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Abstract: Curvelet transform is a multidirectional multiscale transform that enables sparse 

representations for signals. Curvelet-based feature extraction for Synthetic Aperture Radar 

(SAR) naturally enables utilizing spatial locality; the use of curvelet-based feature 

extraction is a novel method for SAR clustering. The implemented method is based on 

curvelet subband Gaussian distribution parameter estimation and cascading these estimated 

values. The implemented method is compared against original data, polarimetric 

decomposition features and speckle noise reduced data with use of k-means, fuzzy c-means, 

spatial fuzzy c-means and self-organizing maps clustering methods. Experimental results 

show that the curvelet subband Gaussian distribution parameter estimation method with 

use of self-organizing maps has the best results among other feature extraction-clustering 

performances, with up to 94.94% overall clustering accuracies. The results also suggest 

that the implemented method is robust against speckle noise. 
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1. Introduction 

Several remote sensing and observation systems are developed for earth surface monitoring, which 

can be grouped into three main categories: laser-based light detection and ranging (LIDAR), optical 

sensor-based multi- or hyper-spectral imaging, and microwave-based synthetic aperture radar (SAR). 

Among these methods, SAR is the most prominent as it has the best atmosphere permeability, better 
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resolution and different modes of operation, such as polarimetry and interferometry. SAR imaging is 

an active imaging system with a microwave transmitter emitting pulsed radio waves and a receiver 

getting backscattered radio waves. Synthetic aperture utilizes the Doppler effect on microwave-illuminated 

regions to increase the azimuth direction resolution. The use of the Doppler effect results in increased 

azimuth resolution with reduced antenna length up to a physically allowed size. Commercially, SAR 

sensors are carried either by air or satellite platforms. The wavelength used in SAR imaging varies by 

usage requirements from 65 cm to 0.5 cm. SAR images are contaminated by a form of noise called 

speckle noise which can be modelled multiplicatively. SAR images are used in areas such as target 

detection, structure detection, road extraction, ship detection, land use classification, oil spill detection, ice 

field tracking, disaster aftermath evaluation, etc. These fields of use require a great deal of continuous 

observation and manual analysis. At this point, the use of automatic analysis tools is inevitable. 

In SAR literature, pixel-based, region-based and contour-based clustering and segmentation 

algorithms are applied alone or in a cascaded structure. In [1], iterative region growing with the 

semantics method based on a Markov random field, edge strength model and region growing is applied 

for SAR image clustering. In [2], a Markov random field approach for SAR clustering is enriched by 

introducing a third random variable. Ensemble learning of spectral clustering results based on gray 

level co-occurancy matrix (GLCM) and wavelet transform is introduced in [3] for SAR imagery. 

Spectral clustering is carried out by k-means clustering in a projection space, where the transformation 

matrix is calculated by eigenvectors of the Gaussian similarity matrix of samples. In [4], cascaded 

implementation of Voronoi tessellation, Bayesian inference and reversible jump Markov chain Monte 

Carlo (RJMCMC) methods are used for SAR clustering. Voronoi tessellations are used to decompose 

homogeneous polygonal regions and Bayesian inference and RJMCMC is used for labeling. In [5], the 

integrated active contour method is introduced. Compared to the active contour method, where image 

segmentation is defined as an energy minimization problem for a closed curve, the integrated active 

contour approach defines energy based on the maximum likelihood estimation of parted regions’ 

gamma distributions. In [6], complex Wishart distribution features are used with Chernoff distance for 

agglomerative hierarchical clustering. In [7], level set segmentation is used together with the SAR 

Wishart distribution model. In [8], GLCM calculated on the Gabor filter results in the brushlet space 

used for SAR clustering. 

The article is structured as follows: Section 2 gives information about the proposed feature 

extraction method (curvelet subband µ, σ features), together with benchmark feature sets. In Section 3, 

the test site, data format and clustering methods implemented are introduced. In Section 4, 

experimental results are presented with several measures: first, the experimental setup is introduced, 

followed by a presentation of the accuracies, and finally, clustering maps are given as a means of 

visual comparison. Section 5 concludes the work emphasizing the important findings.  

2. Proposed Method 

The proposed feature extraction method (curvelet subband µ, σ features) is introduced together with 

the benchmark methods (original data, speckle reduced data, polarimetric decomposition features) in 

this section. 
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2.1. Benchmark Feature Sets 

2.1.1. Original Data 

The original data is used as a base benchmark feature set for comparison. The original data features 

are constructed as taking the absolute values of the upper triangular matrix of the coherency matrix. 

Original data has six features per sample. 

2.1.2. H/A/α Polarimetric Decomposition 

Eigenvalue decomposition of the coherency matrix results in occurrence probabilities of three 

different scattering processes. The occurrence probabilities Pj (j = 1, …, 3) of these scattering processes are 

the ratios of relevant eigenvalue λj by the sum of all eigenvalues and can be given in Equation (1) [9].  

𝑃𝑗 =
λ𝑗

λ1 + λ2 + λ3
 (1) 

The measure of randomness in the whole scattering process entropy H can be given in Equation (2) 

based on scattering process probabilities where 0 ≤ H ≤ 1. The lower value of H indicates one 

dominant scattering process, whereas higher value shows that there is volume scattering and the 

overall scattering is more random. 

𝐻 = − 𝑃𝑗 log3 𝑃𝑗

3

𝑗=1

 (2) 

The anisotropy A is the measure of difference in secondary scattering mechanisms and can be given 

in Equation (3). Anisotropy provides complementary information to entropy and helps explaining the 

surface scatterer. 

𝐴 =
λ2 − λ3

λ2 + λ3
 (3) 

The α value is the average of polarization dependence of scattering processes and can be given in 

Equation (4). In Equation (4) αj values correspond to polarization dependence of three different 

scattering processes. 

