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Abstract: Fraction of Photosynthetically Active Radiation (FPAR) is a critical parameter 

in land surface energy balance and climate modeling. Several global FPAR products are 

available, but these still require considerable assessment and validation due to low spatial 

resolution. Three major FPAR products that have covered China and provided continuous 

time series data—MODIS, MERIS and GEOV1—were assessed from 2006–2010. Based 

on the ground measurement data, the accuracies of these three FPAR products were 

directly validated for maize and winter wheat over northern China. This investigation also 

assessed the consistencies among the three FPAR products, and analyzed the residential 

area in mixed pixels effect on the FPAR products accuracy, at each of the main growth 

stages of maize and winter wheat. The GEOV1 FPAR product was found to be the most 

accurate with regression R
2
 values of 0.818 and 0.655 for ground measured maize and 

winter wheat FPAR. The maize FPAR data were generally more accurate than the winter 

wheat FPAR data. The MODIS, MERIS and GEOV1 products all indicated that FPAR 

variations among the growth stages differed from year to year. The scattered residential 

areas in mixed pixels were found to significantly affect the FPAR data uncertainties, and 

these were also analyzed in detail. The effect of residential area percentage in mixed pixels 

on FPAR values differed for different crops, and this was not necessarily in accordance 
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with the FPAR product accuracy. For the mixed pixels, a quadratic polynomial was able to 

fit the residential area and FPAR data reasonably well with R
2
 values higher than 0.9 for 

most relationships. Quadratic polynomial fitting may provide a simple and convenient 

method to assess and reduce the residential area effect on FPAR in the mixed pixels. 

Keywords: FPAR; MODIS; MERIS; GEOV1; residential area; mixed pixel 

 

1. Introduction 

The Fraction of Photosynthetically Active Radiation (FPAR) is an important index for detecting the 

vegetation water, energy and carbon balance and is a key parameter in the ecosystem productivity 

model, crop yield model, and other models [1–5]. FPAR is most often defined as the proportion of 

available photosynthetically active radiation absorbed by the green vegetation canopy in the specific 

spectrum of 400–700 nm. 

Several current operational sensors in remote sensing satellites can provide regional or global FPAR 

data in a time series, such as Moderate Resolution Imaging Spectroradiometer (MODIS), Medium 

Resolution Imaging Spectrometer (MERIS), Multi-angle Imaging Spectroradiometer (MISR), Global 

Land Products for Carbon Model Assimilation (GLOBCARBON), Land Surface Analysis Satellite 

Applications Facility (LANDSAF), Joint Research Centre FAPAR (JRC-FAPAR) and System 

Observation Probatoire beyond Tarre (SPOT) VEGETATION [6,7]. The global remote sensing FPAR 

product is an important data source because of the inherent technology advantage that can provide 

continuous temporal and spatial covering data. They have long been used for modeling ecosystem 

process or estimating agro-ecological parameters [8,9]. Connolly et al. [10] found MODIS FPAR is  

a useful data source for the characterization of light use efficiency parameter ε at flux tower sites. 

Nightingale et al. studied result [11] showed that MODIS FPAR product can also provide realistic 

time-series data with a gap-filled and smoothed method for carbon modeling in regions where 

persistent cloud cover is an issue. Seixas et al. [12] emphasized the importance of FPAR product  

in data-driven ecosystem productivity estimation methods, and found MERIS underestimated FPAR 

but displayed greater spatial homogeneity than MODIS, as well as compared the MODIS and MERIS 

FPAR products application in net primary production (NPP) estimates, identifying a seasonal 

discrepancy. Haverd et al. [13] used MODIS and AVHRR FPAR to estimate regional NPP—regional 

differences up to 15% were identified—and found that seasonal discrepancy in FPAR is a key 

contributor to seasonal discrepancy in NPP. The existing products distinguish in terms of the time 

compositing period, retrieval algorithm, spatial resolution or remapping technique. Data users 

and producers are needed and are eager to understand these FPAR products discrepancies and 

consistencies [6]. It is very necessary for validating and assessing the product accuracy to establish 

confidence in FPAR data sets and to provide a basis for their applications [14,15]. 

Overall, several methods have been used to validate and assess FPAR products accuracies and their 

consistencies, and these include direct comparisons with in situ measured data, comparisons with 

FPAR data estimated from high-resolution images and inter-comparisons among the global products. 

Weiss et al. [16] found that CYCLOPES FAPAR showed consistent seasonality with MODIS FPAR 



Remote Sens. 2014, 6 5430 

 

 

and performed better than MODIS FPAR. McCallum et al. [14] compared four global FPAR products 

and found that MODIS and CYCLOPES datasets record generally similar but substantially more than 

JRC and GLOBCARBON datasets. FAPAR products derived from the JRC-TIP (Two-stream 

Inversion Package) using MODIS and MISR surfaces as inputs exhibited much less variability [17]. 

Martinze et al. [18] inter-compared and assessed the quality of the MODIS, MERIS and SEVIRI 

(Spinning Enhanced Visible and InfraRed Imager) FPAR products over the Iberian Peninsula.  

Pickett-Heaps et al. [7] evaluated the consistency of six FPAR products (MODIS, MERIS, SeaWIFS 

(Sea-Viewing Wide Field-of-View Sensor), MODIS-TIP, SPOT-VEGETATION, and AVHRR 

(Advanced Very High Resolution Radiometer)) across the Australian continent using multi-year 

datasets and found that the consistency of FPAR products is sensitive to the biome classification but 

not the fractional vegetation cover. Serbin et al. [19] found MODIS collection 4 (C4) FPAR product 

overestimated and collection 5 (C5) data were more closely aligned with ground measured FPAR 

across a boreal forest wildfire chronosequence. 

Using high-resolution images and ground-measured data, several investigations indicated MODIS 

collection 3 (C3) and C4 FPAR products tend to overestimate several land cover classes [20,21]. 

