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Abstract: The transferability of a visible and near-infrared (VNIR) model for soil organic 

matter (SOM) estimation in riparian landscapes is explored. The results indicate that for the 

soil samples with air-drying, grinding and 2-mm sieving pretreatment, the model calibrated 

from the soil sample set with mixed land-use types can be applied in the SOM prediction of 

cropland soil samples (r
2

Pre = 0.66, RMSE = 2.78 g∙kg
−1

, residual prediction deviation 

(RPD) = 1.45). The models calibrated from cropland soil samples, however, cannot be 

transferred to the SOM prediction of soil samples with diverse land-use types and different 

SOM ranges. Wavelengths in the region of 350–800 nm and around 1900 nm are important 

for SOM estimation. The correlation analysis reveals that the spectral wavelengths from 

the soil samples with and without the air-drying, grinding and 2-mm sieving pretreatment 

are not linearly correlated at each wavelength in the region of 350–1000 nm, which is an 

important spectral region for SOM estimation in riparian landscapes. This result explains 

why the models calibrated from samples without pretreatment fail in the SOM estimation. 

The Kennard–Stone algorithm performed well in the selection of a representative subset for 

SOM estimation using the spectra of soil samples with pretreatment, but failed in soil 

samples without the pretreatment. Our study also demonstrates that a widely applicable SOM 

prediction model for riparian landscapes should be based on a wide range of SOM content.  
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1. Introduction 

Soil organic matter (SOM) content is a key soil property in soil surveying, because of its important 

role in the global carbon cycle, precise agricultural management and soil erosion evaluation [1–3].  

In riparian landscapes, SOM is also considered as an important indicator for soil quality, because of its 

relationship with critical soil functions, such as productivity, erodibility and purification ability [4].  

In spite of their important roles in geomorphology and hydrology, many of the riparian zones in the 

population-dense areas of China are suffering from the adverse impacts of agricultural practices [5,6]. 

Thus, it is necessary to monitor the spatial and temporal dynamics of SOM for a better management of 

the land resources in riparian landscapes. 

Conventional measurements of organic matter in soil still require time-consuming field sampling 

and intensive laboratory work, which could be costly [7,8]. Visible and near-infrared (VNIR) 

spectroscopy, which began to take off around the year 2008 [9], provides an alternative to SOM 

measurement in the laboratory [10], as well as in the field [11,12]. It has proven to be a rapid and 

efficient technique for estimating a variety of soil properties, including the SOM content [3,13,14]. 

The prediction accuracies of the VNIR models for SOM content have, however, varied from less than 

satisfactory [15] to satisfactory [16], depending on the land use [7], the source of the VNIR data, the 

calibration methods, scanning environments, soil chromophores (e.g., iron oxide) and even the 

spectroscopic instruments [10,11,13,17]. The mechanisms for the VNIR estimation of SOM content are its 

broad absorptions in the visible region, due to chromophores and the darkness of humic acid, and the 

absorptions in the NIR region from the overtones of O-H, C-H and N-H, or their combination [13,18]. 

Although there have been extensive studies of the VNIR estimation of SOM content, it is generally 

agreed that most of the models are location-dependent and data-specific [13,19,20]. A frequently asked 

question by the potential users of VNIR models for SOM estimation is: will a model calibrated from 

samples in a certain location work in other locations? When referring to other locations, the soil parent 

materials, range of SOM content, land use and land cover could be different. It has been revealed that 

the transferability of a VNIR model depended on whether or not the calibrations contained the 

variability of the target site soil [20]. In order to take full advantage of the VNIR spectroscopy for soil 

characterization, it would be desirable to minimize the number of calibration samples [21]. Recent 

efforts have been made for better predictions of soil properties, with the assistance of soil spectral 

libraries at continental [7], national [21,22], regional [23] and local scales [22]. Nevertheless, it 

remains a challenge to develop an effective strategy for the VNIR estimation of SOM when the local 

soil spectral libraries are unavailable and in the areas where the soils are largely influenced by human 

activities. Hence, it is essential to carry out a study concerning the VNIR estimation of SOM content with 

samples from different locations with different land-use types and a range of SOM content. 

Moreover, most of the previous studies have focused more on the laboratory measurement of  

air-dried, ground and sieved soil samples using VNIR spectroscopy [24]. Very few of the studies have 

explored the relationship between the spectra from soil samples with different pretreatments at each 
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single wavelength. The feasibility of the VNIR estimation of soil properties with different sample 

pretreatments and spectral transformations has not been fully studied. Such studies are both important 

and necessary because of the recent migration of the VNIR estimation of soil properties from 

laboratory to in situ applications [25]. Thus, a case study implementing correlation analysis is essential 

to provide a statistical inspection of the effects of soil sample preparation and spectral transformations. 