α = 𝑃1α1 + 𝑃2α2 + 𝑃3α3 (4) 

H/A/α polarimetric decomposition features used in this work are calculated by the PolSARpro 

software provided by the European Space Agency (ESA). Polarimetric decomposition is carried out for 

a window size of 5 × 5. H/A/α data has three features per sample. 

2.1.3. Speckle Reducing Anisotropic Diffusion (SRAD) Filtered Data 

SAR images contain speckle noise that highly affects the image quality. Among several speckle 

filters that are defined in the literature, the speckle reducing anisotropic diffusion (SRAD) filter comes 

forward with its properties and success. The SRAD filter is a nonlinear anisotropic diffusion technique 

that preserves edge-like features and can reduce noise in homogenous regions [10]. Unlike other 

existing diffusion techniques that use log-compressed data, SRAD can process data directly. The 
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SRAD filter is defined as an iterative method that updates the image according to instantaneous local 

statistics and variations. In [10], it is shown that SRAD performs better than conventional anisotropic 

diffusion, Lee filter and enhanced Frost filter by means of smoothing and edge preserving. For an 

image, I update value for iteration step t can be given in Equation (5). 

𝜕𝐼

𝜕𝑡
= 𝑔 𝑞 ∙ 𝑑𝑖𝑣 ∇𝐼  (5) 

In Equation (5) 𝑑𝑖𝑣 represents divergence operator, ∇ is used for gradient operator, 𝑔 represents a 

smoothing-limiting function and 𝑞 is given as the local statistics value. The 𝑞 value gives local variation 

degree based on gradient and Laplace operators as given in Equation (6). ∆ represents the Laplace operator. 

𝑞 =   
1

2
 
 ∇𝐼 

𝐼
 

2

−
1

16
 
∆𝐼

𝐼
 

2

  1 +
∆𝐼

4 ∙ 𝐼
 

2

  (6) 

𝑔 smoothing-limiting function adjusts the degree that image gradient is effective on the update 

amount. 𝑔 function, given in Equation (7), is set to give 1 for a 𝑞0 value which is calculated from a 

homogenous region. 

𝑔 𝑞 = 𝑒𝑥𝑝 −  𝑞2 − 𝑞0
2 𝑞0

2 1 + 𝑞0
2    (7) 

𝑞0  can be calculated by 𝑄  and ρ parameters and iteration step 𝑡  as given in Equation (8). 𝑞0  in 

Equation (8) reaches zero as the iteration step increases. 

𝑞0 ≈ 𝑄 ∙ 𝑒𝑥𝑝 −𝜌𝑡  (8) 

The effecting parameters for SRAD filter can be summarized as 𝑄 value, ρ value and number of 

iterations. Applying SRAD speckle noise reduction for each element of the upper triangular part of the 

coherency matrix results in six features per sample. 

2.2. Curvelet Transform Subband Statistical Moments 

Curvelet transform (CT) is a multidirectional multiscale transform that can extract local spatial and 

textural features. Compared to wavelet and similar transforms, it can be said that curvelet transform 

can represent curve-like features with greater sparsity [11]. CT is closely related to frequency-domain 

wedge filters, short-time Fourier transform, wavelet transform, Gabor wavelet transform, ridgelet 

transform, contourlet transform and other directional wavelet transforms. The definition and 

implementation for CT is given in two forms in the literature, namely unequally spaced fast Fourier 

transform and wrapping of specially selected Fourier samples [12]. 

Curvelet transform is mostly utilized for speckle noise reduction in SAR image processing.  

In content-based image retrieval (CBIR) literature, two forms of curvelet-based feature extraction is 

introduced: the first one assumes curvelet subbands are normally distributed and estimates Gaussian 

distribution (GD) parameters, and the second one assumes curvelet subbands are distributed according 

to generalized Gaussian distribution (GGD) and estimates GGD parameters [13].  

Curvelet-based, histogram of curvelets (HoC) feature extraction method is introduced in our 

previous work together with the first implementation of curvelet subband GGD parameter estimation 

features for SAR image classification [14]. In our previous work, using only one element of the 
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coherency matrix, histograms for each normalized curvelet subbands are cascaded to form a feature 

vector per pixel. The results show that the proposed HoC feature extraction method gives the best 

classification accuracies for most of the test setups but when the number of training samples are 

heavily reduced, SRAD results overtake by means of classification accuracy. In this work using all of 

the elements of coherency matrix, curvelet subband GD parameters are cascaded to form a feature 

vector to be used in clustering. 

Curvelet family for a continuous domain is composed of directional wedge filter results of 

concentric scales together with a low pass component in the frequency domain. Frequency domain 

continuous curvelet transform tiling is given with Figure 1a. Continuous curvelet transform Uj,ℓ (r,θ) at 

scale 2
−j

 (for j ≤ j0) and rotation θℓ in the frequency domain for signals of R
2
 is defined with ω 

frequency domain Cartesian variables, r, θ frequency domain polar variables, W radial windowing 

function and periodic with 2π radians V angular windowing function as in Equation (9). The ranges for 

the variables can be given as: r ≥ 0, θ ∈ [0, 2π), j ∈ N0, ℓ ∈ N0, θℓ = 2πℓ2
−⌊j/2⌋. j parameter is an element 

of positive natural numbers and defines a 2−𝑗  scaling for the windowing function, Uj,ℓ term is given to 

address one of several frequency domain windows at scale 2
−j

 and orientation θℓ. 