Hummrich et al. [20] found there was a significant bias between MODIS C3 FPAR products and 

ground measured FPAR for woodland in Africa, and land cover misclassification was a possible cause. 

Steinberg et al. [22] indicated that the MODIS C4 FPAR overestimated when compared to Landsat-7 

ETM retrieval FPAR in the boreal forests of Alaska. Overall, the MODIS C5 FPAR product has 

undergone only minimal validation [15,19,23]. Steinberg and Geotz [15] found the majority of MODIS 

C4 FPAR was actually derived from empirically based algorithm and C5 showed better data quality 

but still had limitations in temperate forest areas in the eastern United States. Chen et al. [24] found 

that the difference between MODIS C5 FPAR and TM retrieved FPAR is smaller than the expected 

level. Fritsch et al. [23] validated the MODIS C5 FPAR product with multi-temporal RapidEye images 

obtained from arid agricultural landscape and found that MODIS C5 FPAR results in overestimation of 

approximately 6%–15%. The C5 products that are currently available show better data quality than C3 

and C4 products, but it still persistent limitations in forest areas [15]. Gobron et al. [25] analyzed the 

uncertainty of MERIS FPAR products with FPAR field estimates derived from ground measured leaf 

area index (LAI) and found that the expected accuracy of the MERIS FPAR product was within ± 0.1. 

Weiss et al. [16] found that the CYCLOPES FAPAR product performed well (RMSE = 0.1) for  

a limited number of ground measurements in Europe and the Americas. The Geoland2 Core Mapping 

Service BioPAR provided newly the GEOV1 FPAR product [26], which is based on the CYCLOPES 

FPAR product and has been combined with the MODIS C5 FPAR product [26,27]. The spatial and 

temporal consistencies of GEOV1 product were preliminarily evaluated via an inter-comparison with 

other global products [27,28]. 

Until now, as the authors’ understanding, most of the FPAR validation works were carried out in 

America, Europe and Africa [14,20,21,29]. The quality of FPAR products in Asia, particularly in 

China, still requires validation. Moreover, FPAR product validations have focused primarily on grass 

and forest areas, but the FPAR data for cropland in Asia has scarcely been validated. The reliability of 

FPAR products for different biome classes and accuracy variations of FPAR products throughout the 

growing season in temperate zones also need to be urgently validated [15]. 
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The spatial resolution of the moderate-resolution biophysical parameter product is low; there are 

many mixed pixels, which has much effect on the pixels’ value [30,31]. Quantitatively evaluating the 

mixed pixel effect on FPAR product is very important for global moderate resolution product 

assessment and algorithm development. Several studies have proposed that the mixed land cover may 

introduce errors to the global product estimation. Martinez et al. [18] found that the MODIS and 

SEVIRI values rarely exceed FPAR = 0.6, whereas the MERIS FPAR values are concentrated below 0.4. 

This phenomenon may be partially explained by the lower spatial resolution of these products,  

the mixed pixel often reduces the real FPAR. The specific biome class within a pixel may be a main 

source of estimation error because of the different fractional cover and canopy structure [31]. 

Nevertheless, MODIS land cover misclassifications cannot fully explain the overestimation or 

underestimation of MODIS FPAR [23,32]. Fang et al. [33] evaluated the biome mixture effect based 

on MODIS standard land cover. The mixture of biome classes in pixel should also impact FPAR 

accuracy differentially at different vegetation growth stages [34]. Therefore, the global FPAR product 

for mixed pixels, such as MODIS, MERIS and GEOV1, must be analyzed based on high resolution 

land cover or vegetation type data at different vegetation growth stages. 

It is worth mentioning that the most notable feature of plains worldwide is the high populations and 

dense residential distribution. The land area in Chinese plains is also mainly covered by cultivated land 

and residential area, and the residential areas are sporadically scattered. For moderate-resolution global 

products in Chinese plains, most pixels are a mixture of cultivated land and residential areas. The 

sporadically scattered residential areas will likely significantly impact the accuracy of the MODIS, 

MERIS and GEOV1 FPAR products for their low spatial resolutions in Chinese plains. 

Therefore, this investigation will assess and inter-compare the MODIS, MERIS and GEOV1 FPAR 

products with similar temporal and spatial resolutions over northern China based on the ground 

measured maize and winter wheat FPAR, considering that these global products cover a large 

geographical region of China, and will evaluate detailed the residential area in mixed pixel effect on 

global FPAR product. This study may provide a good foundation for the scientific use of these FPAR 

products over northern China. 

2. Study Area and Methodology 

2.1. Study Area 

The study areas were located in Changchun city in the central Northeastern China Plain, in the cities 

of Dezhou and Liaocheng in the central North China Plain (Figure 1). The Northeast China Plain is  

the largest maize crop planted area. The North China Plain is the most important winter wheat planted 

area. Maize and winter wheat are the most important crops in northern China. The growth period 

extends from May to September for the maize in the Jilin province and from October to June of the 

next year for winter wheat in Shandong province. The key growth stages of maize and winter wheat 

are listed in Table 1. 
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Figure 1. The cultivated land area in study area and fraction of photosynthetically active 

radiation (FPAR) ground measurements. 

 

Table 1. Maize and winter wheat growth stages in a year. 

Crops Growth Stages 

Maize 

Seeding Three-leaf Seven-leaf Jounting Tasseling Silking Milking Mature 

Last dekad 

in May 

first dekad  

in June 

last dekad 

in June 

middle dekad 

in July 

last dekad  

in July 

first dekad  

in August 

last dekad 

in August 

middle dekad 

in September 

Winter 

wheat 

Seeding Tillering Reviving Jointing Heading Milking Mature 
 

First dekad  

in November 

middle dekad 

in November 

first dekad 

in March 

first dekad  

in April 

middle dekad 

in April 

middle dekad 

in May 

last dekad 

in May  

The cultivated land area in Changchun is about 1.38 million ha, it accounts for 67% of the total land 

area, and pixels with a size of 1 km × 1 km containing the cultivated land area account for 90.84% of 

the total pixels. The cultivated land area in Dezhou and Liaocheng is about 1.07 million ha, it accounts 

for 57% of the total land area, and pixels with a size of 1 km × 1 km containing the cultivated land area 

account for 91.73% of the total pixels. 