The aim of this paper is to explore the transferability of several VNIR models for SOM estimation 

in riparian landscapes, where quick and easy access to SOM data is becoming an increasingly 

important concern for the sustainable use of land resources. Several sample division strategies have 

been used to achieve our goal: training and test sets divided by sample locations and land-use types, 

SOM content and the Euclidean distance of soil spectra (using the Kennard–Stone algorithm). 

Reflectance and absorbance from soil samples with and without air-drying, grinding and 2 mm-sieving 

pretreatment have been used in our study. Besides, we explore the relationship between the spectra 

from soil samples with different pretreatments at each single wavelength and compare the suitability of 

the proposed sample division strategies for an accurate estimation of SOM content with spectra from 

differently pretreated soils. 

2. Material and Methods 

In this section, we confirm that the owner of the land gave permission for us to conduct the study on 

this site. The field studies did not involve endangered or protected species. 

2.1. Description of the Study Area 

The study area is located in the Honghu City area (Hubei Province) in the Jianghan plain (Figure 1), 

which is a core food production area in Hubei Province, with a sown area of grain reaching 884 km
2
 

and a total grain production of 670 thousand tons in the year 2012, increasing by 9.2% and 2.2%, 

respectively, in comparison with the year 2011 (according to the report by the Ministry of Agriculture 

of the People‘s Republic of China, http://www.moa.gov.cn/). The Honghu City area is also known for 

its riparian landscape, as well as the dramatic changes in terms of land use and land cover since the 

1950s [26]. Ecological concerns have been recently raised because of the ever-increasing impact that 

human activities exert on the environment in this area [27,28]. 

The landform of the study area is flat, with an average elevation of below 50 m. Inceptisols 

dominate the study area, according to USDA soil taxonomy. Water bodies, lacustrine vegetation, 

floodplain, cropland and open land are the major land-cover types [29]. According to the field survey 

conducted in December 2011, artificial forest and meadow are also now important components of the 

land-cover types in this region. Paddy field and irrigated cropland are the major land-use types of the 

cropland areas. 
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Figure 1. Maps and images showing the geographical location of the study area, the 

distribution of sampling sites and the landscape, as indicated by a LANDSAT-7 ETM+ 

image with a composition of Bands 5 (red), 4 (green) and 3 (blue). The three photographs 

show the landscape and land use of the study area: (A) artificial forest, irrigated cropland 

and meadow on the dam; (B) pond and irrigated cropland; (C) artificial forest, canal and 

irrigated cropland. 

 

2.2. Field Sampling 

From 20 December 2011 to 21 December 2011, with the permission of the local residents, a total of 

108 top-layer (0–15 cm) soil samples were collected in the study area. Figure 1 shows the spatial 

distribution of the sample sites, with a false-color composite Enhanced Thematic Mapper (ETM) 

image (RGB corresponding to Band 5, Band 4 and Band 3, respectively) showing the landscape of the 

study area. The spectral range of Band 5 is 1.55–1.75 µm; Band 4 is 0.76–0.90 µm, and Band 3 is  

0.63–0.69 µm. The vegetated areas therefore show as green, while the water bodies (e.g., breeding ponds) 

appear to be blue. The total set of the soil samples (Dataset 0, n = 108) was divided into three subsets 

by the land-use types and locations, namely Dataset 1 (n = 49), Dataset 2 (n = 16) and Dataset 3  

(n = 43). The first two datasets were from cropland. As the study was conducted in winter, further 

classification of the cropland into paddy field and irrigated cropland was not made. It should be noted 

that Dataset 1 was much closer to the breeding pond area, while Dataset 2 was surrounded by cropland. 

Differing significantly from Dataset 1 and Dataset 2, Dataset 3 covered a larger geographical region 

and mixed land-use types, including cropland covered by a variety of vegetation, artificial forest, 

meadows and breeding ponds. The samples of the breeding ponds were collected from surface 

sediment. The minimum distance between each sampling site was approximately 20 m. The fine 

sampling density of the cropland was subject to the high spatial heterogeneity of SOM [30], as well as 

the diverse management practices, land use and land cover identified in the field survey. The 
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geographical coordinates were recorded by a hand-held global positioning system (GPS) with a 

positional error of <5 m. All the soil samples were taken to the laboratory on 22 December 2011. 