𝑈𝑗 ,ℓ 𝑟, θ = 2
−3𝑗

4 𝑊  2−𝑗𝑟 𝑉  
2⌊𝑗 2 ⌋ θ − θℓ 

2𝜋
  (9) 

The scale where j ≤ j0 is given as the coarse curvelet represents the low pass component. Coarse 

curvelet can be given with W0 windowing function in Equation (10). 

𝑈𝑗0
 𝛚 = 2−𝑗0𝑊0  2−𝑗0  𝛚   (10) 

Figure 1. (a) Continuous curvelet transform frequency domain tiling; (b) Discrete curvelet 

transform frequency domain tiling. 

  

(a) (b) 

Curvelet transform spatially is given with the Fourier pair of F{φ(x)}=U(ω). φ is obtained as a 

Gauss filtered oscillating function. All together parabolic scaled (unequal stretching at different axis) 

with Dj, rotated with Rθℓ and translated with k = (k1, k2) ∈ R
2
 versions of φ give the spatial curvelet 

family. The spatial curvelet family can be given in Equation (11). 
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φ𝑗 ,ℓ,𝒌 𝒙 =  𝐷𝑗  φ  𝐷𝑗𝑅𝜃ℓ
 𝒙 − 𝒌  , 𝑅𝜃ℓ

=  
cos θℓ sin θℓ
−sin θℓ cos θℓ

 , 𝐷𝑗 =  2𝑗 0
0 2𝑗 2 

  (11) 

Spatial counterpart of the coarse curvelet can be given in Equation (12). 

φ𝑗0 ,𝒌 𝒙 = φ𝑗0
 𝒙 − 2−𝑗0𝒌  (12) 

Given the spatial curvelet family, curvelet transform coefficients 𝑐  of a continuous signal f is 

obtained as the inner product of the function and the curvelets as in Equation (13), where φ  denotes 

complex conjugate. 

𝑐 𝑗, ℓ, 𝒌 = ⌌𝑓, 𝜑𝑗 ,ℓ,𝒌⌍ =  𝑓 𝒙 𝜑𝑗 ,ℓ,𝒌 𝒙            𝑑𝒙
 

ℝ2

 (13) 

Taking together into account any two origin reflection curvelets (Uj,ℓ(r,θ) + Uj,ℓ(r,θ + π)) results in 

real valued curvelet transform coefficients. 

Discrete curvelet family in the frequency domain is defined as shear filters at concentric square 

windows as given in Figure 1b. The discrete curvelet transform coefficients c
D
 of a discrete signal  

f [t1, t2] of size n × n based on spatial discrete curvelet family φ
D
 can be given as an inner product in 

Equation (14). 

𝑐𝐷 𝑗, ℓ, 𝒌 =  𝑓 𝑡1, 𝑡2 φ𝑗 ,ℓ,𝒌
𝐷  𝑡1, 𝑡2 

               
 

0≤𝑡1 ,𝑡2≤𝑛

 (14) 

Curvelet transform family spatially is illustrated in Figure 2 with different orientations and scales 

together with the coarse curvelet presented in the frequency domain and spatially. 

Figure 2. (a) Discrete curvelet transform coefficients spatially left to right orientations of 

3π 4 , π 2 , π 4 , 0, top to bottom scales 4, 3, 2; (b) Discrete coarse curvelet coefficients 

in the frequency domain; (c) Discrete coarse curvelet coefficients spatially. 

 

(a) 
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Figure 2. Cont. 

  

(b) (c) 

Curvelet-based subband GD parameter estimation feature extraction for SAR image is carried out 

first with taking the curvelet transform of a window around the pixel of interest. Based on the number 

of orientations and scales used for curvelet transform, the number of curvelet subbands varies. Feature 

extraction for a pixel and its neighbors can then be carried out as calculating the mean and standard 

variation values for each subband and cascading them. Supposing S number of subbands and six 

elements of the coherency matrix, the number of features for each pixel can be given as 2 × S × 6.  

Curvelet-based feature extraction is important as it emphasizes spatial locality and can extract 

agricultural field furrow-like features naturally. 

3. Dataset Description and Clustering Methods 

This section is divided into two subsections mainly focusing on the dataset description and 

clustering methods used, respectively. 

3.1. Dataset Description 

Test materials for this work are from widely used Flevoland data acquired by AirSAR platform. 

Flevoland is mostly regained from sea and is located in the middle of the Netherlands as given in 

Figure 3. Air SAR data of Flevoland is in the form of multispectral (P, L and C bands) full polarimetric 

(V[ertical]V, VH[orizantal], HV, VV polarizations) modes. The nominal spatial resolution is given 

between 5 and 10 m. The C band full polarimetric data is used for clustering of crop lands in this work. 

The region of interest (ROI) area, that is 320 × 200 pixels in size, is given in Figure 3c with false 

coloring. Ground truth label map of the ROI region is given in Figure 4. 

Flevoland data is provided in T3 format, which is the average coherency matrix of reduced Pauli 

decomposition vector for each pixel over number of looks 𝐿. The Pauli decomposition vector k and the 

definition of coherency matrix Ω can be given in Equations (15) and (16), respectively, based on 

polarimetric backscattering amplitudes ( 𝑆𝑕𝑕 : horizontally polarized transmitter and horizontally 

polarized receiver, 𝑆𝑕𝑣 : horizontally polarized transmitter and vertically polarized receiver, 

𝑆𝑣𝑕 : vertically polarized transmitter and horizontally polarized receiver, 𝑆𝑣𝑣 : vertically polarized 

transmitter and vertically polarized receiver). The elements of reduced Pauli decomposition vector 



Remote Sens. 2014, 6 5504 

 

 

correspond to odd bounce scattering, even bounce scattering and volume scattering components, which 

can be utilized to understand the underlying physical properties of the landcover.  