2.2. Data Collection 

2.2.1. Field Measured Data 

It is quite difficult to ensure that the ground measurements are of the same spatial resolution and the 

repeated samplings fit into a whole pixel [35]. In this study, the sampling sites were determined prior 

to the field measurements. The FPAR measurements were repeated three or nine times for each pixel, 

the spatial distribution of the repeated sampling strategy was also shown in Figure 1, and the averaged 
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values were compared with the FPAR product data at the corresponding pixel. The pixels for ground 

measurements were chosen in advance, where the crop land area accounts for most of the pixel, so the 

averaged ground measured FPAR can represent an area of about 1 km
2
. The measured data are shown 

in Table 2 and Figure 1. 

Table 2. Ground-measured FPAR data of maize and winter wheat. 

Biome Study Area Date Samples Number Repeat Times 

Maize Changchun, Jilin province 

26 June 2007 20 3 

6 August 2007 21 3 

15 August 2008 12 9 

Winter wheat 
Dezhou and Liaocheng, 

Shandong province 

13 April 2010 17 3 

12 May 2010 40 3 

The maize and winter wheat FPAR were measured using a LI-191SA linear quantum sensor and  

a LI-250A light meter produced by LI-COR Inc. (Lincoln, NE, USA). The LI-191SA inductive area  

is 1 m × 12.7 mm, and the inductive wavelength ranges from 400–700 nm with a logging unit  

of μmol∙m
−2

∙s
−1

. The device calculates FPAR via the relationship between the readings of the  

above- and below-canopy photosynthetically active photon flux density (PPFD; in μmol∙m
−2

∙s
−1

).  

The logged data are the averaged PAR in the inductive area that can reduce the spatial heterogeneity 

effect. LI-250A logged the result, which was read and recorded manually. Four fractions of PAR were 

measured at each sampling site: (1) the incidence PAR above the canopy (PARci) was measured by 

placing LI-191SA above the canopy by about 50 cm and directing the inductive area upward, (2) the 

PAR transmitted through the canopy (PARgi) was measured by placing LI-191SA above the soil 

background by about 10 cm and directing the inductive area upward, (3) the PAR reflected by the soil 

background (PARgr) was measured by placing LI-191SA above the soil background by about 10 cm 

and directing the inductive area downward, (4) the PAR reflected by the canopy (PARcr) was 

measured by placing LI-191SA above the canopy by about 50 cm and directing the inductive area 

downward. The FPAR is calculated from these four fractions as follows [36]: 

 
(1) 

2.2.2. MODIS, MERIS and GEOV1 FPAR Products 

Comparatively, the MODIS, MERIS and GEOV1 FPAR products are relatively continuous data 

sources for northern China, their spatial and temporal resolutions are relatively good and are  

similar (Table 3). Therefore, the MODIS, MERIS and GEOV1 FPAR products were selected in this 

study for assessment and inter-comparison analyses, they were downloaded from the online  

websites [37–39]. The detailed introductions of these FPAR products have been described in a number 

of papers [7,14,28,40–43], and the brief comparison among these FPAR products’ properties can be 

seen from Table 3. 

  

PARci

PARgrPARgiPARcrPARci
FPAR

)()( 

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Table 3. Introduction of MODIS, MERIS and GEOV1 FPAR products. 

FPAR Product MODIS MERIS GEOV1 

Initiative NASA ESA Geoland2 

Sensor MODIS/TERRA, MODIS/AUQA MERIS/ENVISAT 
MODIS/TERRA, MODIS/AUQA,  

VEGETATION /SPOT 

Spatial and 

temporal resolution 
1 km 8 days 1 km 10 days 1/112° 10 days 

Retrieval Model 
3-Dimension Radiative Transfer 

Model (Look up table), VI-FPAR 

semi-discrete model of 

biodirectional reflectance 

factor model with 

atmospheric model 6S 

3-Dimension Radiative Transfer 

Model, Scattering by Arbitrarily 

Inclined Leaves radiative transfer 

model, Neural Networks 

Valid range, scale 0–100, 0.01 0–250, 0.005 0–235, 0.004 

Period 2000 until now 2002 to 2012 1999 until now 

Product distribution 

website 
[37] [38] [39] 

Reference [40,41] [42,43] [28] 

2.2.3. Residential Area Percentage Data 

The raster data of land use types’ area percentage with pixel size of 1 km × 1 km were aggregated 

from land use shape file, which has been interpreted manually from Landsat TM images [44]. The crop 

land and residential area percentage raster data in mixed pixels were also calculated. So, we can get the 

residential area in mixed pixels from this raster dataset. 

To evaluate residential area effect on the accuracy of the MODIS, MERIS and GEOV1 FPAR 

products, three types of pixels were analyzed, which included the pure cultivated land pixels, pure 

residential pixels and the mixed pixels that only consisted of cultivated land and residential areas.  

In total, the mixed pixels containing maize and residential areas account for 55.75% of all the pixels in 

Changchun. The mixed pixels containing winter wheat land and residential areas account for 82.32% 

of all mixed pixels in Dezhou and Liaocheng regions. 

2.3. Methodology 

The MODIS, MERIS and GEOV1 FPAR data were validated by direct comparison against ground 

measured data and by inter-comparison among these FPAR products based on two different biomes at 

different growth stages. In this study, the valid FPAR values of the three global products were counted 

for analysis, the pixel values exceeding the valid range of FPAR values were excluded. 

