterranean basin fire is a natural and historical element. However, in recent decades, fire 

recurrence and magnitude are profoundly altering forest ecosystems, with forest degradation being the 

most immediate effect. The main objective of this study was to evaluate the suitability of ALS-derived 

variables to estimate fire severity in four burned areas in Aragón, Spain. Our aim was to establish 

relationships between CBI data collected in the field and different variables derived from ALS point 

clouds. However, due to the absence of pre-fire ALS flights the two data sources provide information 

of different characteristics. On one hand, the CBI index estimates the change in the ecosystem after 

fire with respect to a previous situation using qualitative parameters that are then encoded into ranges 

of burn severity. On the other hand, the ALS data only provided estimations of vegetation structure 

after fire and not the vegetation change. Thus, we assumed homogeneous and continuous pre-fire 

vegetation in all field plots as reported by Tanase et al. [20]. Given these assumptions, a strong 

relationship was found between ALS-derived variables related to vegetation structural parameters and 

fire severity values, allowing the establishment of a model for fire severity mapping. 
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Figure 7. Fire severity maps obtained with the logistic method for pine cover in the four 

study locations. High spatial resolution ortophotography (2012) is used as backdrop. 

 

Kane et al. [34] noted the significant effects of fire on forest structure by using ALS data with 

Landsat-derived estimates of fire severity to measure the impact of fires over large areas. As fire 

severity increased, the canopy cover decreased while the number of tree clumps increased, indicating 

progressive canopy fragmentation. The work confirmed the utility of Landsat-based fire severity 

estimates and the utility of high resolution of ALS data to measure the structural change resulting from 

that process. This is one of the first approaches to fire severity assessment using ALS data; however, 

according to our knowledge, our work represents for the first time fire severity modelled using  

ALS-derived variables in relation to CBI field data, joining a small but growing body of literature 

focused on deriving fire severity estimates from ALS data [21,24,34,51].  

The lack of pre-fire forest structure information derived from ALS data may be solved in the future 

by periodical acquisitions within the PNOA mission. Wang et al. [62] demonstrated high fire-severity 
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accuracies (84%) in a rangeland ecosystem using pre- and post-fire ALS data. Their approach was 

based on evaluating changes in vegetation average height using pre- and post-fire ALS data, which 

was subsequently related to biomass combustion. However, the growing availability of ALS datasets 

with increasing nominal point density, combined with methods such as the one discussed in this paper, 

can assist forest management planning even when pre-fire ALS data are not available.  

The way fire severity is distributed is a key factor in quantifying the impact of fires and post-fire 

management [9], as well as the ecosystem responses. The severity mapping attempts to identify 

problematic areas and help managers in allocating resources and restoration efforts and thus decreasing 

time and economic costs associated with field-work. Logistic regression was selected due to its ability 

to work with different types of independent variables, even when they are auto-correlated as well as 

due to its independency from data statistical distribution [55]. The method allowed for generating 

severity maps with up to 85.8% prediction accuracy when assessing spatial distribution of fire impact 

within pine forests. In addition, this research contributes to the creation of sensible theories about 

which explanatory variables are most important for fire severity estimation from low density ALS data, 

such as ALS measures of canopy shape and percentage of all returns above one meter.  

Our research, like many ALS-based studies, lacked concurrent field and ALS acquisitions [24]. 

However, the evergreen character of species present in the study area compensated for such 

discrepancies. On the contrary, at the time of the ALS flight, some of the affected forests were felled 

and removed by forest management agencies. Field plots located in such areas were removed from 

analysis, considerably reducing the initial sampling to only 169 plots. In addition, the time gap could 

have diminished the accuracy of burn severity predictions due to the increasing vegetation recovery, 

especially in sprouting shrubs such as Quercus coccifera L. 

In order to determine whether ALS-derived fire severity estimations produce a better relationship 

than differenced Normalized Burn Ratio (dNBR) and its relative form (RdNBR) Landsat TM-based 

indices, the results of applying these indices, computed by Tanase et al. [20], and the results of our 

logistic model were correlated with CBI field plots data. The dNBR (Figure 8a) resulted in an R2 of 

0.67, the RdNBR model (Figure 8c) achieved a R2 of 0.68 and the logistic model resulted in an R2 of 

0.63. These coefficients of determination indicate that the relationship between observed data  

(CBI values) and the predicted severity from ALS logistic model is good but it does not exceed the 

coefficients obtained for the RdNBR and dNBR. Nevertheless, the ALS-based model, lacking pre-fire 

information, yields similar accuracy to optical approaches that used pre- and post-fire information.  