𝒌 =
1

 2
 

𝑆𝑕𝑕 + 𝑆𝑣𝑣
𝑆𝑕𝑕 − 𝑆𝑣𝑣
𝑆𝑕𝑣 + 𝑆𝑣𝑕

 ∈ ℂ3×1 (15) 

Figure 3. (a) Location of Flevoland test site; (b) False coloring of Flevoland data; (c) False 

coloring of Flevoland ROI data. 

 

(a) 

 

 

(b) (c) 
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Figure 4. (a) Flevoland ROI labels; (b) Flevoland ROI class information. 

 

Label Class # of Samples 

0 No Labels - 

1 Bare Soil 592 

2 Grass 5117 

3 Sugar Beet 3216 

4 Rapeseed 690 

5 Winter Wheat 1 1173 

6 Winter Wheat 2 4140 

7 Lucerne 1549 

8 Potatoes 5986 

9 Stem Beans 442 

Total # of samples 22,905 
 

(a) (b) 

Coherency matrix is formed as the average of Pauli decomposition vector multiplied by its 

Hermitian (conjugate transpose) over number of looks. The coherency matrix contains second order 

moments of the scattering process and can be used to describe the correlation properties of natural 

scatterers [9]. 

𝛀 =
1

𝐿
 𝒌ℓ𝒌ℓ

𝐻

𝐿

ℓ=1

 (16) 

Coherency matrix (3 × 3 matrix) is obtained as a Hermitian matrix, which means conjugate 

transpose of the matrix is equal to itself. For that reason, commercially, SAR data is provided as real 

diagonal values of the coherency matrix together with real and imaginary parts of the strictly upper 

triangular matrix.  

3.2. Clustering Methods 

3.2.1. K-Means Clustering  

K-means algorithm is defined for clustering 𝑛 distinct samples into total of 𝑐 clusters (𝐺𝑖 , 𝑖 = 1,… , 𝑐). 

The algorithm minimizes the cost function 𝐽 with respect to optimum 𝑐 cluster centers based on total 

distance of samples to the cluster centers 𝑐𝑖  that they belong to, given in Equation (17). In Equation (17), 

𝑐𝑖  corresponds to the center of mass for clusters and 𝑑 𝑥𝑘 − 𝑐𝑖  to distance between 𝑖’th center and 

associated 𝑘’th sample. 

𝐽 =   𝑑 𝑥𝑘 − 𝑐𝑖 

𝑘,𝑥𝑘∈𝐺𝑖

𝑐

𝑖=1

 (17) 
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K-means associates each sample with one cluster. This can be expressed in Equation (18) with  

c × n-sized binary membership matrix U, in which each row sums up to 1. Each element 𝑢𝑖𝑗  of the 

matrix 𝑈 is 1 if the 𝑗’th sample belongs to cluster i and 0 if not. 

𝑢𝑖𝑗 =  1, 𝑓𝑜𝑟𝑒𝑎𝑐𝑕 𝑘 ≠ 𝑖 𝑖𝑓  𝑥𝑗 − 𝑐𝑖 
2
≤  𝑥𝑗 − 𝑐𝑘 

2

0, 𝑒𝑙𝑠𝑒
  (18) 

Centers of the clusters are calculated in Equation (19) as the average of the samples of each cluster. 

Here  𝐺𝑖  shows the number of samples in cluster 𝐺𝑖 . 

𝑐𝑖 =
1

 𝐺𝑖 
 𝑥𝑘

𝑘,𝑥𝑘∈𝐺𝑖

 (19) 

K-means algorithm can be given iteratively as Algorithm 1 [15]. K-means does not guarantee an 

optimum result as it is heavily dependent on initial cluster centers. 

Algorithm 1: K-means 

IN 𝑐, 𝑥𝑗=1…𝑛  

𝑐𝑖  ← randomly selected number of 𝑐 samples from 𝑥𝑗  

repeat 

 𝑢𝑖𝑗  ← calculate membership for each sample 𝑥𝑗  with Equation (18) 

 𝑐𝑖  ← calculate new cluster centers for each cluster with Equation (19) 

until  𝐽𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐽𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  < 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 

OUT 𝑐𝑖=1…𝑐  

3.2.2. Fuzzy C-Means (FCM) Clustering 

Fuzzy C-means, which utilizes fuzzy valued memberships for clusters, is different from k-means as 

k-means has strict binary membership values. In FCM, each sample is assigned a membership value 

for each cluster that sums up to 1 over all clusters per sample. This membership can take values 

between 0 and 1. Cost function 𝐽  for FCM is given in Equation (20). Here 𝑢𝑖𝑗  defines the fuzzy 

membership value of sample 𝑗 to cluster 𝑖, whereas 𝑑𝑖𝑗  is the distance from cluster center 𝑐𝑖  to sample 

𝑥𝑗  and 𝑚 ∈   1,∞   is the fuzzification coefficient. 

𝐽 =   𝑢𝑖𝑗
𝑚𝑑𝑖𝑗

2

𝑛

𝑗=1

𝑐

𝑖=1

 (20) 

Each cluster center 𝑐𝑖  can be given based on fuzzy membership values 𝑢𝑖𝑗  in Equation (21). 

𝑐𝑖 =
 𝑢𝑖𝑗

𝑚𝑥𝑗
𝑛
𝑗=1

 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

 (21) 

Fuzzy membership values 𝑢𝑖𝑗  for each sample can be calculated based on cluster centers 𝑐𝑖 , as in 

Equation (22). 

𝑢𝑖𝑗 =
1

  
𝑑𝑖𝑗

𝑑𝑘𝑗
 

2  𝑚−1  
𝑐
𝑘=1

 
(22) 
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FCM algorithm can be given iteratively as Algorithm 2 [15]. FCM does not guarantee optimum 

cluster centers as it is heavily dependent on initial fuzzy membership values. 