The repeated ground measured FPAR were averaged as the mean FPAR used for direct comparison 

with FPAR product. For the inter-comparisons among these FPAR products, all of the valid FPAR values 

were used for comparison. The frequencies of three FPAR products at each of the key growth stages for 

maize and winter wheat were also inter-compared, respectively. The least-squares linear regression (LSLR) 

method was used for validation analysis between ground measurement FPAR and global FPAR product, 

and was also used for comparison analysis among the three global FPAR products. 

The residential areas’ percentages were statistically analyzed at the interval of 10%, and the FPAR 

data in mixed pixels corresponding to each interval were averaged and then regressed with residential 
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area percentage intervals. The quadratic polynomial regression was used for fitting relationship 

between the residential area percentage in mixed pixel and the valid FPAR values of global products. 

The regression determination coefficient (R
2
) and root mean square error (RMSE) were used to 

evaluate the relationships of the FPAR products with ground measured data and the inter-relationships 

of the FPAR products. The R
2
 and RMSE values were calculated using the following formulas: 

2

2 cov( , )
=

( )* ( )

x y
R

std x std y

 
 
 

 (2) 

2

mod

1

( )

1

n

mea

i

Y Y

RMSE
n










 

(3) 

where is the estimated FPAR, is the ground measured FPAR and n is the sample number, cov 

and std represent the covariance and the standard deviation, respectively. 

3. Results and Analysis 

3.1. FPAR Validation of MODIS, MERIS and GEOV1 Products Based on Ground-Measured FPAR Data 

Figure 2 shows that the maize MODIS, MERIS and GEOV1 FPAR products differed obviously 

with the ground-measured FPAR. The linear regression R
2
 values were 0.630, 0.744 and 0.818, 

respectively. The GEOV1 FPAR regression slope and intercept were separately very close to 1 and 0. 

For the later periods, such as the silking and milking stages when maize shows large FPAR values,  

the MODIS and MERIS FPAR products markedly underestimated the values compared with the 

ground-measured FPAR, but GEOV1 FPAR product showed great estimation results and were close to 

the ground measured FPAR. 

Figure 2. Validation of maize FPAR products based on ground measured (a) MODIS 

FPAR; (b) MERIS FPAR; (c) GEOV1 FPAR. 

   
Notes: ** indicate the predicted parameter values (slope and intercept) are significantly different 

from y = x (slope = 1 and intercept = 0) separately at the 0.01 probability level, ** also indicates the 

regressions R2 are significant at the 0.01 probability level.  

Figure 3 shows that the linear regression R
2
 values for ground-measured winter wheat FPAR with 

MODIS, MERIS and GEOV1 FPAR products were 0.432, 0.488 and 0.655, respectively. The regression 

modY meaY
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slopes were all significantly deviated from 1, and the intercepts all exceeded 0.1. Overall, the MODIS, 

MERIS and GEOV1 FPAR data all markedly underestimated the winter wheat FPAR compared with 

the ground-measured FPAR. 

Figure 3. Validation of winter wheat FPAR products based on ground-measured  

(a) MODIS FPAR; (b) MERIS FPAR; (c) GEOV1 FPAR. 

   
Notes: ** and * indicate the predicted parameter values (slope and intercept) are significantly 

different from y = x (slope = 1 and intercept = 0) separately at the 0.01 and 0.05 probability level, 

** also indicates the regressions R2 are significant at the 0.01 probability level.  

Based on the analysis described above, we determined that GEOV1 FPAR products correlated 

relatively well with the ground-measured FPAR, and showed better retrieved FPAR than MODIS and 

MERIS, especially for high FPAR values. It is necessary to understand the inter-relationships or 

consistencies among these global FPAR products, at different crop growth stages. The MODIS, 

MERIS and GEOV1 FPAR products for maize are slightly more reliable than winter wheat. It can be 

seen that the FPAR data of the same global products are obviously different for different biome types. 

So, the land cover mixture of different biomes may have a significant effect on the FPAR retrieval of 

global FPAR data. In addition, most pixels of the global FPAR products are mixed pixels being 

composed of several different land cover types; the FPAR values should be affected greatly by the land 

cover mixture, and were affected differently at different crop growth stages. 

3.2. Inter-Comparison among MODIS, MERIS and GEOV1 FPAR Products 

3.2.1. Comparison of FPAR Frequency Distributions of MODIS, MERIS and GEOV1 at Different 

Growth Stages 

Figure 4 shows that the MODIS, MERIS and GEOV1 FPAR clearly indicated the variation of the 

maize FPAR at different growth stages. Furthermore, the FPAR interval frequency distributions of the 

maize MODIS product differed among different years. The maize FPAR values were often high in its 

growing period. During the silking and tasseling stages, most of the high maize FPAR values ranged 

from 0.7–0.85 for the MODIS products, from 0.75–0.85 for the MERIS FPAR products and were from 

0.85–0.95 for the GEOV1 FPAR data. Moreover, the GEOV1 FPAR also showed very centralized 

distributions at high FPAR values. At the mature stage, the MODIS and MERIS FPAR values were 

often below 0.6, but the GEOV1 FPAR mostly ranged from 0.6–0.8. At the three-leaf stage, MODIS 
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and MERIS FPAR were comparatively much more centralized in the interval of 0.15, but GEOV1 

FPAR was relatively evenly distributed around 0.2. 

Overall, the winter wheat FPAR showed low inter-annual differences compared to the maize FPAR; 

all three products also clearly presented the changing trends for different growth stages. For the three 

products, the winter wheat FPAR rarely exceeded FPAR = 0.85, which is markedly lower than the 

maize FPAR products (Figure 4). 