On the other hand, the relationship between our logistic model and Landsat-derived indices is 

moderate (Figure 8b,d), being better with RdNBR (R2 = 0.58) than with dNBR. Although all the 

approaches obtained good results, clearly there is still no perfect index for mapping fire effects. We 

therefore need to further investigate in this direction.  

Accurately mapping the distribution of severity patches is important for site level recovery projects 

and for understanding overall landscape patterns created by fire. Thus, a detailed examination of the 

relation of established CBI classes and the values obtained with the logistic model, RdNBR and dNBR 

were performed. Then, we created and mapped five severity categories based on the mean values 

obtained at each CBI class.  
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Figure 8. Scatterplots depicting the relationship between three remotely sensed severity 

metrics (RdNBR, dNBR, and logistic model) and CBI. The black lines represent the 

regression trend. The coefficient of determination (R2) and the equation of the line are 

shown for each fit. (a) CBI vs. dNBR; (b) Logistic model vs. dNBR; (c) CBI vs. RdNBR; 

(c) CBI vs. RdNBR; (e) CBI vs. Logistic model. 
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Table 13 shows the category ranges obtained, the Kappa index of agreement between the CBI 

classes and the categories obtained with the three different approaches and the percentage  

of agreement in each category. As can be observed, the logistic regression approach led to  

under-representing low to moderate–high severity patches but presents better accuracy in the high 

severity class (89.33%accuracy) than RdNBR (86.67%) and dNBR (77.33%).  

Table 13. Ranges for the three remotely sensed fire severity metrics according to CBI 

values, accuracies (%) and Kappa index for each class (p-value ≤ 0.01). 

CBI Value Class Name 

Fire Severity Metrics Accuracies (%) 

Logistic Model Probability RdNBR dNBR 

Logistic Model 

Probability  

(Kappa = 0.42) 

RdNBR  

(Kappa = 0.60) 

dNBR  

(Kappa = 0.55)

CBI = 0 Unburned <0.30 <118 <81 66.67 83.33 85.71 

CBI ≤ 1 Low 0.30 297 198 0.00 100.00 100.00 

1 < CBI ≤ 2 Moderate 0.40 451 291 18.52 29.63 33.33 

2 < CBI ≤ 2.5 Moderate–high 0.60 894 545 13.04 47.83 34.78 

CBI > 2.5 High >0.80 >894 >545 89.33 86.67 77.33 

    Overall accuracy 60.95 71.60 66.86 

In our opinion, minimizing classification errors in high severity class is beneficial to land managers 

as it allows a better identification of areas that are severely burned [63]. However, to improve 

classification results, other methods such as random forests and nearest neighbor imputation could 

allow multiple severity classes mapping.  

The integration of optical remotely sensed imagery, well suited for capturing horizontally distributed 

forest conditions, along with ALS variables that are more appropriate for capturing vertical forest structure, 

may improve fire severity assessment [64]. Finally, we are of the opinion that the generation of indices 

derived from pre- and post-fire ALS variables will considerably improve fire severity mapping. 

5. Conclusions 

This study presents a new methodological approach combining ALS-derived variables and  

field-assessed CBI, in order to estimate the impact of wildland fire across four sites in Aragón, 

northeastern Spain. Our work is unique in examining fire severity within this particular setting, i.e., 

Mediterranean pine forests and low-density ALS data (0.5 pulses/m2). We have demonstrated that 

ALS-derived variables from plot-level distributions of pulse return heights provide initial support for 

assessing the impact caused by fire. Height variables such as kurtosis or the 25th percentile of returns 

heights presented the highest correlation with CBI values (0.788 and, respectively, −0.767). The 

difference between high and low severity classes was best estimated using the 20th percentile and the 

percentage of all returns above mean which presented the highest Kruskal–Wallis chi-square values 

(68.566 and 67.337, respectively). Low percentiles (between 40th and 20th), skewness, and some 

percentages of ALS returns above a threshold, such as the average height, also showed significant 

differences between the two groups of severity.  

