
Remote Sens. 2014, 6, 5589-5613; doi:10.3390/rs6065589 

 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

A Bayesian Based Method to Generate a Synergetic Land-Cover 

Map from Existing Land-Cover Products  

Guang Xu 
1,2

, Hairong Zhang 
3,
*, Baozhang Chen 

1,3,
*, Huifang Zhang 

1,2
, Jianwu Yan 

1,2
,  

Jing Chen 
1
, Mingliang Che 

1,2
, Xiaofeng Lin 

1,2
 and Xianming Dou 

1
 

1
 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic 

Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, 

Chaoyang District, Beijing 100101, China; E-Mails: xg1990@gmail.com (G.X.); 

zhf1268@gmail.com (H.Z.); yanjw2001@163.com (J.Y.); chenjinn@hotmail.com (J.C.); 

chemingliangs@163.com (M.C.); linxiaofeng.whu@gmail.com (X.L.);  

douxianming88@163.com (X.D.) 
2
 University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China 

3
 School of Environment Science and Spatial Informatics, China University of Mining and 

Technology, Xuzhou 221116, China 

* Authors to whom correspondence should be addressed; E-Mails: hairong-zhang@cumt.edu.cn (H.Z.); 

baozhang.chen@igsnrr.ac.cn (B.C.); Tel./Fax: +86-10-6488-9574. 

Received: 27 February 2014; in revised form: 4 June 2014 / Accepted: 10 June 2014 /  

Published: 16 June 2014 

 

Abstract: Global land cover is an important parameter of the land surface and has been 

derived by various researchers based on remote sensing images. Each land cover product has 

its own disadvantages and limitations. Data fusion technology is becoming a notable method 

to fully integrate existing land cover information. In this paper, we developed a method to 

generate a synergetic global land cover map (synGLC) based on Bayes theorem. A state 

probability vector was defined to precisely and quantitatively describe the land cover 

classification of every pixel and reduce the errors caused by legends harmonization and 

spatial resampling. Simple axiomatic approaches were used to generate the prior land cover 

map, in which pixels with high consistency were regarded to be correct and then used 

as benchmark to obtain posterior land cover map. Validation results show that our hybrid 

land cover map (synGLC, the dataset is available on request) has the best overall 

performance compared with the existing global land cover products. Closed shrub-lands 

and permanent wetlands have the highest uncertainty in our fused land cover map. 
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This novel method can be extensively applied to fusion of land cover maps with different 

legends, spatial resolutions or geographic ranges.  

Keywords: land cover; Bayes theory; data fusing; IGBP; remote sensing  

 

1. Introduction 

Land cover data describes physical material at the surface of the earth. It has great impacts on surface 

energy, carbon cycle, water balance and consequences of land use and land cover change [1–4]. Also, 

it is a basic parameter for many land surface models, such as Ecosystem-Atmosphere Simulation 

Scheme [5] and the Common Land Model [6]. Reliable and accurate land cover data provides key 

information for relevant environmental researches [7]. 

As shown in Table 1, various global land cover datasets have been produced based on remote sensing 

data, including Global Land Cover Classification [8,9] from University of Maryland Department of 

Geography (UMDLC), Global Land Cover Characterization (GLCC) Data Base [10,11], Global Land 

Cover map for year 2000 (GLC2000) from the European Commission Joint Research Centre [12,13], 

the Moderate-Resolution Imaging Spectroradiometer (MODIS) global land cover map products 

(MCD12Q1) developed by Boston University and coordinated by the MODIS Land Team from the 

National Aeronautics and Space Administration [14–16], and Global Land Cover Map (GlobCover) from 

the European Space Agency (ESA) in cooperation with an international network of partners [17,18]. 

Table 1. Land cover datasets used in this study. 

Dataset Coverage Year Spatial Resolution Legend Website 

UMDLC 1981–1994 1 km 14 classes [9] 

GLCC 1992–1993 1 km IGBP [11] 

GLC2000 2000 1/112 degree FAO LCCS [13] 

MCD12Q1 2005 500 m IGBP [16] 

GlobCover 2009 1/360 degree UN LCCS [18] 

GLCC was developed through a continent-by-continent unsupervised classification of 1-km monthly 

Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index 

(NDVI) composites covering a 12-month period (April 1992–March 1993). UMDLC was based on data 

from the AVHRR, using the classification tree approach [8]. GLC2000 was produced based on daily 

global data acquired by the Vegetation instrument on board the Systeme Probatoire d’Observation de la 

Terre (SPOT) 4 satellite [12]. MCD12Q1 was derived from observations spanning a year’s input of  

Terra- and Aqua-MODIS data. GlobCover2009 was generated using an automated processing chain 

from the 300-m Medium Resolution Imaging Spectrometer Instrument (MERIS) time series. 