Algorithm 2: FCM 

IN 𝑐, 𝑥𝑗=1…𝑛 , 𝑚 

𝑢𝑖𝑗  ← randomly initialize fuzzy membership values 

repeat 

 𝑐𝑖  ← calculate new cluster centers for each cluster with Equation (21) 

 𝑢𝑖𝑗  ← calculate fuzzy membership foreach sample 𝑥𝑗  with Equation (22) 

until  𝐽𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐽𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  < 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 

OUT 𝑐𝑖=1…𝑐  

3.2.3. Spatial Fuzzy C-Means (sFCM) Clustering 

Spatial fuzzy c-means is defined as diffusion of feature space fuzzy membership values through 

spatial neighborhood membership values [16]. In each iteration, spatial fuzzy membership values (𝑕𝑖𝑗 ) 

are calculated based on feature space fuzzy membership values (𝑢𝑖𝑗 ) and those two values are fused 

together to form the overall fuzzy membership (𝑢𝑖𝑗
′ ) of a sample. Spatial fuzzy membership 𝑕𝑖𝑗  of 

samples for a w × w neighborhood window 𝑁𝐵 can be given in Equation (23) based on feature space 

fuzzy membership values. 

𝑕𝑖𝑗 =  𝑢𝑖𝑘

𝑘∈𝑁𝐵 𝑥𝑗  

 
(23) 

Feature space fuzzy membership values can be fused together with the spatial fuzzy membership 

values to form fuzzy membership values as in Equation (24) [17]. 

𝑢𝑖𝑗
′ =

𝑢𝑖𝑗
𝑝 𝑕𝑖𝑗

𝑞

 𝑢𝑘𝑗
𝑝 𝑕𝑘𝑗

𝑞𝑐
𝑘=1

 (24) 

sFCM algorithm can be given iteratively as Algorithm 3. 

Algorithm 3: sFCM 

IN 𝑐, 𝑥𝑗=1…𝑛 , 𝑚, 𝑁𝐵, 𝑝, 𝑞 

𝑢𝑖𝑗  ← randomly initialize fuzzy membership values 

repeat 

 𝑐𝑖  ← calculate new cluster centers foreach cluster with Equation (21) 

 𝑕𝑖𝑗  ← calculate spatial fuzzy membership foreach sample 𝑥𝑗  with Equation (23) 

 𝑢𝑖𝑗
′  ← calculate fuzzy membership foreach sample 𝑥𝑗  with Equation (24) 

 𝑢𝑖𝑗  ← calculate feature space fuzzy membership foreach sample 𝑥𝑗  with Equation (22) 

until  𝐽𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝐽𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠  < 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 

OUT 𝑐𝑖=1…𝑐  
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3.2.4. Two-Dimensional Self-Organizing Maps (2D-SOM) 

2D-SOM is a two-dimensional unsupervised clustering algorithm, which can be defined with a  

four-neighbor rectangular grid or three-neighbor hexagonal grid artificial neural network structure, 

used to transform the input space into a two-dimensional projection space preserving topology [18]. 

SOM structure can be given for a total of 𝑀 neurons, 𝑿 ∈ 𝑅𝑛  𝑛 dimensional input vectors and 𝑤𝑀×𝑛  

weights from input layer to neurons. SOM algorithm is an iterative method that updates the most 

similar neuron to an input and its neighboring neurons’ weights in such a way that resemblance is 

increased to that input. The most similar neuron at iteration step 𝑡 to an input 𝒙 is called the winning 

neuron 𝑣 and can be defined with neuron weight 𝒘 as given in Equation (25). Here 𝑆 represents the set 

of SOM neurons. 

𝜈 𝑡 = argmin
𝑘∈𝑆

 𝒙 𝑡 − 𝒘𝑘 𝑡   (25) 

How much the other neurons (indexed with 𝑘) are to be updated together with the winning neuron 

(indexed with 𝑣) can be defined with 𝑟𝑖  position vector of i’th neuron, and ς(𝑡) decreasing effective 

neighbor-distance-function as in Equation (26). 

𝜂 𝜈, 𝑘, 𝑡 = 𝑒
−
 𝒓𝜈−𝒓𝑘 

2

2ς2 𝑡  (26) 

The weight update can be defined with distance of the input 𝑥 to the winning neuron, neighboring 

distance of other neurons to the winning neuron and adaptation coefficient 𝑎 as in Equation (27). α can 

be chosen to be a monotonically decreasing linear, exponential or rational function. 

∆𝒘𝑘 𝑡 = 𝛼 𝑡 𝜂 𝜈, 𝑘, 𝑡 [𝒙 𝑡 − 𝒘𝜈 𝑡 ] 

𝒘𝑘 𝑡 + 1 = 𝒘𝑘 𝑡 + ∆𝒘𝑘 𝑡  
(27) 

2D-SOM algorithm can be given iteratively as Algorithm 4 [19]. 

Algorithm 4: 2D-SOM 

IN 𝑀, 𝑋, ς, α 

𝑤𝑀×𝑛  ← randomly initialize weight values 

repeat 

 foreach 𝑥𝑖  

  𝑣𝑖(𝑡) ← calculate winning neuron with Equation (25) 

  Update winning neuron and its neighboring weights with Equation (27) 

 end for each 

until   ∆𝒘𝑘 𝑡 < 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑  or (max_number_of_iterations) is reached 

OUT 𝑤𝑀×𝑛  

4. Experimental Results 

Experiments are conducted for each feature extraction method paired together with the 

aforementioned clustering methods. For the clustering methods, a number of clusters are chosen to be 

equal to the number of classes, except for the 2D-SOM, where a higher number of clusters is 

constructed. In the literature, clustering performance evaluation without ground truth is carried out by 
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cluster validation measures, whereas with ground truth information, accuracy calculation after cluster 

labeling can be used as a performance measure. In 2D-SOM, each cluster is labeled with the majority 

of the sample labels, whereas in the rest of the methods labeling is carried out by maximizing the 

overall accuracy in a one-to-one correspondence manner. Kappa values together with the clustering 

accuracies according to known labels are given as performance measures.  