The relationships between CBI data and a set of ALS point cloud variables have been assessed by 

means of forward stepwise logistic regression. The prediction power of the obtained model was tested 
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using independent validation samples. The results show a fairly acceptable overall accuracy, 

confirming that logistic regression is an effective tool for fire severity analysis. Continuous fire 

severity maps were derived based on the probabilities obtained from the logistic model at plot level. 

Next, the average of those probabilities for each severity class allowed for the split of the map in fire 

severity classes. The lack of pre-fire forest structure information can be a handicap that could be 

solved by periodical acquisition of ALS datasets in the coming years.  

Acknowledgments 

This work has been financed by the Government of Aragón, Department of Science, Technology 

and University (FPI Grant BOA 30, 11/02/2011). The ALS data were provided by the National Center 

for Geographic Information of Spain. Francisco Palú, Marco Lorenzo and Emilio Pérez Aguilar from 

the Provincial Environment Service, Government of Aragón are also acknowledged for their help with 

the forest management activities carried out after the fires.  

Author Contributions 

Juan de la Riva had the original idea for the study. Antonio L. Montealegre and M.T. Lamelas 

developed the methodology and performed the analysis. Field data was provided by Mihai A. Tanase. 

Antonio L. Montealegre wrote the manuscript, incorporating suggestions from all authors, who 

approved the final manuscript.  

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Bond, W.J.; Keeley, J.E. Fire as a global “herbivore”: The ecology and evolution of flammable 

ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. 

2. Amraoui, M.; Liberato, M.L.R.; Calado, T.J.; DaCamara, C.C.; Coelho, L.P.; Trigo, R.M.; 

Gouveia, C.M. Fire activity over Mediterranean Europe based on information from Meteosat-8. 

For. Ecol. Manag. 2013, 294, 62–75. 

3. Ichoku, C.; Giglio, L.; Wooster, M.J.; Remer, L.A. Global characterization of biomass-burning 

patterns using satellite measurements of fire radiative energy. Remote Sens. Environ. 2008, 112, 

2950–2962. 

4. Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial 

patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. 

For. Ecol. Manag. 2012, 275, 117–129. 

5. Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean 

basin?—A review. Int. J. Wildland Fire 2008, 17, 713–723. 

6. San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean 

landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. 



Remote Sens. 2014, 6 4262 

 

 

7. Eleazar, M.J.; Enríquez, E.; Gallar, J.J.; Jemes, V.; López, M.; Mateo, M.L.; Muñoz, A.;  

Parra, P.J. Los Incendios Forestales en España, Decenio 2001–2010; Área de Defensa contra 

lncendios Forestales (ADCIF) del Ministerio de Agricultura, Alimentación y Medio Ambiente: 

Madrid, Spain, 2012; p. 138. 

8. Collins, R.D.; de Neufville, R.; Claro, J.; Oliveira, T.; Pacheco, A.P. Forest fire management to avoid 

unintended consequences: A case study of Portugal using system dynamics. J. Environ. Manag. 2013, 

130, 1–9. 

9. Chuvieco, E. Earth Observation of Wildland Fires in Mediterranean Ecosystems; Springer: 

Alcalá de Henares, Spain, 2009; p. 257. 

10. De Santis, A.; Chuvieco, E. Burn severity estimation from remotely sensed data: Performance of 

simulation vs. empirical models. Remote Sens. Environ. 2007, 108, 422–435. 

11. Landscape Assessment (LA) Sampling and Analysis Methods. Available online: http://www.fs.fed.us/ 

rm/pubs/rmrs_gtr164/rmrs_gtr164_13_land_assess.pdf (accessed on 5 May 2014). 

12. Epting, J.; Verbyla, D.; Sorbel, B. Evaluation of remotely sensed indices for assessing burn severity in 

interior Alaska using Landsat TM and ETM+. Remote Sens. Environ. 2005, 96, 328–339. 

13. Kasischke, E.S.; Turetsky, M.R.; Ottmar, R.D.; French, N.H.F.; Hoy, E.E.; Kane, E.S. Evaluation 

of the composite burn index for assessing fire severity in Alaskan black spruce forests. Int. J. 

Wildland Fire 2008, 17, 515–526. 