Previous inter-comparisons of these data-sets [19–22] revealed marked disagreements and 

uncertainties among them. Several researchers tried to produce a hybrid global land cover map by fusion 

of existing land cover products [7,23,24]. See and Fritz [24] firstly produced a hybrid land cover map by 

fusion of the GLC2000 and MODIS products. Jung et al. [23] presented a method that merged existing 
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products into a new joint 1-km global land cover product with improved characteristics for the carbon 

cycle models. However, the individual strengths and weaknesses of the products were not considered, 

and did not provide validation or data quality assessment. Fritz et al. [25] then generated a synergy 

cropland map in sub-Saharan Africa from five global land cover products, which requires subjective 

ranking by experts and does not consider legends conversion. Perez-Hoyos et al. [7] developed a 

general framework of building a hybrid land-cover map for Europe using four land-cover data-sets. This 

approach can be applied to any set of existing products; however it requires enough training data, which 

limits its application to the global scale. 

The objective of this study is to produce a hybrid global land cover map by making use of all existing 

global land cover datasets with different legends and different spatial resolutions. A novel technique 

based on Bayes theorem was developed. Classification of each pixel in land cover map was represented 

by discrete probability distribution which more precisely describes state of land cover. The hybrid global 

land cover dataset was produced as the posterior distribution of a prior global land cover map. 

2. Materials 

2.1. Land-Cover Datasets 

Five global land cover datasets were used in this study, which are GLCC, UMDLC, GLC2000, 

MCD12Q1 version 051 for year 2005 and GlobCover for year 2009. GLCC was published in various 

classification legends, one of which with International Geosphere Biosphere Programme (IGBP) land 

cover classification was chosen in this study. UMDLC was developed with a 14-class labeling and 

shading schemes. GLC2000 uses the Food and Agriculture Organization (FAO) Land Cover 

Classification System (LCCS). MCD12Q1 is provided with five global land cover classification 

systems, among which IGBP legend was selected in this study. The GlobCover was associated with a 

legend defined and documented using the United Nations (UN) LCCS.  

These five land cover data-sets have different spatial resolutions and coverage years as shown in 

Table 1. How inconsistent classifications and spatial resolutions are harmonized will be described in 

Section 3.1. Even though some outdated maps were included, their aberrant classifications were 

recognized and valuable information was considered in our method. The different acquisition dates 

cannot account for the discrepancy among land cover maps, because land cover change cannot be 

detected due to insufficient accuracy of the individual land cover maps [23]. We therefore ignored the 

impacts of land cover changes when designing our fusion method. 

2.2. Validation Data 

Validation data used in this study (Table 2) were acquired from the Global Observation of Forest and 

Land Cover Dynamics (GOFC-GOLD) Land Cover Project Office in coordination with reference data 

producers, including consolidated GLC 2000 reference (GLC200ref) dataset [12], consolidated 

GlobCover 2005 reference (GlobCover2005ref) dataset [26,27], System for Terrestrial Ecosystem 

Parameterization (STEP) reference dataset [14,15,28–32] and Visible Infrared Imaging Radiometer 

Suite (VIIRS) Surface Type reference dataset [33,34].  
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GLC2000ref is the result of a consolidation work realized on the original GLC 2000 dataset  

with 1253 samples provided [12]. GlobCover-2005ref dataset is the result of a consolidation work 

realized on the original ESA-GlobCover 2005 dataset; it contains 4258 samples, globally distributed and 

selected according to a random stratified sampling [26,27]. STEP is maintained as a database of training 

polygons drawn on high spatial resolution imagery that can be extracted with GIS to produce a global 

land cover classification, which is the training site database of MCD12Q1 [14,15,28–32]. VIIRS Surface 

Type validation database is based on a stratified random sample of 500 blocks (5 × 5 km) 

globally [14,15,28–32]. The correct class of each sample according to the IGBP legend was identified by 

manual interpretation of very-high spatial resolution (<2 m) image; MODIS time series data were used 

to improve the interpretations. 