2.3. Laboratory VNIR Reflectance Analyses 

In order to examine the relationship between the spectra from soil samples with different 

pretreatments at each single wavelength, the reflectance of the soil samples was measured from soil 

samples with and without the air-drying, grinding and 2-mm sieving pretreatment [13,31]. 

An ASD FieldSpec 3 portable spectroradiometer with a wavelength of 350–2500 nm was used to 

measure the reflectance of the soil samples. The sampling interval and spectral resolution were 1.4 nm 

and 3 nm for the 350–1000 nm range and 2 nm and 10 nm for the 1000–2500 nm range 

(http://www.asdi.com). A standardized white Spectralon
®

 panel was used for the reflectance 

calibration. A white light source matched with the spectroradiometer was used with a 45° incidence 

angle. A soil sample of around 300 g, spanning a diameter of approximately 20 cm and a sample depth 

of approximately 10 mm, was scanned by the spectroradiometer, with a distance of 12 cm from the 

probe to the sample surface and a zenith angle of 90°. The whole scanning procedure was carried out 

in a dark room at night, minimizing the influence of external light. 

Two spectral datasets were obtained after the laboratory VNIR reflectance analyses. Spectra from 

the soil samples with the air-drying, grinding and 2-mm sieving pretreatment were denoted as AP.  

The spectra from the samples without pretreatment were denoted as BP. 

2.4. Chemical Analyses of Soil Properties 

The SOM content of all the 108 soil samples was measured by wet oxidation at 180 °C with a 

mixture of potassium dichromate and sulfuric acid [32]. 

2.5. Spectral Pre-Processing 

Spectral pre-processing is essential in chemometrics modeling and can largely eliminate the baseline 

shift and non-linearities [33]. For the VNIR estimation of SOM content, transformations, such as 

absorbance (log 1/R, R = reflectance), are wildly used [34,35]. MATLAB
®
 (R2008a, MathWorks, Inc.) 

was used here to transform the reflectance to absorbance. 

2.6. Statistical Analyses 

Statistical analyses, including descriptive statistics, histograms, box plots and Pearson correlation 

analyses were implemented using MATLAB
®

 (R2008a). The Pearson correlation coefficient was used 

to assess the relationships between: (1) the spectra and the SOM content, with a confidence level of 

99.999% (two-tailed); (2) wavelength pairs (e.g., spectra at 380 nm and spectra at 800 nm) of 

reflectance from different soil sample sets; and (3) the spectra at a specific wavelength from soil 

samples without preparation and the spectra at the same wavelength from the pretreated samples.  
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2.7. PLSR Modeling of Soil Organic Matter 

Nine modeling schemes were designed to fulfill the objectives of this study. Scheme 1 was 

designed to examine the transferability of the VNIR model for SOM estimation with soil samples from 

the same land-use type, but from different plots with different data ranges of SOM content. The total 

sample set (Dataset 0) was split into a training set with 49 samples from cropland in one plot (Dataset 1) 

and a test set with 16 samples from cropland in another plot (Dataset 2). With soil samples from 

different land-use types forming Dataset 3, Scheme 2 to Scheme 6 employed this dataset as a training 

set or a test set to answer the question of ―whether the VNIR model for SOM estimation calibrated for 

one subset of land use can be transferred to other classes without further calibration‖.  

In addition to the division of the total sample set (Dataset 0) into three subsets by geographical 

location, Dataset 0 was divided into two sets (Dataset D and Dataset S) of 54 samples each, according 

to the sorting of the SOM content. Dataset 0 was first sorted in ascending order, then Dataset D was 

formed from the odd samples and Dataset S was formed from the even samples. It was assumed that 

such a process would ensure a relatively equal distribution of the samples of different land-use types 

and a similar range of SOM content. With Dataset D (or Dataset S) as the training set and Dataset S 

(or Dataset D) as the test set, Scheme 7 (or Scheme 8) was designed to evaluate the general predictive 

capacity of the VNIR model for SOM estimation, regardless of the land-use type and the geographical 

location of the samples. 