14. De Santis, A.; Chuvieco, E. GeoCBI: A modified version of the composite burn index for the initial 

assessment of the short-term burn severity from remotely sensed data. Remote Sens. Environ. 2009, 

113, 554–562. 

15. Loboda, T.V.; French, N.H. F.; Hight-Harf, C.; Jenkins, L.; Miller, M.E. Mapping fire extent and 

burn severity in Alaskan tussock tundra: An analysis of the spectral response of tundra vegetation 

to wildland fire. Remote Sens. Environ. 2013, 134, 194–209. 

16. Hall, R.J.; Freeburn, J.T.; de Groot, W.J.; Pritchard, J.M.; Lynham, T.J.; Landry, R. Remote 

sensing of burn severity: experience from western Canada boreal fires. Int. J. Wildland Fire 2008, 

17, 476–489. 

17. Veraverbeke, S.; Verstraeten, W.W.; Lhermitte, S.; Goossens, R. Evaluating landsat thematic 

mapper spectral indices for estimating burn severity of the 2007 Peloponnese wildfires in Greece. 

Int. J. Wildland Fire 2010, 19, 558–569. 

18. Hudak, A.T.; Morgan, P.; Bobbitt, M.J.; Smith, A.M.S.; Lewis, S.A.; Lentile, L.B.; Robichaud, P.R.; 

Clark, J.T.; McKinley, R.A. The relationship of multispectral satellite imagery to immediate fire 

effects. Fire Ecol. 2007, 3, 64–90. 

19. Van Wagtendonk, J.W.; Root, R.R.; Key, C.H. Comparison of AVIRIS and Landsat ETM+ 

detection capabilities for burn severity. Remote Sens. Environ. 2004, 92, 397–408. 

20. Tanase, M.; de la Riva, J.; Pérez-Cabello, F. Estimating burn severity at the regional level using 

optically based indices. Can. J. For. Res. 2011, 41, 863–872. 

21. Bergen, K.M.; Goetz, S.J.; Dubayah, R.O.; Henebry, G.M.; Hunsaker, C.T.; Imhoff, M.L.; 

Nelson, R.F.; Parker, G.G.; Radeloff, V.C. Remote sensing of vegetation 3-D structure for 

biodiversity and habitat: Review and implications for lidar and radar spaceborne missions.  

J. Geophys. Res. 2009, 114, G00E06, doi:10.1029/2008JG000883. 



Remote Sens. 2014, 6 4263 

 

 

22. Tanase, M.A.; Santoro, M.; Wegmüller, U.; de la Riva, J.; Pérez-Cabello, F. Properties of  

X-, C- and L-band repeat-pass interferometric SAR coherence in Mediterranean pine forests 

affected by fires. Remote Sens. Environ. 2010, 114, 2182–2194. 

23. Tanase, M.; de la Riva, J.; Santoro, M.; Pérez-Cabello, F.; Kasischke, E. Sensitivity of SAR data 

to post-fire forest regrowth in Mediterranean and boreal forests. Remote Sens. Environ. 2011, 115, 

2075–2085. 

24. Kane, V.R.; Lutz, J.A.; Roberts, S.L.; Smith, D.F.; McGaughey, R.J.; Povak, N.A.; Brooks, M.L. 

Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite 

National Park. For. Ecol. Manag. 2013, 287, 17–31. 

25. Vosselmann, G.; Maas, H.G. Airborne and Terrestrial Laser Scanning; Whittles Publishing: 

Dunbeath, UK, 2010. 

26. Lefsky, M.A.; Cohen, W.B.; Acker, S.A.; Parker, G.G.; Spies, T.A.; Harding, D. Lidar remote 

sensing of the canopy structure and biophysical properties of douglas-fir western hemlock forests. 

Remote Sens. Environ. 1999, 70, 339–361. 

27. Naesset, E; Økland, T. Estimating tree height and tree crown properties using airborne scanning 

laser in a boreal nature reserve. Remote Sens. Environ. 2002, 79, 105–115. 

28. Andersen, H.E.; McGaughey, R.J.; Reutebuch, S.E. Estimating forest canopy fuel parameters 

using LIDAR data. Remote Sens. Environ. 2005, 94, 441–449. 

29. Zolkos, S.G.; Goetz, S.J.; Dubayah, R. A meta-analysis of terrestrial aboveground biomass 

estimation using lidar remote sensing. Remote Sens. Environ. 2013, 128, 289–298. 