Table 2. Validation reference data used in this study. 

Validation Data Legend Sample Size 

GLC2000ref FAO LCCS 1253 

GlobCover2005ref UN LCCS 4258 

STEP IGBP 1780 

VIIRS IGBP 3667 

3. Method 

In this section, we describe our methodology for fusion of five land cover data-sets. The main steps of 

fusion procedure are represented in the following flowchart (Figure 1).  

Figure 1. The flow chart of our method includes three steps: (1) resampling and 

reclassifying existing land cover maps into common legend and spatial resolution; 

(2) generating prior estimation of state probability vector of International Geosphere 

Biosphere Programme (IGBP) classes for each pixel; (3) updating the state vector of each 

pixel according to classes of pixels with high certainty. 

 

We first resampled and reclassified each land cover dataset into the same legend and spatial 

resolution (1/120 degree), denoted by       . We then combined them into a prior global land cover 

(    ). The pixels with high consistence were then extracted and denoted by     . Finally, we updated 
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the probability distribution of each pixel (    
 ) using Bayes theory and got the posterior global land 

cover map (    
 ). 

3.1. Reclassification and Resampling 

To facilitate fusion of different land cover maps, they need to be homogenized into a common legend, 

and in this study we selected the IGBP classification system (Table 3). The 17 categories of IGBP land 

cover legend embrace the climate independence and canopy component philosophy presented by 

Running et al. [35], and are compatible with classification systems for environmental modeling for 

providing landscape information [10]. The correspondence between the IGBP and other legends is rarely 

100% [24] and some classes have partial overlap [19]. Simple conversion can produce errors. Thus, in this 

study every land cover type was translated to a state probability vector representing the probability it belongs 

to each IGBP land cover type. The state probability vector makes it possible to convert one land cover type 

to more than one IGBP land cover types and reduce error caused by land cover legend conversion. 

Table 3. Numbers and descriptions of International Geosphere Biosphere Programme 

(IGBP) land cover classification. 

IGBP No. Description 

0 Water 

1 Evergreen Needleleaf Forest 

2 Evergreen Broadleaf Forest 

3 Deciduous Needleleaf Forest 

4 Deciduous Broadleaf Forest 

5 Mixed Forests 

6 Closed Shrublands 

7 Open Shrublands 

8 Woody Savannas 

9 Savannas 

10 Grasslands 

11 Permanent Wetlands 

12 Croplands 

13 Urban and Built-Up 

14 Cropland/Natural Vegetation mosaic 

15 Snow and Ice 

16 Barren or Sparsely Vegetated 

Different land cover legends (UMD (Table 4), FAO LCCS (Table 5) and UN LCCS (Table 6)) were 

converted to the IGBP legend according to comparison of legend definitions, pixel-by-pixel statistical 

comparison and previous comparison studies [36–38]. Because of insufficient information, each land 

cover type was converted to several IGBP land cover types equi-probably. Considering possible 

classification mistakes, we assumed that each pixel of every land cover map was classified into a wrong 

class with 50% probability. That is to say, in state probability vector of a certain land cover class, the total 

probability for all specified IGBP classes is 50%. This assumption will not substantially change the 

classification of each pixel but will allow for assessing the uncertainties of classification of land cover maps.  
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Table 4. Conversion rules from University of Maryland (UMD) land cover legend to International Geosphere Biosphere Programme (IGBP) 

legend and corresponding state probability vectors. Please see Table 3 for description of IGBP values. 

Value UMD Land Cover Name IGBP Class Value 
State Probability Vector Of IGPB Class (Zero before Decimal Point Omitted) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

0 Water 0 0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

1 Evergreen Needleleaf Forest 1 0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

2 Evergreen Broadleaf Forest 2 0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

3 Deciduous Needleleaf Forest 3 0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

4 Deciduous Broadleaf Forest 4 0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

5 Mixed Forests 5 0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

6 Woodland 8,11 0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.033  0.033  0.250  0.033  0.033  0.033  0.033  0.033  

7 Wooded Grassland 9,11 0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.033  0.250  0.033  0.033  0.033  0.033  0.033  

8 Closed Shrubland 6 0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

9 Open Shrubland 7 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

10 Grassland 10 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  

11 Cropland 12,14 0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.033  0.250  0.033  0.033  

12 Bare ground 15,16 0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.250  

13 Urban and Built-up 13 0.031  0.031 0.031  0.031 0.031 0.031 0.031  0.031 0.031 0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  

255 No data - 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 

Table 5. Conversion rules from GLC2000 land cover legend to International Geosphere Biosphere Programme (IGBP) legend and 

corresponding state probability vectors. 