Figure 4. Maize and winter wheat FPAR frequencies of MODIS, MERIS and GEOV1 in 

different growth stages. (a) Maize MODIS FPAR; (b) Maize MERIS FPAR; (c) Maize 

GEOV1 FPAR; (d) Winter wheat MODIS FPAR; (e) Winter wheat MERIS FPAR;  

(f) Winter wheat GEOV1 FPAR. 
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Figure 4. Cont. 

 

 

 

 
Note: x-axis is the FPAR interval for statistical analysis, y-axis is the FPAR value frequency. 

At the seeding, tillering and reviving stages, most winter wheat FPAR values for the three products 

were very concentrated. However, the FPAR of these products were not as concentrated for other 

growth periods. During the heading and milking stages, the MODIS and GEOV1 FPAR frequencies 

showed similar distributions, whereas the MERIS FPAR products showed different FPAR values 

frequencies with MODIS and GEOV1 FPAR products. 

FPAR product has been recognized as an important data source in data-driven ecosystem 

productivity estimation methods [12]; the users need to choose the most appropriate product as the 
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simulation model’s input [16]. These studied results indicated that users should take into consideration 

FPAR product difference for different vegetation biomes and different growth stages when choosing 

the global FPAR products for simulation model input. 

3.2.2. Inter-Relationships of MODIS, MERIS and GEOV1 FPAR Data 

The inter-relationships of MODIS, MERIS and GEOV1 FPAR data were quantitatively fitted by 

linear regression (Figure 5 and Tables A1 and A2). Figure 5 shows the inter-relationships of the 

MODIS, MERIS and GEOV1 maize FPAR at the key growth stages. The regression R
2
 and RMSE 

values markedly differed between different years and by crop growth stage. The regression R
2
 values 

for a single growth stage rarely exceeded 0.5, but the R
2
 values of the entire growth periods ranged 

from 0.5–0.831. The RMSEs for the entire growth period in a year were close to 0.01 and were also 

somewhat higher than that for a single growth stage. For each stage and the whole growth period of 

both maize and winter wheat, the regression slopes and intercepts are all significantly different from  

y = x (slope = 1 and intercept = 0) at the 0.01 probability level, and the regressions R
2
 are also all 

significant at the 0.01 probability level, except that the regression intercepts are significantly different 

from y = x at the 0.05 probability level at maize silking stage in 2008 between MODIS and GEOV1 

FPAR data and at the winter wheat seeding stage in 2009 between MODIS and MERIS FPAR data. 

Figure 5. The regression R
2
 and RMSE among three FPAR products for maize  

(a) Regression R
2
; (b) RMSE and winter wheat (c) Regression R

2
; (d) RMSE. 
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Figure 5. Cont. 

 

 

 
Note: MODIS-MERIS indicates that MODIS FPAR is the independent variable and meris FPAR is the 

dependent variable in the regression. The similar indications for MODIS-GEOV1 and MERIS-GEOV1. 

In general, for the comparisons of FPAR in the entire year, the inter-relationships regressions also 

differed from 2006–2010. For maize, the regression R
2
 in a whole growth period was much obviously 

larger than that in a single growth stage. However, for the winter wheat, the regression R
2
  

in a whole growth period was similar to that in a single growth stage. The regression R
2
 values among 

three FPAR products for winter wheat were obviously higher than those for maize. The  

inter-relationship regression R
2
 values for winter wheat FPAR exceeded 0.65, and most regression R

2
 

values for maize FPAR products ranged from 0.249–0.831. The regression RMSE for winter wheat 

ranged from 0.004–0.011, the slopes all exceeded 0.7, and the intercepts were below 0.114. However, 

the regression RMSE for maize ranged from 0.009–0.038, the slopes are above 0.504, and the 

intercepts were below 0.246. 

Overall, the regressions between MERIS and GEOV1 FPAR showed good consistency or  

inter-relationship, which showed relatively large R
2
 and small RMSE values. 
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3.3. Effect of Residential Areas in Mixed Pixels on the Accuracy of the Crop FPAR Product 

The spatial resolutions of global FPAR products are generally low. The pixels in crop land area in 

Chinese plains are mostly mixed with the scattered distributed residential area. The percentage of 

residential areas in the mixed pixels significantly impacts the FPAR product. As the percentage of 

residential areas in a mixed pixel increases, the FPAR fluctuates greatly and shows different variations 

for different crop growing stages (Figure A1). To clearly understand the variations obtained as  

a result of different percentages of residential areas, the FPAR product for different crop growing 

stages were analyzed in detail over several years. 

The FPAR data were averaged from 2006–2010. In Figures 6 and 7, residential areas’ percentage is 

0% which indicated the pure crop land area pixel with no residential area. The averaged FPAR  

(in y-axis) at 10% (in x-axis) indicated the averaged FPAR of the pixels including residential area 

ranging from 0–10%, and the other averaged FPAR values were homologously calculated. 

Figure 6. The changes of maize (a) MODIS; (b) MERIS; (c) GEOV1 FPAR in mixed 

pixel with residential area at different growth stages. 

  

 

3.3.1. Maize MODIS, MERIS, GEOV1 FPAR 

Figure 6 shows that the FPAR data from the seeding stage to the seven-leaf stage were only slightly 

affected by the residential areas in a mixed pixel. However, the residential area in mixed pixel 

significantly affected the FPAR data from the jointing stage to mature stage; the FPAR products were 

most obviously affected by residential area at silking and tasseling stages, which are followed by the 
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milking, jointing and mature stages. Generally, the residential area made little effect on FPAR value 

when it accounted for below 30% in a pixel, and then made a large, obvious effect on FPAR value in 

the mixed pixel where residential area percentage was above 30%. 

Figure 7. The changes of winter wheat (a) MODIS; (b) MERIS; (c) GEOV1 FPAR in 

mixed pixel with residential area at different growth stages.  