Scheme 9, with the training set (Dataset KSc) and test set (Dataset KSp) divided by the Kennard–Stone 

algorithm [36,37], was used to examine the research question of whether half of the total samples 

selected according to their spectral differences could be representative enough to calibrate a successful 

model for predicting the SOM content of the remaining samples. By computing the Euclidean 

distances on full spectra (350–2500 nm) between all pairwise spectra of soil samples, the  

Kennard–Stone algorithm first selected the two samples farthest apart from each other. The third 

sample selected was the one farthest from the first two. The selection process continued, until 54 samples 

(50% of the total sample set) were selected. These selected samples were used as training set  

(Dataset KSc), while the remaining 54 samples were used as test set (Dataset KSp). The Kennard–Stone 

algorithm has been regarded as an effective method for the selection of a representative subset in the 

VNIR modeling of soil properties [7,22,37]. This algorithm, however, has seldom been applied using 

spectra from soil samples without air-drying, grinding and 2-mm sieving pretreatment. Therefore, it is 

necessary to examine its performance in soils with different pretreatments. 

PLSR coupled with leave-one-out cross-validation was used to relate the two spectral datasets BP 

and AP (explanatory variables) to the SOM content (response variable). PLSR is a routine modeling 

technique used for quantitative spectral analysis and is particularly useful when dealing with highly 

correlated predictor variables whose number is much larger than that of the samples [17,38].  

The PLSR projects explanatory variables (spectral data) and response variable (SOM content) into a 

low-dimensional space, maximizing the covariance between the scores of the explanatory variables 

and response variable. The PLSR method can be implemented in a variety of software packages, such 

as ParLeS [39] and The Unscrambler (http://www.camo.com/). Thus, the algorithm is not introduced 

here, but can be referred to in a number of previous studies [38,40]. This study used the PLS toolbox 

(Version 6.7.1) from Eigenvector Research, Inc. (Wenatchee, WA, USA), which is MATLAB-based 
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software. Leave-one-out cross-validation was used to decide the optimal number of factors retained in 

the calibration models by minimization of the root mean square error (RMSE) for the cross-validation 

(RMSECV). Variable importance in the projection (VIP), with a threshold of 1, was used to determine 

the important wavelengths used in the PLSR calibration [13,41,42]. 

Two validation strategies, namely leave-one-out cross-validation and external validation using an 

independent dataset, were adopted to examine the model performance. Residual prediction deviation 

(RPD), along with the coefficient of determination (r
2
) and the RMSE for the cross-validation  

(r
2

cv, RMSECV) and prediction (r
2

Pre, RMSEP), were computed to interpret the model predictive 

ability [42,43]. For the VNIR estimation of the soil properties, RPD > 1.4 indicates an acceptable 

predictive ability for the model [43]. 

3. Results and Discussion 

3.1. Sample Characterization 

By means of box plots and histograms, Figure 2 presents the statistical characteristics of the SOM 

content for the total sample set (Dataset 0) and its subsets (divided by location: Dataset 1, Dataset 2 

and Dataset 3; divided by the sorting of SOM content: Dataset D and Dataset S; and divided by the 

Kennard–Stone algorithm: Dataset KSc (AP) and Dataset KSp (AP) for soil samples with 

pretreatment, Dataset KSc (BP) and Dataset KSp (BP) for soil samples without pretreatment). The 

SOM contents vary from 4.06 to 58.54 g∙kg
−1

 and show an average of 27.80 g∙kg
−1

 for the 108 samples 

(Dataset 0). In comparison, the SOM content of the 1381 samples collected in the paddy fields of the 

Jianghan plain ranged from 9.1 g∙kg
−1

 to 56.5 g∙kg
−1

, with an average of 26.9 g∙kg
−1

 [44].  

Dataset 1 and Dataset 3 cover a relatively wide range: 4.06–44.12 g∙kg
−1

 and 8.37–58.54 g∙kg
−1

, 

showing an average of 24.22 g∙kg
−1

 and 28.35 g∙kg
−1

. Despite the fact that both Dataset 1 and  

Dataset 2 are from cropland, a narrower range and a much higher mean is observed for Dataset 2:  

31.24–45.22 g∙kg
−1

 and 37.30 g∙kg
−1

. With the dividing strategy that attempts to divide the total sample 

set into two similar subsets, Dataset D and Dataset S have a similar interquartile range, mean and 

median. The range, standard deviation and skewness of these two datasets, however, are a little 

different. Such differences could be attributed to the relatively small sample size.  

The box plots for these datasets do not suggest any outliers. Histograms indicate the approximate 

symmetry of the distributions of all the datasets, except for Dataset 3. The skewness of Dataset 3  

is 0.51, indicating that the soil samples from this dataset have relatively few high values of SOM 

content. This could be because Dataset 3 represents soil samples from different land-use types. 