Value GLC2000-Class  IGBP-Value 
State Probability Vector of IGPB Class (Zero before Decimal Point Omitted) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 Tree Cover, broadleaved, evergreen  2 0.031 0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

2 Tree Cover, broadleaved, deciduous, closed  4 0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

3 Tree Cover, broadleaved, deciduous, open  8,9 0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.250  0.033  0.033  0.033  0.033  0.033  0.033  0.033  

4 Tree Cover, needle-leaved, evergreen  1 0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

5 Tree Cover, needle-leaved, deciduous  3 0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  
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Table 5. Cont. 

Value GLC2000-Class  IGBP-Value 
State Probability Vector of IGPB Class (Zero before Decimal Point Omitted) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

6 Tree Cover, mixed leaf type  5 0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

7 Tree Cover, regularly flooded, fresh  2,11 0.033  0.033  0.250  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.033  0.033  0.033  0.033  0.033  

8 
Tree Cover, regularly flooded, saline, (daily 

variation)  
2,11,0 0.167  0.036  0.167  0.036  0.036  0.036  0.036  0.036  0.036  0.036  0.036  .167  0.036  0.036  0.036  0.036  0.036  

9 Mosaic: Tree cover/Other natural vegetation  6,7 0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.250  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  

10 Tree Cover, burnt  3,5,7 0.036  0.036  0.036  0.167  0.036  0.167  0.036  0.167  0.036  0.036  0.036  0.036  0.036  0.036  0.036  0.036  0.036  

11 
Shrub Cover, closed-open, evergreen  

(with or without sparse tree layer) 
7,8 0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.250  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  

12 
Shrub Cover, closed-open, deciduous  

(with or without sparse tree layer)  
6,7,9 0.036  0.036  0.036  0.036  0.036  0.036  0.167  0.167  0.036  0.167  0.036  0.036  0.036  0.036  0.036  0.036  0.036  

13 Herbaceous Cover, closed-open  6,10 0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.033  0.033  0.033  0.250  0.033  0.033  0.033  0.033  0.033  0.033  

14 Sparse Herbaceous or sparse shrub cover  7,10 0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.033  0.033  0.250  0.033  0.033  0.033  0.033  0.033  0.033  

15 
Regularly flooded shrub and/or herbaceous 

cover  
7,11 0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.033  0.033  0.033  0.250  0.033  0.033  0.033  0.033  0.033  

16 Cultivated and managed areas  12 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  

17 
Mosaic: Cropland/Tree Cover/Other  

Natural Vegetation  
14 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  

18 
Mosaic: Cropland/Shrub and/or  

Herbaceous cover  
14 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  

19 Bare Areas  16 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  

20 Water Bodies (natural & artificial)  0 0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

21 Snow and Ice (natural & artificial)  15 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  

22 Artificial surfaces and associated areas  13 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  

23 No data  - 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 
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Table 6. Conversion rules from GlobCover land cover legend to International Geosphere Biosphere Programme (IGBP) legend and 

corresponding state probability vectors. 

Value GlobCover-Label IGBP Value 
State Probability Vector of IGPB Class (Zero before Decimal Point Omitted) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

11 
Post-flooding or irrigated croplands 

(or aquatic) 
12 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  

14 Rainfed croplands 12 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  

20 

Mosaic cropland (50%–70%)/ 

vegetation (grassland/shrubland/ 

forest) (20%–50%) 

12,14 0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.033  0.250  0.033  0.033  

30 

Mosaic vegetation (grassland/ 

shrubland/forest) (50%–70%)/ 

cropland (20%–50%)  

10,14 0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.033  0.033  0.033  0.250  0.033  0.033  

40 

Closed to open (>15%)  

broadleaved evergreen or 

semi-deciduous forest (>5 m) 

2 0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

50 
Closed (>40%) broadleaved 

deciduous forest (>5 m) 
4 0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

60 
Open (15%–40%) broadleaved 

deciduous forest/woodland (>5 m) 
8 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