  

 

The FPAR value in the mixed pixel negatively correlated with the percentage of residential area in  

a mixed pixel. This relationship was depicted well by a quadratic polynomial fitting; it can be used to 

simulate the effect of the residential area in a mixed pixel on the global FPAR product (Table 4). 

Table 4. The fitting relationships between residential area percentage and maize FPAR at 

different stages. 

Maize Growth Stage Sensors Function R
2
 RMSE Sig. F 

Seeding stage 

MODIS y = −0.021 x2 + 0.065 x + 0.150 0.862 0.007 0.000 25.055 

MERIS y = 0.009 x2 + 0.010 x + 0.090 0.757 0.004 0.004 12.432 

GEOV1 y = −0.003 x2 + 0.013 x + 0.082 0.744 0.002 0.004 11.624 

Three-leaf stage 

MODIS y = −0.080 x2 + 0.067 x + 0.237 0.746 0.006 0.004 11.741 

MERIS y = −0.014 x2 + 0.037 x + 0.098 0.775 0.005 0.003 13.798 

GEOV1 y = −0.013 x2 + 0.033 x + 0.092 0.903 0.003 0.000 37.394 

Seven-leaf stage 

MODIS y = −0.142 x2 + 0.006 x + 0.437 0.965 0.010 0.000 109.479 

MERIS y = −0.096 x2 + 0.057 x + 0.214 0.871 0.007 0.000 27.007 

GEOV1 y = −0.175 x2 + 0.093 x + 0.248 0.985 0.004 0.000 266.447 
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Table 4. Cont. 

Maize Growth Stage Sensors Function R
2
 RMSE Sig. 

 

Jointing stage 

MODIS y = −0.210 x2 − 0.163 x + 0.745 0.991 0.013 0.000 445.632 

MERIS y = −0.339 x2 + 0.025 x + 0.556 0.981 0.017 0.000 205.108 

GEOV1 y = −0.445 x2 + 0.083 x + 0.599 0.997 0.008 0.000 1180.000 

Tasseling stage 

MODIS y = −0.244 x2 − 0.121 x + 0.777 0.991 0.013 0.000 426.978 

MERIS y = −0.485 x2 + 0.005 x + 0.759 0.989 0.019 0.000 368.565 

GEOV1 y = −0.609 x2 + 0.116 x + 0.797 0.996 0.012 0.000 1125.000 

Silking stage 

MODIS y = −0.210 x2 − 0.121 x + 0.741 0.987 0.014 0.000 312.315 

MERIS y = −0.492 x2 − 0.035 x + 0.795 0.995 0.014 0.000 806.723 

GEOV1 y = −0.690 x2 + 0.177 x + 0.866 0.995 0.014 0.000 812.672 

Milking stage 

MODIS y = −0.191 x2 − 0.122 x + 0.680 0.987 0.014 0.000 294.201 

MERIS y = −0.439 x2 − 0.021 x + 0.679 0.997 0.009 0.000 1430 

GEOV1 y = −0.587 x2 + 0.058 x + 0.844 0.997 0.011 0.000 1512.000 

Mature stage 

MODIS y = −0.162 x2 − 0.053 x + 0.522 0.974 0.013 0.000 147.172 

MERIS y = −0.326 x2 + 0.020 x + 0.482 0.995 0.008 0.000 838.504 

GEOV1 y = −0.494 x2 + 0.024 x + 0.725 0.997 0.010 0.000 1426.000 

From the jointing stage to the mature stage, almost all of the R
2
 values for the fitted relationships 

exceeded 0.98, and the percentage of residential area was found to significantly affect the FPAR data. 

Even at other stages, the R
2
 values of the fitting relationships still exceeded 0.74. For most maize 

growth stages, the fitted RMSE of GEOV1 values were smaller than those of MODIS and MERIS 

FPAR. By the way, for pure cultivated land, the largest MODIS and MERIS FPAR data reached nearly 

0.8; they were slightly lower than the largest GEOV1 FPAR which is close to 0.9. 

3.3.2. Winter Wheat MODIS, MERIS, GEOV1 FPAR 

Overall, the MODIS and MERIS FPAR data at the seeding and reviving stage were only slightly 

affected by the residential area in a mixed pixel. For the other winter wheat growth stages,  

the residential area in a mixed pixel strongly affected the MODIS and MERIS FPAR. The residential 

area markedly affected the GEOV1 FPAR data for all stages (Figure 7). Additionally, the FPAR 

products were most obviously affected by residential area at milking and heading stages, which are 

followed by the mature and jointing stages. Generally, the residential area made little effect on FPAR 

value when it accounted for less than 50% in a pixel, and then made a somewhat obvious effect on 

FPAR value in the mixed pixel where residential area percentage was above 50%. 

The FPAR values negatively correlated with large residential area percentages. The quadratic 

polynomial fitting relationships can be used to effectively estimate the effect of residential area on 

global winter wheat FPAR product (Table 5). The R
2
 values of the fitting relationship almost exceeded 

0.9, except for the MODIS and MERIS FPAR data at the seeding stage. 

By the way, the largest MODIS and MERIS FPAR data were each slightly higher or smaller  

than 0.5, and they were obviously smaller than the largest GEOV1 FPAR, which reached 0.6. 

Although, maize FPAR products’ data were close to ground measured data and winter wheat FPAR 

products were markedly smaller than the ground-measured data (Figures 2 and 3). Furthermore, 

compared with winter wheat crop, the fitting R
2
 values between maize FPAR and residential area 
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percentage were slightly larger and the RMSE values were smaller. However, the maize FPAR 

products were quite obviously affected by the residential area in mixed pixel, compared with winter 

wheat FPAR (Figures 6 and 7). Therefore, the effect of residential area percentage in mixed pixels on 

FPAR values differentiate for different crops, and this was not necessarily in accordance with the 

FPAR product accuracy. 