The histograms of Dataset D and Dataset S only show a little difference, as the skewness of Dataset 

D < 0 and the skewness of Dataset S > 0. Thus, it is interesting to further examine the performance of 

models calibrated from datasets with different ranges of SOM content, using other datasets as the 

prediction datasets. 

The Kennard–Stone algorithm was used to select those spectrally-representative samples for model 

calibrations. For soil samples with pretreatment, the training set, Dataset KSc (AP), has a wider range 

of SOM content than the test set, Dataset KSp (AP), does. These two datasets are similar in terms of 

mean, median, standard derivation and skewness. For soil samples without pretreatment, however, the 
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Kennard–Stone divided datasets differ in terms of mean, median, standard derivation and skewness. 

This could be attributed to the soil moisture and particle size that both affect soil reflectance. 

Therefore, the Kennard–Stone algorithm does not perform well in the division of soil samples without 

pretreatment according to their reflectance. 

Figure 2. Box plots and histograms of the soil organic matter (SOM) content for the total 

sample set (Dataset 0), subsets by location (Dataset 1, Dataset 2 and Dataset 3), subsets 

divided by the SOM content (Dataset D and Dataset S), and subsets divided by the  

Kennard–Stone algorithm with soil reflectance (Dataset KSc (AP) and Dataset KSp (AP) 

for soil samples with pretreatment, Dataset KSc (BP) and Dataset KSp (BP) for soil 

samples without pretreatment). ―sk‖ denotes skewness; ―n‖ denotes the number of the 

samples; and ‗std‘ denotes standard derivation. 

 

3.2. Correlation Analyses 

The Pearson correlation between SOM and the reflectance spectra from soil samples with different 

pretreatments was explored (Figure 3a). For Dataset 1 (samples from the paddy fields), it can be seen 

that the reflectances of the soil samples with pretreatment are significantly and negatively correlated 

with the SOM content in the whole spectral region (350–2500 nm) at a confidence interval of 0.001. 

For the total sample set, the significant wavelengths mainly appear in the region of 550–1200 nm. 

Dataset D and Dataset S show similar curve shapes to Dataset 0. The curve for Dataset S is generally 

lower than for Dataset 0, while Dataset D is generally higher. Although the absolute values of 

Pearson‘s r for Dataset S are greater than for Dataset 0 in the region of 550–1200 nm, the significant 

wavelengths only exist in a narrower region around 750 nm. This result could be attributed to the 

smaller number of samples in Dataset S, which is half the size of Dataset 0. Dataset KSc and  

Dataset KSp also show similar curve shapes to Dataset 0. Compared with Dataset D and Dataset S, the 

correlation coefficient curves for Dataset KSc and Dataset KSp are closer to that of Dataset 0  

(Figure 3a). For the soil samples without pretreatment, however, the correlation coefficient curves for 
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Dataset D and Dataset S are closer to that of Dataset 0 (Figure 3b). These results may indicate that the 

Kennard–Stone algorithm performs better than the ―sorted by SOM content‖ strategy in the division of 

training and test sets for the soil samples with pretreatment, while the ―sorted by SOM content‖ 

strategy outperforms the Kennard–Stone algorithm for the soil samples without pretreatment.  

No wavelengths are significantly correlated with the SOM content at a confidence interval of 0.001, for 

Dataset 2, Dataset 3, Dataset D, Dataset KSc and Dataset KSp. It is also observed in Figure 3b that for all 

eight datasets, no wavelengths (spectra from soil samples without pretreatment) are significantly 

correlated with the SOM content at a confidence interval of 0.001. This indicates that it is not feasible 

to estimate the SOM content with a single wavelength. 

Figure 3. Pearson correlations between SOM and reflectance from soil samples with 

pretreatment (a) and without pretreatment (b). 

 

Correlation coefficient maps of the reflectance wavelength pairs from different soil sample sets are 

shown in Figure 4. The general patterns in the subplots indicate that the spectral wavelengths from the 

soil samples with different pretreatments are highly correlated with each other in the region of  

500–2500 nm (r > 0.8, p < 0.001). With the air-drying, grinding and 2-mm sieving process, the 

minimum Pearson‘s r values between the spectral wavelengths increases from 0.22, 0.13 and 0.09 to 

0.75, 0.90 and 0.78 for Dataset 1, Dataset 2, and Dataset 3, respectively. Such significant correlations 

between spectral variables are known as multicollinearity, which is a typical problem in the VNIR 

estimation of soil properties. PLSR is a good option to handle such a problem by projecting the highly 

correlated spectral variables from the original dataset into a small number of latent variables that are 

orthogonal to each other [38]. 