70 
Closed (>40%) needleleaved 

evergreen forest (>5 m) 
1,6 0.033  0.250  0.033  0.033  0.033  0.033  0.250  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  

90 
Open (15%–40%) needleleaved 

deciduous or evergreen forest (>5 m) 
1,3,5,8 0.038  0.125  0.038  0.125  0.038  0.125  0.038  0.038  0.125  0.038  0.038  0.038  0.038  0.038  0.038  0.038  0.038  

100 

Closed to open (>15%) mixed 

broadleaved and needleleaved  

forest (>5 m) 

5 0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

110 
Mosaic forest or shrubland 

(50%–70%)/grassland (20%–50%) 
6 0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  
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Table 6. Cont. 

Value GlobCover-Label IGBP Value 
State Probability Vector of IGPB Class (Zero before Decimal Point Omitted) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

120 
Mosaic grassland (50%–70%)/forest 

or shrubland (20%–50%)  
7 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

130 

Closed to open (>15%) (broadleaved 

or needleleaved, evergreen or 

deciduous) shrubland (<5 m) 

6,9 0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.033  0.033  0.250  0.033  0.033  0.033  0.033  0.033  0.033  0.033  

140 

Closed to open (>15%) herbaceous 

vegetation (grassland, savannas or 

lichens/mosses) 

7,10 0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.033  0.033  0.250  0.033  0.033  0.033  0.033  0.033  0.033  

150 Sparse (<15%) vegetation 7,16 0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  

160 

Closed to open (>15%) broadleaved 

forest regularly flooded 

(semi-permanently or 

temporarily)-Fresh or brackish water 

2 0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  

170 

Closed (>40%) broadleaved forest or 

shrubland permanently 

flooded-Saline or brackish water 

11 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  

180 

Closed to open (>15%) grassland or 

woody vegetation on regularly 

flooded or waterlogged soil-Fresh, 

brackish or saline water 

11 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  0.031  0.031  

190 
Artificial surfaces and associated 

areas (Urban areas >50%) 
13 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  0.031  0.031  

200 Bare areas 16 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  

210 Water bodies 0,15 0.250  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.033  0.250  0.033  

220 Permanent snow and ice 15 0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.031  0.500  0.031  

230 No data (burnt areas, clouds, …) - 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.059 

 



Remote Sens. 2014, 6 5598 

 

All the global land cover maps need to be projected to the same projection (geographical projection in 

this study) and resampled to the same spatial resolution (1/120 geographical degree in this study). The 

state vector of each resampled pixel was the average of original pixels’ state vectors, weighted by their 

area overlapped with resampled pixel. For example, when resampling from 300 m to 1 km, which does 

not fit with each other, as shown in Figure 2, land cover state probability vectors of resampled pixels 

were combined based on the overlapped area with original pixels. By this method, no information will 

be lost when resampling. 

Figure 2. Example of resampling from 300 m to 1 km. Land cover state probability vectors 

of resampled pixels were combined based on the overlapped area with original pixel. By 

this method, no information will be lost when resampling. 

 

Finally, all the global land cover data-sets were homogenized. The state probability vector of pixel 

located in the x-th path of y-th line in k-th land cover map is represented by       , of which           

stands for the probability it belongs to the i-th IGBP class. 

3.2. Generate Prior Global Land Cover Map 

A prior global land cover needed by the Bayes method was generated by aggregating information 

provided by the existing land cover products, in which the prior state probability vector of pixel (x, y) is 

denoted by     . Therefore, we need to combine probability distributions        in existing land cover 

products into one. Without any other information available, simple axiomatic approaches [39] were 

used, such as linear opinion pool, 

     
         

 
   

   
 
   

 (1) 

and logarithmic opinion pool 

              
  

 

   

  (2) 
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where N is the number of land cover maps used (N = 5 in this study).    is the weight of the k-th land 

cover map (     in this study).   is normalizing constant. The prior land cover class is denoted by 

    , which was derived from  

              
     

        (3) 

where M is the number of classes in the common legend (M = 17 for IGBP legend in this study). The 

parameter            represents classification certainty for pixel (x, y). Without further information 

about which method is more accurate, both linear and logarithmic opinion pools were used when 

generating prior global land cover map in this study and their differences were also compared. 