Table 5. The regression between residential area percent and winter wheat FPAR at 

different stages. 

Winter Wheat Growth Stage Sensors Function R
2
 RMSE Sig. F 

Seeding stage 

MODIS y = −0.070 x2 + 0.061 x + 0.221 0.501 0.008 0.062 4.022 

MERIS y = −0.055 x2 + 0.032 x + 0.164 0.693 0.007 0.009 9.041 

GEOV1 y = −0.290 x2 + 0.159 x + 0.219 0.904 0.019 0.000 37.569 

Tillering stage 

MODIS y = −0.225 x2 + 0.100 x + 0.274 0.928 0.014 0.000 51.31 

MERIS y = −0.115 x2 + 0.066 x + 0.158 0.975 0.003 0.000 155.313 

GEOV1 y = −0.441 x2 + 0.241 x + 0.279 0.967 0.016 0.000 118.046 

Reviving stage 

MODIS y = −0.114 x2 + 0.067 x + 0.155 0.903 0.007 0.000 37.063 

MERIS y = −0.075 x2 + 0.048 x + 0.115 0.945 0.003 0.000 69.283 

GEOV1 y = −0.267 x2 + 0.138 x + 0.163 0.988 0.006 0.000 332.654 

Jointing stage 

MODIS y = −0.340 x2 + 0.151 x + 0.410 0.936 0.021 0.000 58.201 

MERIS y = −0.274 x2 + 0.131 x + 0.303 0.981 0.008 0.000 209.818 

GEOV1 y = −0.600 x2 + 0.293 x + 0.369 0.989 0.014 0.000 347.61 

Heading stage 

MODIS y = −0.416 x2 + 0.197 x + 0.502 0.936 0.024 0.000 58.606 

MERIS y = −0.417 x2 + 0.217 x + 0.418 0.962 0.017 0.000 100.91 

GEOV1 y = −0.785 x2 + 0.404 x + 0.477 0.982 0.022 0.000 212.955 

Milking stage 

MODIS y = −0.350 x2 + 0.184 x + 0.477 0.934 0.019 0.000 56.939 

MERIS y = −0.438 x2 + 0.247 x + 0.445 0.956 0.018 0.000 87.81 

GEOV1 y = −0.904 x2 + 0.488 x + 0.561 0.971 0.031 0.000 132.687 

Mature stage 

MODIS y = −0.303 x2 + 0.158 x + 0.429 0.923 0.018 0.000 47.703 

MERIS y = −0.215 x2 + 0.127 x + 0.309 0.916 0.012 0.000 43.813 

GEOV1 y = −0.672 x2 + 0.357 x + 0.445 0.964 0.026 0.000 107.842 

4. Discussion 

Compared with the ground-measured FPAR, the MODIS, MERIS and GEOV1 global FPAR products 

all yielded different estimation results for maize and winter wheat. The studied results showed that the 

MODIS FPAR data are relatively close to the ground-measured data for small FPAR values and 

obviously higher than the ground-measured data for large FPAR values, these results are similar to those 

obtained from other studies [19]. Comparatively, the GEOV1 product can estimate the FPAR relatively 

well and reliably, particularly for high FPAR values. Camacho et al. [28] also found that the regression 

R
2
 of GEOV1 FPAR products with ground measured data were larger than MODIS FPAR product. The 

overall uncertainties (RMSE) of the three products ranged from 0.0806–0.1146 which are close to the 

required target accuracy (0.05 for FPAR). The mixture of land covers or biomes have a significant effect 

on biophysical parameters product accuracy, such as on LAI [33,45]. This study investigated earlier the 

residential area in the mixed pixel effect on FPAR accuracy, and found they had a different effect on 
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different crops and different growing stages. This study also showed that residential area in mixed pixels 

affect greatly the FPAR accuracy especially for residential area percentages above 50%. 

It is very important to collect reliable ground measured FPAR data for product validation and even 

for its utilization in modeling communities [46]. At present, a few instruments have been widely used, 

such as the Decagon AccuPAR ceptometer [15,23], tracing architecture and radiation of canopies 

(TRAC) [20], LI-191SA line quantum sensors or LI-190SZ (LI-COR Inc., Lincoln, NE, USA) [47,48], 

TM Cava devices line quantum sensor [49] and SKYE PAR quantum sensors (SKP 215 and  

SKR 110) [21]. Serbin et al. [19] found MODIS C5 FPAR product follows well the temporal evolution 

of LAI-191SA FPAR data. In this study, the LI-191SA was used for the FPAR measurement. 

Moreover, only two parts of the canopy photosynthetically active radiation—the above- and  

below-PAR—were usually recorded at each spot during the ground measurement, and their ratios were 

usually calculated as FPAR. However, the soil background or the understory vegetation also absorbed 

the photosynthetic active radiation, and they should be excluded in the FPAR measurement. Therefore, 

in this study, the line quantum sensor of LI-191SA was used to measure four fractions above and below 

the canopies: the incident and reflected PAR above the canopy as well as the incident and reflected PAR 

below the canopy, and to compute the FPAR data. Meanwhile, three or nine measurements were taken at 

each sampling site, to reduce the random measurement error of FPAR. They were then averaged to the 

final FPAR for comparison with global FPAR products. The sampling sites or pixels were determined 

before carrying out the field measurements, to ensure the ground measurements can represent effectively 

the actual FPAR value in the exact pixel for comparison. In addition, the study areas for maize and 

winter wheat are both located in the plains, the topography influence can be ignored. These measurement 

strategies and conditions can reduce the measurement errors as much as possible. 

The studied results showed that residential area in mixed pixel markedly affects the global FPAR 

product accuracy, although the land cover misclassification introduces small errors to the FPAR 

products. Meanwhile, the effect of residential area percentage in mixed pixels on FPAR values differ 

for different crops, and this was not necessarily in accordance with the FPAR product accuracy.  