The correlations between spectra at specific wavelengths from soil samples without pretreatments 

and the spectra at the same wavelength from the pretreated soil samples are explored in Figure 5.  

The spectral wavelengths that are significantly correlated at a confidence interval of 0.001 are 

highlighted with specific point symbols. It can be observed that in the visible and short-wave  

near-infrared region (VSNIR region, 350–1000 nm), the spectral wavelengths from differently 

prepared soil samples are not significantly correlated (p > 0.001). This indicates that the air-drying, 

grinding and 2-mm sieving pretreatments significantly modify the linear relationships between the 

spectral wavelengths in the VSNIR region, but not in most parts of the later region (1000–2500 nm). 
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Figure 4. Correlation coefficient maps of reflectance wavelength pairs from different soil 

sample sets: Dataset 1 (reflectance from soil samples without pretreatment (a) and with 

pretreatment (d)), Dataset 2 (reflectance from soil samples without pretreatment (b) and with 

pretreatment (e)), and Dataset 3 (reflectance from soil samples without pretreatment (c) and 

with pretreatment (f)). 

 

Figure 5. Pearson‘s r of the spectral wavelengths from soil samples with different 

pretreatments (BP denotes spectra from soil samples without pretreatment; AP denotes 

spectra from soil samples with the air-drying, grinding and 2-mm sieving pretreatment). 

 

3.3. Calibration and Validation 

The calibration and validation results of the PLSR models for SOM content estimation are 

presented in Table 1. For the soil samples without pretreatment, the PLSR models fail to predict the 

SOM content from the VNIR spectra in all the modeling schemes using both reflectance and 
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absorbance. The r
2

CV values range from 0.16 to 0.49, while the minimum RMSECV is greater than  

7.5 g∙kg
−1

, indicating the failure of the model calibrations. The RPD values in all the schemes are less 

than 1.4, suggesting that the calibrated models cannot be used for the prediction of SOM content in the 

specific test set. This could be attributed to the weak signals of SOM in the VNIR region, which are 

hindered by the moist and/or soil particle effect. 

For the soil samples with pretreatment, the models calibrated from Dataset 1 fail to predict the SOM 

content of Dataset 2 (Scheme 1) or Dataset 3 (Scheme 2) using either reflectance or absorbance. 

Together with Dataset 1 and Dataset 2 as the training set (Scheme 3), the calibrated models again fail 

in the prediction of the SOM content of Dataset 3. It is noted that for this scheme, the calibrated 

models show high values of r
2

CV (>0.80) and relatively low values of RMSECV. For the  

reflectance-based model, the CV bias is quite close to zero, indicating the success of the calibrated 

model from different plots of cropland with different ranges of SOM content (Figure 6a). This 

indicates that the calibrated models can effectively explain the variance from the calibration dataset. 

These models, however, do not necessarily perform well in SOM prediction for datasets with different 

ranges of SOM content, as indicated by the RPD (<1.4) with a relatively low r
2

Pre and high RMSEP. 

Such results suggest that a model calibrated from samples collected in cropland cannot be transferred 

when the soil samples are from different land-use types, as the range of SOM content could be greatly 

different. Examination of the measured-predicted plot (Figure 6a) of Scheme 3 shows further evidence 

of the poor transferability of the cropland-based models. The prediction bias is large, with many points 

of the test set deviating from the 1:1 line. 

With regard to Dataset 3 as the training set, the r
2

CV values reach 0.63 and 0.50 for the  

reflectance-based and the absorbance-based models, respectively. With Dataset 1 (Scheme 4), 

Dataset 2 (Scheme 5) or their combination (Scheme 6) as the test set, the coefficients of determination 

for the test set (r
2

Pre) range from 0.19 to 0.66 for the absorbance-based models, whereas all the RPD 

values are less than one. For the reflectance-based models, the r
2

Pre values are around 0.70, with the 

RPD ranging from 1.04 to 1.45. Thus, the reflectance-based models generally perform better than the 

absorbance-based models in these three schemes. It is also noted that the reflectance-based models 

generally use one more latent variable than the absorbance-based models. The highest RPD value of 

1.45 is found with Scheme 5 (Dataset 3 as the training set and Dataset 2 as test set), which indicates a 

fair model for SOM prediction. It is noted that the mean and median values of Dataset 2 and Dataset 3 

are quite different. The SOM content of Dataset 2 is within the range of the SOM content of Dataset 3. 