30. Kane, V.R.; Gersonde, R.F.; Lutz, J.A.; McGaughey, R.J.; Bakker, J.D.; Franklin, J.F. Patch 

dynamics and the development of structural and spatial heterogeneity in Pacific Northwest forests. 

Can. J. For. Res. 2011, 41, 2276–2291. 

31. Reutebuch, S.E.; Andersen, H.-E.; McGaughey, R.J. Light detection and ranging (LIDAR):  

An emerging tool for multiple resource inventory. J. For. 2005, 103, 286–292. 

32. Hudak, A.T.; Evans, J.S.; Smith, A.M.S. LiDAR utility for natural resource managers. Remote Sens. 

2009, 1, 934–951. 

33. Asner, G.P.; Hughes, R.F.; Mascaro, J.; Uowolo, A.L.; Knapp, D.E.; Jacobson, J.;  

Kennedy-Bowdoin, T.; Clark, J.K. High-resolution carbon mapping on the million-hectare Island 

of Hawaii. Front. Ecol. Environ. 2011, 9, 434–439. 

34. Kane, V.R.; North, M.P.; Lutz, J.A.; Churchill, D.J.; Roberts, S.L.; Smith, D.F.; McGaughey, R.J.; 

Kane, J.T.; Brooks, M.L. Assessing fire effects on forest spatial structure using a fusion of 

Landsat and airborne LiDAR data in Yosemite National Park. Remote Sens. Environ. 2013, 2013, 

doi:org/10.1016/j.rse.2013.07.041. 

35. Agca, M.; Popescu, S.C.; Harper, C.W. Deriving forest canopy fuel parameters for loblolly pine 

forests in eastern Texas. Can. J. For. Res. 2011, 41, 1618–1625. 

36. Erdody, T.L.; Moskal, L.M. Fusion of LiDAR and imagery for estimating forest canopy fuels. 

Remote Sens. Environ. 2010, 114, 725–737. 

37. Riaño, D.; Chuvieco, E.; Condés, S.; González-Matesanz, J.; Ustin, S.L. Generation of crown bulk 

density for Pinus sylvestris L. from lidar. Remote Sens. Environ. 2004, 92, 345–352. 
  



Remote Sens. 2014, 6 4264 

 

 

38. Riaño, D.; Chuvieco, E.; Ustin, S.L.; Salas, J.; Rodríguez-Pérez, J.R.; Ribeiro, L.M.;  

Viegas, D.X.; Moreno, J.M.; Fernández, H. Estimation of shrub height for fuel-type mapping 

combining airborne LiDAR and simultaneous color infrared ortho imaging. Int. J. Wildland Fire 

2007, 16, 341–348. 

39. Mutlu, M.; Popescu, S.C.; Zhao, K. Sensitivity analysis of fire behavior modeling with  

LiDAR-derived surface fuel maps. For. Ecol. Manag. 2008, 256, 289–294. 

40. Skowronski, N.S.; Clark, K.L.; Duveneck, M.; Hom, J. Three-dimensional canopy fuel loading 

predicted using upward and downward sensing LiDAR systems. Remote Sens. Environ. 2011, 

115, 703–714. 

41. Vicente-Serrano, S.M.; Lasanta, T.; Gracia, C. Aridification determines changes in forest growth 

in Pinus halepensis forests under semiarid Mediterranean climate conditions. Agric. For. Meteorol. 

2010, 150, 614–628. 

42. Spanish National Plan for Aerial Orthophotography (PNOA). Available online: http://www.ign.es/ 

PNOA/vuelo_lidar.html (accessed on 30 December 2013). 

43. MCC-LiDAR Multiscale Curvature Classification for LiDAR data. Available online: 

http://sourceforge.net/p/mcclidar/wiki/Home/ (accessed on 2 April 2014). 

44. Evans, J.S.; Hudak, A.T. A Multiscale curvature algorithm for classifying discrete return LiDAR 

in forested environments. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1029–1038. 