Wu et al. [50] found that the cultivated land area errors of MODIS land cover data in the Jilin and 

Shandong provinces are 34% and 15.7%. In Changchun city, Dezhou and Liaocheng city, 91% and 

81% of all pixels are mixed pixels that contain cultivated land area. The mixed pixels that only 

contained cultivated land and residential areas accounted for approximately 71% and 56% of all pixels, 

respectively. This study revealed that the residential area in mixed pixel have an obvious effect on real 

crop FPAR estimation, and provided a quantitative function to transform the FPAR value in mixed 

pixel to pure crop FPAR value in the pixel at each key crop growth stages. It can help to effectively 

use the FPAR product to improve the light use efficiency estimation accuracy and also improve the 

simulation accuracy of the relationship between crop canopy and photosynthetically active radiation, 

and to further improve the accuracy of agronomic production (yield modeling and prediction) or the 

ecosystem model simulation. 

The inter-comparison and quality assessment among these three FPAR products is essential to 

understand differences and ensure their reliability. Furthermore, they were studied separately based on 

different biome classes and at different growing stages, and residential area in mixed pixel was also 

detailed investigated. These can provide a good reference for using several products to avoid having 

missing FPAR pixel values because of cloudy conditions. 
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It should be noted that the ground measurements in this study were conducted mostly at the crop 

high growth stages, and this may limit the evaluations of FPAR products’ accuracy at other growing 

stages. Therefore, it is necessary to get complete ground measured FPAR data for all the growth stages 

in future study. Moreover, this study quantitatively investigated earlier the effect of mixed pixels only 

in plain areas on global FPAR product accuracy, where the pixel mixtures are simple. The land cover 

mixtures in other areas are more complex. Most pixels of global FPAR products consist of several land 

cover or biome classes due to the low spatial resolution, which will complicate the quantitative 

evaluation of mixed pixel effect on FPAR product. The global FPAR product assessment with complex 

land cover mixtures still needs further investigation. 

5. Conclusions 

This paper presented the assessments of MODIS, MERIS and GEOV1 FPAR products accuracies 

for maize and winter wheat grown over northern China, and analyzed the effect of residential areas in 

mixed pixels on the FPAR data. This study’s results indicated that the MODIS, MERIS and GEOV1 

products all generally showed that the FPAR variations among the growth stages differed between 

different years, but the RMSEs of three global FPAR products compared with ground measured data 

were close to the required target accuracy of 0.05 for FPAR. The GEOV1 FPAR product was most 

accurate for maize and winter wheat with the largest regressions R
2
 of 0.818 and 0.655. The MERIS 

and GEOV1 FPAR presented the best inter-relationships for most of the crop growth stages. For the 

mixed pixels, the residential area and FPAR data could be fitted very well by the quadratic polynomial 

relationship (with most regressions R
2
 above 0.90), which can provide a simple and convenient method 

to assess and reduce the residential area effect on crops’ real FPAR values. This investigation may 

provide a basis for the use of the global FPAR product in northern China. 
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Appendix 

Table A1. Maize FPAR relationships among MODIS, MERIS and GEOV1 products. 

Year Sensors R
2
 RMSE Slope Intercept 

2006 

MODIS-MERIS 0.249 0.038 0.514 0.246 

MODIS-GEOV1 0.338 0.033 0.505 0.212 

MERIS-GEOV1 0.656 0.016 0.682 0.128 

2007 

MODIS-MERIS 0.767 0.009 0.710 0.186 

MODIS-GEOV1 0.724 0.010 0.693 0.109 

MERIS-GEOV1 0.831 0.010 0.916 −0.067 

2008 

MODIS-MERIS 0.792 0.009 0.756 0.151 

MODIS-GEOV1 0.764 0.010 0.709 0.110 

MERIS-GEOV1 0.831 0.010 0.871 −0.007 

2009 

MODIS-MERIS 0.741 0.012 0.744 0.140 

MODIS-GEOV1 0.754 0.011 0.851 −0.028 

MERIS-GEOV1 0.787 0.013 1.005 −0.131 

2010 

MODIS-MERIS 0.542 0.017 0.659 0.168 

MODIS-GEOV1 0.572 0.016 0.594 0.154 

MERIS-GEOV1 0.642  0.017  0.704  0.104  

Note: MODIS-MERIS indicates that MODIS FPAR is the independent variable and MERIS FPAR is the 

dependent variable in the regression, and the same as interpretation for other regressions in this table and in 

other tables. 
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Table A2. Winter wheat FPAR relationships among MODIS, MERIS and 

GEOV1 products. 

Year Sensors R
2
 RMSE Slope Intercept 

2006 

MODIS-MERIS 0.775 0.006 0.826 0.096 

MODIS-GEOV1 0.832 0.004 0.702 0.072 

MERIS-GEOV1 0.849 0.004 0.755 0.014 

2007 

MODIS-MERIS 0.650 0.010 0.873 0.101 

MODIS-GEOV1 0.592 0.011 0.753 0.022 

MERIS-GEOV1 0.740 0.006 0.777 −0.049 

2008 

MODIS-MERIS 0.811 0.007 0.843 0.089 

MODIS-GEOV1 0.740 0.010 0.813 0.061 

MERIS-GEOV1 0.851 0.007 0.932 −0.023 

2009 

MODIS-MERIS 0.691 0.008 0.808 0.111 

MODIS-GEOV1 0.792 0.006 0.788 0.014 

MERIS-GEOV1 0.822 0.005 0.825 −0.054 

2010 

MODIS-MERIS 0.752 0.008 0.858 0.114 

MODIS-GEOV1 0.791 0.006 0.753 0.055 

MERIS-GEOV1 0.807 0.006 0.769 −0.025 

Figure A1. The changing trend of FPAR in the mixed pixels affected by residential 

area percent. 
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