This might indicate that the PLSR models calibrated from the reflectance of soil samples, which are 

from different land-use types, could be operational in the SOM prediction of samples from cropland 

with a SOM range within that of the training set. This result implicates that a widely applicable SOM 

prediction model for use in riparian landscapes should be based on a wide range of SOM values and 

soils from different land-use types. The external validation results of Scheme 6 are shown in Figure 6b. 

Here, it can be seen that the model-predicted SOM values of Dataset 1 and Dataset 2 are generally 

greater than the laboratory-measured values. The prediction bias reaches as high as 6.3, and the fit line 

does not even intersect the 1:1 line in the range of SOM. 
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Table 1. Cross-validation and external validation results of the PLSR models for SOM content estimation using visible and near-infrared 

(VNIR) spectra. RMSECV, root mean square error for cross-validation; RMSEP, RMSE for prediction; RPD, residual prediction deviation. 

Pre-Processing  

of Spectra 

 Soil Sample before Pretreatment  Soil Sample after Pretreatment 

 LVs r
2

CV RMSECV r
2
Pre RMSEP RPD  LVs r

2
CV RMSECV r

2
Pre RMSEP RPD 

Scheme 1: training set (Dataset 1, N = 49) , test set (Dataset 2, N = 16) 

Reflectance  8 0.24 10.55 0.03 8.80 0.46  8 0.84 4.39 0.18 6.16 0.66 

Absorbance  2 0.16 10.00 0.08 14.28 0.28  10 0.86 4.02 0.72 14.27 0.28 

Scheme 2: training set (Dataset 1, N = 49) , test set (Dataset 3, N = 43) 

Reflectance  8 0.24 10.55 0.05 10.79 1.00  8 0.84 4.39 0.13 16.76 0.64 

Absorbance  2 0.16 10.00 0.09 11.06 0.97  10 0.86 4.02 0.09 19.42 0.55 

Scheme 3: training set (Dataset 1 + Dataset 2, N = 65) , test set (Dataset 3, N = 43) 

Reflectance  3 0.36 8.87 0.04 17.23 0.62  13 0.89 3.74 0.30 9.59 1.12 

Absorbance  3 0.38 8.78 0.09 14.67 0.73  10 0.89 3.68 0.20 10.68 1.00 

Scheme 4: training set (Dataset 3, N = 43) , test set (Dataset 1, N = 49) 

Reflectance  6 0.45 8.10 0.32 9.27 1.17  9 0.63 6.75 0.74 10.38 1.04 

Absorbance  5 0.49 7.60 0.12 10.36 1.05  8 0.50 8.05 0.64 12.8 0.85 

Scheme 5: training set (Dataset 3, N = 43) , test set (Dataset 2, N = 16) 

Reflectance  6 0.45 8.10 0.24 9.60 0.42  9 0.63 6.75 0.66 2.78 1.45 

Absorbance  5 0.49 7.60 0.04 12.85 0.31  8 0.50 8.05 0.19 4.91 0.82 

Scheme 6: training set (Dataset 3, N = 43) , test set (Dataset 1+ Dataset 2, N = 65) 

Reflectance  6 0.45 8.10 0.28 9.36 1.19  9 0.63 6.75 0.70 9.12 1.12 

Absorbance  5 0.49 7.60 0.07 11.02 1.01  8 0.50 8.05 0.46 11.38 0.98 

Scheme 7: training set (Dataset D, N = 54) , test set (Dataset S, N = 54) 

Reflectance  4 0.33 8.91 0.24 10.12 1.10  11 0.78 5.17 0.59 7.94 1.41 

Absorbance  4 0.25 9.57 0.21 10.07 1.11  8 0.65 6.60 0.62 7.05 1.58 

Scheme 8: training set (Dataset S, N = 54) , test set (Dataset D, N = 54) 

Reflectance  7 0.36 9.10 0.55 8.23 1.31  9 0.56 7.61 0.79 5.05 2.14 

Absorbance  9 0.19 11.10 0.46 8.68 1.24  9 0.50 8.37 0.65 6.61 1.63 

Scheme 9: training set (Dataset KSc, N = 54) , test set (Dataset KSp, N = 54) 

Reflectance  8 0.47 7.73 0.41 9.12 1.25  7 0.52 7.72 0.70 6.11 1.80 

Absorbance  7 0.18 11.00 0.36 9.04 1.21  9 0.52 7.45 0.74 5.81 1.94 
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Figure 6. Scatter plots of laboratory-measured versus visible and near-infrared (VNIR) 

reflectance-predicted SOM, using PLSR with selective modeling schemes to examine the 

model transferability: (a) Scheme 3; (b) Scheme 6; (c) Scheme 7; and (d) Scheme 8. 