Curvelet subband GD parameter estimation feature extraction is carried out for window size 33 × 33, 

number of scales 2 and number of orientations 16 (as a result 17 subbands per coherency matrix 

element). Thus, the number of features per pixel can be given as 204 (17 subbands × 6 elements of 

coherency matrix × 2 features) for curvelet subband GD parameter estimation. This method is denoted 

in the tables as μ, ς. It should also be noted that curvelet subband features are normalized feature-wise 

prior to being fed to clustering methods.  

Experimental results are presented in two forms based on clustering accuracies and clustering maps. 

Clustering accuracies are given according to overall accuracies and Kappa values are able to assess the 

performance of the proposed feature extraction method compared with standard benchmark features. 

Clustering accuracies are also further analyzed for higher number of clusters for clustering methods  

(k-means, FCM, sFCM) that practically use the same number of clusters as class labels. Clustering 

maps are given in order to be able to provide visual comparison between feature extraction methods on 

each clustering method. 

4.1. Accuracies and Errors 

K-means clustering accuracies are given in Table 1 for the average of 20 runs for each feature 

extraction method. The best clustering accuracy is achieved for SRAD features with k-means 

algorithm up to 65.41% with the experiments. 

Table 1. K-means overall clustering accuracies. 

Feature Extraction Clustering Accuracy (%) 

ORG 38.06 

SRAD 65.41 

H/A/𝛂 44.68 

𝛍, 𝛔 44.50 

FCM clustering overall accuracies are given in Table 2 for the average of 20 runs. It can be seen 

from Table 2 that clustering overall accuracies can be increased compared to hard membership  

k-means, with the introduction of fuzzy cluster memberships. It should also be noted that as the 𝑚 

value increases, the threshold constraint is met at a small number of iterations. Feature extraction 

methods can be ordered with respect to clustering accuracies as SRAD, μ, ς features, original data and 

H/A/α for FCM method. 

sFCM clustering method results are calculated for a fixed fuzzy membership value (m = 2), various 

feature-space and spatial fuzzy membership values (𝑝, 𝑞 ∈  0,1,2,4,8 ) and different window sizes 

(𝑤 ∈  5,11,21 ). sFCM results of the 20-run averages for best clustering accuracy yielding parameters 

are given in Table 3. Compared to k-means and FCM, it can be said that the introduction of spatial 

information through clustering iterations with sFCM, enhanced clustering accuracy for H/A/α more 
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than the curvelet subband µ, σ features. The best clustering accuracy for sFCM is achieved by SRAD 

features up to 85.11%.  

Table 2. FCM overall clustering accuracies. 

 Feature Extraction 

 𝒎 Values ORG SRAD H/A/𝛂 𝛍, 𝛔 

O
v

er
a

ll
 a

cc
u

ra
ci

es
 f

o
r 

 

d
if

fe
re

n
t 
𝒎

 v
a

lu
es

 (
%

) 

1.1 37.86 66.42 44.58 48.66 

1.2 38.02 66.64 44.52 48.72 

1.4 38.15 63.05 44.40 49.33 

2 38.68 59.17 43.23 48.42 

3 40.00 51.92 39.63 43.25 

4 39.99 50.11 41.04 40.72 

8 42.57 52.14 43.65 38.53 

16 47.58 65.64 46.16 47.95 

32 43.99 65.17 42.06 47.49 

64 40.85 62.52 41.53 48.63 

Table 3. The best sFCM overall clustering accuracies for fixed 𝑚 = 2 and corresponding 

parameter values. 

Feature Extraction Clustering Accuracy (%) 𝒑 𝒒 𝒘 

ORG 47.49 0 1 11 

SRAD 85.11 4 2 21 

H/A/𝛂 67.29 0 2 21 

𝛍, 𝛔 61.98 0 8 21 

2D-SOM clustering results are calculated for 7 × 7, 9 × 9, 11 × 11 and 13 × 13-sized hexagonal grid 

networks and 3, 4, 5 and 6 initial neighborings respectively. 2D-SOMs run for 1000 iterations and 

resulting clusters are labeled as the majority label they contain. In Table 4, overall clustering 

accuracies are given together with the number of unique labels assigned in parenthesis. SRAD features 

with 7 × 7 and 9 × 9 SOM networks have better clustering accuracies compared to µ, σ features, 

whereas as the network grows µ, σ features presents better accuracies. It can be inferred from the 

results in Table 4 that SRAD extracts similar features and curvelet subband GD parameter estimation 

extracts discriminating features. Thus with SRAD as the network grows, 2D-SOM cannot set 

previously clustered together samples apart clearly. On the other hand, with µ, σ features, as the 

network grows and the number of clusters increases, the use of discriminating features results in 

labeled samples falling into similar clusters. 

The confusion matrices results from 2D-SOM with 13 × 13 topology for SRAD and curvelet 

subband µ, ς features are given in Tables 5 and 6, respectively. 
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Table 4. 2D-SOM overall clustering accuracies. 