3.3. Update State Vector of Each Pixel 

The state probability vector of each pixel in the prior global land cover map was updated based on 

Bayes theorem. The updated probability for pixel (x, y) can be written as conditional probability given 

classifications of existing land cover products:  

    
           

           

 

   

  (4) 

where     
  is the true class of pixel (x, y), which is unknown, and              . The symbol   

denotes joint probability,        denotes the maximum likelihood land cover class in the state probability 

vector of pixel (x, y) in the k-th land cover map, which means                                   . 

According to Bayes formula, above conditional probability can be written as: 

    
               

 

   

     
          

     (5) 

where   is a normalizing constant.       
     is the prior probability that true class of pixel (x, y) is t 

and identical to        . Given the assumption that each land cover map is independent, Equation (5) 

can be rewritten as  

    
                    

    

 

   

        (6) 

Here,                
     

    is the updating coefficient of prior state vector        . 

For any           in the updating coefficient, we have 

             
     

               
    

      
    

 (7) 

As we do not know the true class     
  for any pixel (x, y), we assume that for any pixel (x, y) 

    
        if its certainty            is higher than a given threshold. This threshold varies for 

different classes and is defined as the upper quartile of certainties for each class, so we have: 

             
     

                  

     
                     

 (8) 
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where    is the certainty threshold for class t. In other words, we figured out the probability in 

Equation (8) by summarizing under condition of        and              . 

After substituting Equation (8) into Equation (5) and normalization, we obtained the updated state 

vector     
 . Furthermore, the posterior global land cover map     

 
 was derived from: 

    
      

 
     

     
    

     (9) 

3.4. Validation 

Four validation data-sets have different land cover classifications (Table 2). When validating, 

comparisons between land cover legends of validation data-sets and land cover map need to be defined. 

We regarded the two land cover types from different legends as identical if they can be translated to the 

same IGBP classes according to the conversion rules defined above (Tables 4–6). For example, type 13 

of GLC2000 legend was converted to types 6 and 10 of IGBP legend (Table 5), and type 140 of 

GlobCover legend was converted to types 7 and 10 of IGBP legend (Table 6); then we took GLC2000 

class 13 and GlobCover class 140 as identical when validating GlobCover with GLC2000ref.  

Considering the spatial representativeness, geo-location errors and pixel-shift errors of validation 

points, every validation point was compared with the pixel it located at and its 2-order neighboring 

pixels. The percentage of matched pixels was defined as validation accuracy. An example is shown in 

Figure 3. The total validation accuracy of a land cover map was defined as average accuracy of all the 

validating points in a reference data-set. 

Figure 3. This is an example of a validating point. The validating point is compared with 

its neighboring 5 × 5 pixels. Sixteen pixel matches with validating point and the validating 

accuracy is 16/25 (64%) for this validation. 
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4. Result 

4.1. Posterior Global Land Cover Map and its Uncertainty 

Using the method proposed in this study, a synergetic global land cover (synGLC-linear and 

synGLC-log) dataset (    
 

) with an additional information on their certainties (    
      

 
 , the maximum 

of state probability vector) was generated (Figures 4 and 5) based on prior land cover maps from linear 

(Equation (1)) and logarithmic (Equation (2)) opinion pool. The most conspicuous differences between 

these two posterior maps were found in the Antarctic, which was probably due to the uncertainty caused 

by melting ice sheet during the past decades. Spatial patterns of classification certainties (Figure 5) 

were similar, and most high uncertain pixels distributed in land cover transition regions. The preferable 

synGLC map was decided after validation (see Section 4.2).  

To understand the differences between these two posterior maps, percentages of each land cover class 

(represented by number of pixels) are shown in Table 7. Additionally, their average certainties for each 

land cover are shown in Figure 6. Closed shrublands, open shrublands, cropland/natural vegetation 

mosaic and permanent wetlands had the most differences between posterior linear and logarithmic land 

cover maps. Accordingly, these classes had low averaged certainties (Figure 6), indicating high 

uncertainties existed. 

Figure 4. Posterior global land cover maps (synGLC) by fusing GLCC, GLC2000, 

MOD12Q1, GlobCover and UMDLC. Their prior land cover maps come from (a) linear 

opinion pool and (b) logarithmic opinion pool.  

 

(a) 

 

(b) 
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Figure 5. Spatial distribution of land cover map certainties with prior land cover maps 

come from (a) linear opinion pool and (b) logarithmic opinion pool.  