 

The equal division of Dataset 0 into Dataset D and Dataset S results in two modeling strategies: 

Dataset D as the calibration set, with Dataset S as the test set (Scheme 7); and Dataset S as the 

calibration set, with Dataset D as the test set (Scheme 8). The assessment of the two strategies is 

shown in Table 1. For Scheme 7, the absorbance-based model is superior to the reflectance-based 

model, with less latent variables and larger r
2

Pre and RPD values. In the case of Scheme 8, the 

reflectance-based model performs better in terms of r
2

Pre, RMSEP and RPD. Comparisons of the 

reflectance-based models using Scheme 7 and Scheme 8 are shown in Figure 6c,d. The former has a 

smaller absolute prediction bias and RPD, whereas the latter has an RPD value of greater than 2.0, 

which indicates a very good result [43]. The VIP scores of this model are shown in Figure 7. The 

important variables mainly lie in the region of 350–800 nm and around 1900 nm, with some in the 

region of 2000–2500 nm. This finding reinforces the evidence given by Brown, et al. [45], in which 

noticeable peaks of VIPs were found at 540 nm, 550 nm and 1910 nm. The comparisons of the 

statistical distributions of these two datasets indicate that it might be better to use a dataset with a 

larger range and standard derivation as the calibration set, to ensure a robust model. The results also 

suggest that models calibrated from a relatively small-sized sample set might be more vulnerable to the 
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variation in the data distribution and, thus, suffer from inconsistent results. Therefore, a larger-sized 

calibration dataset is suggested for the VNIR estimation of SOM content. Although these two 

modeling strategies generally outperform the previous schemes, it should be noted that the prior 

information of SOM content is used in the division of calibration and prediction sets. 

Figure 7. Variable importance in the projection (VIP) scores for the PLSR model 

calibrated from reflectance of pretreated soil samples using Scheme 8. 

 

Without any prior information about the SOM content, the performance of Scheme 9 is comparable 

to that of Scheme 7 and Scheme 8. Both RPDs for reflectance-based and absorbance-based models are 

larger than 1.4 for soil samples with pretreatment. The failure of this scheme in the prediction of SOM 

content for soil samples without pretreatment may reinforce the previous implication that a widely 

applicable SOM prediction model should be based on a wide range of SOM contents. 

4. Conclusions 

In this study, the transferability of several VNIR models for SOM estimation in riparian landscapes 

has been explored. Three sample division strategies, namely training and test sets divided by sample 

locations and land-use types, SOM content and the Euclidean distance of soil spectra, have been 

implemented. Soil samples with and without air-drying, grinding and 2-mm sieving pretreatment were 

used. Comprehensive comparisons were made for the combinations of different pretreatments for soil 

samples and modeling strategies. 

For the soil samples without pretreatment, the PLSR models failed to predict the SOM content 

using the VNIR spectra with all the modeling schemes. For the soil samples with pretreatment, models 

calibrated from the reflectance of a soil sample set with mixed land-use types could be applied in the 

SOM prediction of cropland soil samples with a suitable range of SOM content (r
2

Pre = 0.66,  

RMSE = 2.78 g∙kg
−1

, RPD = 1.45). The models calibrated from cropland soil samples, however, could 
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not be transferred to the SOM prediction of soil samples with diverse land-use types, nor could they be 

applied in the prediction of SOM content from cropland soil samples in another location in our study, 

which differed in its distributional characteristic. The correlation analysis revealed that the air-drying, 

grinding and 2-mm sieving pretreatment significantly modifies the linear relationships between the 

spectral wavelengths from the soil samples with and without pretreatment in the region of 350–1000 nm. 

The result also suggests that the wavelengths in the region of 350–1000 nm could be important for 

SOM estimation in riparian landscapes, considering the failure of the VNIR estimation of SOM 

content from samples without pretreatment.  

The Kennard–Stone algorithm has been regarded as an effective method for the selection  

of representative subset in the VNIR modeling of soil properties [7,22]. Our studies has revealed that 

this algorithm performed well in the selection of a representative subset for SOM estimation using the 

spectra of soil samples with air-drying, grinding and 2-mm sieving pretreatment, but failed in soil 

samples without this pretreatment. Such results could be important for in situ applications of the soil 

spectral library in the estimation of SOM content with soil spectra. 
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