Feature Extraction 
Accuracies (%) for SOM Size 

7 × 7 SOM 9 × 9 SOM 11 × 11 SOM 13 × 13 SOM 

ORG 61.36 (4) 62.13 (6) 63.15 (6) 64.28 (7) 

SRAD 89.29 (9) 90.09 (9) 91.59 (9) 91.90 (9) 

H/A/𝛂 60.90 (8) 61.89 (8) 62.82 (9) 63.39 (9) 

𝛍, 𝛔 86.24 (9) 89.68 (9) 93.00 (9) 94.94 (9) 

Table 5. Cluster confusion matrix for SRAD features. 

Actual 

Labels 

SRAD Cluster Labels Total 

Samples 1 2 3 4 5 6 7 8 9 

1 567 19 0 0 0 6 0 0 0 592 

2 21 4773 24 2 3 100 194 0 0 5117 

3 1 16 3107 3 5 13 25 41 5 3216 

4 1 3 13 653 7 13 0 0 0 690 

5 2 10 18 9 1010 114 6 3 1 1173 

6 5 105 15 28 63 3902 17 2 3 4140 

7 0 670 35 0 0 19 825 0 0 1549 

8 0 4 151 1 0 6 0 5786 38 5986 

9 0 12 2 0 0 0 0 2 426 442 

Table 6. Cluster confusion matrix for curvelet subband μ, ς features. 

Actual 

Labels 

𝛍, 𝛔 Cluster Labels Total 

Samples 1 2 3 4 5 6 7 8 9 

1 506 65 0 0 0 12 9 0 0 592 

2 31 4850 41 0 0 1 109 51 34 5117 

3 0 54 3098 6 0 1 54 3 0 3216 

4 0 0 0 690 0 0 0 0 0 690 

5 0 0 22 1 1091 33 0 26 0 1173 

6 0 16 16 30 0 4078 0 0 0 4140 

7 0 284 128 0 0 64 1059 14 0 1549 

8 0 16 20 0 3 0 13 5934 0 5986 

9 0 2 0 0 0 0 0 0 440 442 

The most confused labels and the number of confusions for SRAD with 13 × 13 2D-SOM can be 

listed as (label1–label2: sum of # of mislabeled samples): 2–7:864 (670 + 194), 2–6:205, 3–8:192,  

5–6:177. The most confused labels and the number of confusions for curvelet subband µ, σ features 

with 13 × 13 2D-SOM can be listed as (label1–label2: sum of # of mislabeled samples): 2–7:393,  

3–7:182, 1–2:96. The most mislabeling occurs with labels 2 (grass) and 7 (lucerne), which can be 

considered alike by means of vegetation structure and therefore by SAR backscattering mechanism. 

This result can also be seen in 2D-SOM spatial node labels, where almost the only neighbors for 

Lucerne-labeled clusters are grass-labeled clusters. 

Kappa values for the best clustering accuracies are given in Table 7. Kappa value can be considered 

as differentiation from the expected value of random labeling accuracies and is given as Equation (28), 
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where 𝑃(𝑎)  is the confusion matrix accuracy probability and 𝑃(𝑒)  is the probability of random 

labeling. Overall the best Kappa value as 0.9382 is reached with the use of µ, σ features in 13 × 13 

topology 2D-SOM. SRAD features again with 13 × 13 topology-SOM are placed second with Kappa 

value 0.9009. 

𝜅 =  
𝑃 𝑎 − 𝑃 𝑒 

1 − 𝑃 𝑒 
 (28) 

Table 7. Kappa values. 

Features ORG SRAD H/A/𝛂 𝛍, 𝛔 

C
lu

st
er

in
g
 

M
et

h
o

d
s K-Means 0.2521 0.5329 0.3686 0.3614 

FCM 0.3237 0.6106 0.3135 0.4111 

sFCM 0.3491 0.8350 0.6223 0.5492 

Overall evaluation of feature extraction methods on k-means, FCM and sFCM together with 2D-SOM 

is also carried out with higher number of clusters for 20 runs. That is k-means, FCM, sFCM are 

evaluated with 50, 100 and 150 clusters and labels are given the same way as in 2D-SOM. FCM is run 

for 𝑚 = 2, sFCM is run for 𝑚 = 2, 𝑝 = 1, 𝑞 = 1 and 𝑤 = 21. The results are given in graphical form 

with x-axis showing number of clusters and y-axis showing accuracies as in Figure 5.  

Figure 5. Comparison of accuracies of feature extraction methods on (a) k-means;  

(b) FCM; (c) SRAD and (d) 2D-SOM, with different number of clusters. 

  

(a) (b) 

  

(c) (d) 
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It can be seen from the graphs in Figure 5 that curvelet subband µ, σ features starts with slightly 

lower accuracy compared to SRAD in all clustering methods; however, with the increasing number of 

clusters curvelet subband µ, σ features reach up to the SRAD accuracies. In 2D-SOM clustering 

curvelet subband µ, σ features gives even better accuracies compared to SRAD. The sFCM method is 

also run with 169 clusters for SRAD and curvelet subband µ, σ features, and accuracies of 94.82% and 

94.67% are obtained respectively. The best accuracy overall is obtained by 13 × 13 2D-SOM with curvelet 

subband µ, σ features with 94.94%. These results are also consistent with nine cluster results of  

k-means, FCM and sFCM. 

Practically, feature extraction in SAR images is conducted following a speckle noise reduction step. 

However, the proposed feature extraction method can be carried out without speckle reduction, as it 

utilizes spatial features naturally by curvelet transform. Moreover as the curvelet subband features are 

extracted on averages and standard deviations the disturbing effect of speckle noise can be eliminated 

to some extent. Results from Table 1 to Table 4 and graphs from Figure 5 suggest that the proposed 

method is as accurate as SRAD features or even better at some experimental setups thereby 

demonstrating that the proposed method is robust against speckle noise. 