 

(a) 

 

(b) 

Posterior logarithmic land cover map had higher certainty than the linear one for every class, but it 

was the result of different calculations and did not imply that the logarithmic one was better. It was 

different prior land cover maps that engendered differences in posterior uncertainty. The certainty was 

only comparable within the same prior land cover map in this approach. Validating with other reference 

data was necessary to assess the performance of our method and decide which land cover map is better.  
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Table 7. Pixel percentages of each land cover type in the posterior land cover maps. 

IGBP Description Linear  Logarithmic  Relative Difference 

0 Water 67.83% 67.35% −0.71% 

1 Evergreen Needleleaf Forest 1.33% 1.30% −2.24% 

2 Evergreen Broadleaf Forest 1.82% 1.86% 2.11% 

3 Deciduous Needleleaf Forest 0.67% 0.66% −1.92% 

4 Deciduous Broadleaf Forest 0.58% 0.56% −4.07% 

5 Mixed Forests 1.18% 1.26% 6.63% 

6 Closed Shrublands 1.22% 0.66% −46.09% 

7 Open Shrublands 4.00% 4.42% 10.65% 

8 Woody Savannas 1.04% 1.05% 0.96% 

9 Savannas 0.98% 1.02% 4.32% 

10 Grasslands 1.98% 2.06% 4.05% 

11 Permanent Wetlands 0.37% 0.32% −11.59% 

12 Croplands 2.27% 2.45% 7.98% 

13 Urban and Built-Up 0.06% 0.06% 0.30% 

14 Cropland/Natural Vegetation mosaic 1.32% 1.14% −13.41% 

15 Snow and Ice 10.58% 10.89% 2.92% 

16 Barren or Sparsely Vegetated 2.79% 2.95% 5.81% 

Figure 6. Average certainties of each land cover type. 

 

4.2. Validation 

Table 8 shows the validation results using the method described in Section 3.4. The synGLC-log  

has higher accuracy than synGLC-linear, thus later we only discuss the synGLC-log (hereafter refer  

to synGLC).  
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Table 8. Accuracy and corresponding ranking of each land cover map when validated with 

different reference data.  

Reference Data 

Land Cover Maps 
GlobCover2005ref GLC2000ref STEP VIIRS Average 

synGLC-linear 66.56%/4 57.04%/3 60.88%/3 40.27%/4 56.19%/3.5 

synGLC-log 66.8%/3 57.18%/2 62.68%/2 40.89%/3 56.89%/2.5 

GLC2000 68.13%/2 61.24%/1 52.74%/4 38.48%/5 55.14%/3.0 

GLCC 57.19%/7 49.46%/5 41.42%/7 33.11%/7 45.3%/6.5 

GlobCover 70.43%/1 56.55%/4 50.7%/5 41.13%/2 54.7%/3.0 

MCD12Q1 63%/5 49.41%/6 85.34%/1 46.28%/1 61.01%/3.25 

UMDLC 59.54%/6 43.03%/7 46%/6 36.64%/6 46.3%/6.25 

It is reasonable that every land cover map has the highest accuracy when validating with their own 

reference data. For example, the GlobCover land cover map ranks first for GlobCover2005ref, and it is 

the same for the GLC2000ref (GLC2000 reference data). MCD12Q1 ranks first for VIIRS and STEP, 

because STEP is its training data and VIIRS is interpreted with help of MODIS image. The synGLC 

ranks second or third in every reference data. Because the synthetic map introduced information from 

other datasets, it will inevitably decrease the accuracy when validating with their own reference data. 

However, considering each map has its own bias on its reference or training data, the integrated map is 

considered to be less biased. The synGLC has the highest average ranking (2.5) followed by 

GLC2000 (3.0) and GlobCover (3.0), indicating that it has the best overall performance when validating 

with four reference data sets.  

The MCD12Q1 has the highest average accuracy, followed by synGLC, due to its extraordinary  

high accuracy in STEP and VIIRS. However, it has unfavorable accuracy when validated with 

GlobCover2005ref and GLC2000ref. In contrast, our synGLC map has fine accuracy when validated 

with every reference data set, and thus has the best overall performance and is much less biased 

compared with other products. 