45. Montealegre, A.; Lamelas, T.; de la Riva, J. Evaluación de Métodos de Filtrado Para la Clasificación 

de la Nube de Puntos del Vuelo LiDAR PNOA. In Teledetección. Sistemas Operacionales de 

Observación de la Tierra; Fernández‐Renau González‐Anleo, A., de Miguel Llanes, E., Eds.; INTA: 

Madrid, Spain, 2013; pp. 184–187. 

46. Hutchinson, M.F.; Xu, T.; Stein, J.A. Recent Progress in the ANUDEM Elevation Gridding 

Procedure. In Proceedings of the Geomorphometry, 2011, Redlands, CA, USA, 7–9 September 2011; 

pp. 19–22.  

47. Fusing LIDAR Data, Photographs, and Other Data Using 2D and 3D Visualization Techniques. 

Avaliable online: http://www.fs.fed.us/pnw/olympia/silv/publications/opt/488_McGaugheyCarson 

2003.pdf (accessed on 29 April 2014). 

48. Evans, J.; Hudak, A.; Faux, R.; Smith, A.M. Discrete return Lidar in natural resources: 

Recommendations for project planning, data processing, and deliverables. Remote Sens. 2009, 1, 

776–794. 

49. González-Olabarria, J.-R.; Rodríguez, F.; Fernández-Landa, A.; Mola-Yudego, B. Mapping fire risk 

in the model forest of urbión (Spain) based on airborne LiDAR measurements. For. Ecol. Manag. 

2012, 282, 149–156. 

50. Álvarez Cáceres, R. Estadística Multivariante y No Paramétrica con SPSS: Aplicación a las 

Ciencias de la Salud; Díaz de Santos: Madrid, Spain, 1994; p. 408. 

51. Angelo, J.J.; Duncan, B.W.; Weishampel, J.F. Using lidar-derived vegetation profiles to predict 

time since fire in an oak scrub landscape in East-Central Florida. Remote Sens. 2010, 2, 514–525. 

52. Hosmer, D.W.; Lemeshow, S. Applied Logistic Regression; Wiley: Hoboken, USA, 2000. 

53. Hair, J.F.; Anderson, R.E.; Tatham, R.L.; Black, W.C. Análisis Multivariante, 5th ed.;  

Prentice Hall Iberia: Madrid, Spain, 1999. 



Remote Sens. 2014, 6 4265 

 

 

54. Conoscenti, C.; Angileri, S.; Cappadonia, C.; Rotigliano, E.; Agnesi, V.; Märker, M. Gully 

erosion susceptibility assessment by means of GIS-based logistic regression: A case of Sicily 

(Italy). Geomorphology 2014, 204, 399–411. 

55. Menard, S. Logistic Regression: From Introductory to Advanced Concepts and Applications; 

SAGE: Thousand Oaks, CA, USA, 2010; p. 392. 

56. Lamelas, M.T.; Marinoni, O.; Hoppe, A.; de la Riva, J. Dollines probability map using logistic 

regression and GIS technology in the central Ebro Basin (Spain). Environ. Geol. 2008, 54, 963–977.  

57. Beguería, S.; Lorente, A. Landslide Hazard Mapping by Multivariate Statistics: Comparison of 

Methods and Case Study in the Pyrenees; Instituto Pirenaico de Ecología, Contract No.  

EVG1-CT-1999–00007. Available online: http://damocles.irpi.pg.cnr.it/docs/reports/df_modelling.pdf 

(accessed on 29 April 2014).  

58. Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 

1977, 33, 159–174. 

59. Hanley, J.A.; McNeil, B. The meaning and use of the área under a receiver operating 

characteristic (ROC) curve. Radiology 1982, 143, 29–36. 

60. Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide 

susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 

65, 15–31. 

61. Parker, G.G.; Russ, M.E. The canopy surface and stand development: Assessing forest canopy 

structure and complexity with near-surface altimetry. For. Ecol. Manag. 2004, 189, 307–315. 

62. Wang, C.; Glenn, N.F. Estimation of fire severity using pre- and post-fire LiDAR data in 

sagebrush steppe rangelands. Int. J. Wildland Fire 2009, 18, 848–856. 

63. Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative 

version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. 

64. Wulder, M.A.; White, J.C.; Alvarez, F.; Han, T.; Rogan, J.; Hawkes, B. Characterizing boreal 

forest wildfire with multi-temporal Landsat and LIDAR data. Remote Sens. Environ. 2009, 113, 

1540–1555. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