4.2. Clustering Maps 

K-means clustering maps are given in Figure 6 together with labels and the label map. Using only 

feature space hard memberships and similarity measures to cluster centers, k-means clustering mappings 

result in cluttered small regions for original data and H/A/α, whereas bigger homogeneous regions can 

be seen for SRAD and µ, σ features where spatial information is diffused through feature extraction.  

Figure 6. K-means clustering maps for (a) original data; (b) SRAD; (c) H/A/α; (d) curvelet 

subband µ, σ features; (e) Label map and (f) class labels. 

   

(a) (b) (c) 
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Figure 6. Cont. 

  

Label Class 

1 Bare Soil 

2 Grass 

3 Sugar Beet 

4 Rapeseed 

5 Winter Wheat 1 

6 Winter Wheat 2 

7 Lucerne 

8 Potatoes 

9 Stem Beans 
 

(d) (e) (f) 

FCM clustering maps for the best clustering accuracy yielding 𝑚 values are given in Figure 7 

together with labels and the label map. In Figure 7, clustering maps are given for original data with 

𝑚 = 16, SRAD with 𝑚 = 1.2, H/A/α features with 𝑚 = 16 and curvelet subband GD µ, σ parameter 

estimation features with 𝑚 = 1.4. 

Figure 7. The best overall accuracy yielding FCM clustering maps for (a) original data;  

(b) SRAD; (c) H/A/α; (d) curvelet subband μ, σ features; (e) Label map and (f) class labels. 

   
(a) (b) (c) 
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Figure 7. Cont. 

  

Label Class 

1 Bare Soil 

2 Grass 

3 Sugar Beet 

4 Rapeseed 

5 Winter Wheat 1 

6 Winter Wheat 2 

7 Lucerne 

8 Potatoes 

9 Stem Beans 
 

(d) (e) (f) 

sFCM clustering maps for the best clustering accuracy yielding parameters are given in Figure 8 

together with labels and the label map. Apart from spatial information being diffused by feature 

extraction in SRAD and curvelet µ, σ features, the introduction of spatial information through sFCM 

clustering steps also enables bigger homogeneous-labeled regions for all feature extraction methods. 

Figure 8. The best overall accuracy yielding sFCM clustering maps for (a) original data; 

(b) SRAD; (c) H/A/α; (d) curvelet subband μ, σ features; (e) Label map and (f) class labels. 

   

(a) (b) (c) 
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Figure 8. Cont. 
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(d) (e) (f) 

2D-SOM classification maps for 13 × 13 topologies are given in Figure 9. In analyzing 2D-SOM 

cluster mapping for SRAD, it can be seen that confusions in the labeling mostly occur at edges of the 

regions. This situation can be explained with SRAD preserving edges by definition. Cluster confusion 

can also be seen due to feature diffusion in neighboring regions both in SRAD and µ, σ features. 

Figure 9. The 13 × 13 topology 2D-SOM clustering maps for (a) original data; (b) SRAD; 

(c) H/A/α; (d) curvelet subband μ, σ features; (e) Label map and (f) class labels. 

   

(a) (b) (c) 
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Figure 9. Cont. 
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(d) (e) (f) 

2D-SOM nodes labeled as their majority labels are given in Figure 10 for 13 × 13 topology with 

consistent coloring from cluster mappings. This figure illustrates 2D-SOM node label neighborhood 

and gives insight for cluster label confusion. 

Figure 10. The 13 × 13 topology 2D-SOM node labels (a) original data; (b) SRAD;  

(c) H/A/α; (d) curvelet subband μ, σ features and (e) SOM node label legend. 

  

 Bare Soil 

 Grass 

 Sugar Beet 

 Rapeseed 

 Winter Wheat 1 

 Winter Wheat 2 

 Lucerne 
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 Stem Beans 
 

(a) (b) 

  

(c) (d) (e) 

5. Conclusions 

Unsupervised clustering is an important field of study in synthetic aperture radar (SAR) remote 

sensing. This study mainly focuses on curvelet-based feature extraction for clustering SAR images. 

The proposed method is based on defined multidirectional and multiscale curvelet transform that 

enables sparse representations for signals. The implementation originates from the method proposed in 

content-based image retrieval (CBIR) classification field and is based on curvelet subband Gauss 
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distribution (GD) µ, σ parameter estimation feature extraction. Therefore, the uniqueness of the study 

can be stated as the use of curvelet subband Gauss distribution µ, σ parameter estimation for feature 

extraction in clustering. Curvelet subband GD parameter estimation features are compared against 

original data, H/A/α polarimetric decomposition and speckle reduced data features with k-means, fuzzy 

c-means (FCM), spatial fuzzy c-means (sFCM) and two-dimensional self-organizing maps  

(2D-SOM) clustering methods by means of effect on clustering accuracy on a test site with ground 

truth information. The speckle reducing anisotropic diffusion (SRAD) method reveals the best 

clustering accuracies for k-means, FCM, sFCM and small-sized 2D-SOMs. Curvelet subband µ, σ 

features give the best clustering accuracies for bigger 2D-SOMs, which are also the best clustering 

accuracy overall as 94.94%. The results suggest that SRAD-based features can be considered as 

extracting similar features among samples, whereas curvelet-based features can be considered as 

extracting discriminating features. These results mainly rely on the test site restrictions which can be 

listed as: having low relief angle, and the land being suitable for land use classification. Apart from the 

discussed clustering methods, hierarchical clustering methods are also expected to perform well with 

discriminating features from curvelet subband GD parameter estimation. Also, as future work, feature 

selection and feature reduction can be implemented to the extracted curvelet subband features to 

increase accuracy. 
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