4.3. Compare synGLC with the Existing Global Land Cover Maps 

To unravel how much information from each land cover product contributes to synGLC, the 

differences between synGLC and previous land cover products were compared (Figure 7). Classifications 

that could not be converted to IGBP classifications in synGLC according to the rules (Tables 4–6) are 

defined as inconsistent.  

The fewest inconsistent pixels were found between MCD12Q1 and synGLC (7.73%), and the largest 

inconsistencies were found in grasslands, open shrublands, woody savannas and cropland/natural vegetation 

mosaic, which indicated that the synGLC is closest to the dataset with the highest average accuracy 

(MCD12Q1). GLCC has the second fewest inconsistent pixels with synGLC (8.54%), most of which are 

mixed forests, cropland/natural vegetation mosaic, open shrub-land, snow and ice. About 9.45% pixels of 

UMDLC are inconsistent with synGLC, and most of which are woodland, wooded grassland, grassland, 

closed and open shrub-land. Inconsistency percentages of GLC2000 and GlobCover2009 are relatively 

higher than others, which are 26.58% and 22.05%, respectively, mainly because of their insufficient 

information within Antarctica. For GLC2000, most of the inconsistent pixels are herbaceous cover 
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(closed-open), cultivated and managed areas, tree cover. For GlobCover2009, most of the inconsistent pixels 

were Sparse (<15%) vegetation, mosaic forest or shrub-land (50%–70%)/grassland (20%–50%) and closed 

to open (>15%, broadleaved or needle-leaved, evergreen or deciduous) shrub-land (<5 m). 

Figure 7. Inconsistent part between synGLC and (a) UMD; (b) GLCC; (c) GLC2000;  

(d) MCD12Q1 and (e) GlobCover2009, shown in respective land cover classification, with 

the percentage of each class in total inconsistent pixels. Consistent pixels are shown in white. 

 

(a) 

 

(b) 
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Figure 7. Cont. 

 

(c) 

 

(d) 
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Figure 7. Cont. 

 

(e) 

Figure 8. The number of land cover maps that have inconsistent classification with synGLC 

for each pixel. 

 

For each pixel, the number of land cover maps that have inconsistent classification with synGLC 

based on Figure 7 is shown in Figure 8. The inconsistency values of more than 90% pixels are equal or 

less than 2. Most of the consistent pixels (zero inconsistency) are distributed in the ocean, desert regions 

of North Africa, Amazon rainforests and barren regions. The highly inconsistent pixels are mainly 
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distributed in transition zones, such as tropical forests and savannahs. Because GLC2000 and 

GlobCover2009 did not provide the land cover map within the Antarctic, the coastline of Antarctica in 

synGLC comes from the information in UMDLC, GLCC and MCD12Q1.  

The percentage of pixels with different inconsistency in each land cover class of synGLC is shown  

in Figure 9. Water and barren or sparsely vegetated region have the highest consistency. Among  

the five forest classes, evergreen broadleaf forest has the highest consistency. The pattern of 

inconsistency among these six global land cover data-sets (five original ones and the synGLC) is similar 

to that of uncertainty (Figure 6).  

Figure 9. Percentages of pixels with different inconsistency in each land cover class 

of synGLC. 

 

5. Discussion 

5.1. Assumptions and Limitations 

Our fusing method is based on Bayes theory and assumptions that makes the technique practicable. 

All the assumptions we made are as follows: 

(1) Each land cover map can make a mistake with 50% probability; 

(2) Classification of each land cover map is independent; 

(3) Classification with high agreement is true. 

Assumption 1 does not change the information in each land cover map but reduces error of 

misclassification and legends conversion. Assumption 2 is likely to be true considering each land 

cover map is produced by different researchers with different data and techniques. It makes it possible 

to solve the probability equation without thinking about covariance. Assumption 3 helps to construct 

the benchmark pixels and update the prior probability.  
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Intuitively, hybrid land cover map should make the most of all the advantages of every land cover 

product and was expected to have the highest accuracy under any circumstance. However, several 

limitations still exist and prevent it from achieving its ideal state. The most important limitation is that a 

wrong prior state probability vector cannot be corrected if all the land cover products have wrong 

classifications, because we need Assumption 3 to distinguish good or bad classifications. To overcome 

the bias introduced by this assumption, we can use independent third-party reference data as benchmark 

to update the prior land cover map and generate a posterior one. This method can definitely be more 

effective with fewer assumptions. 

5.2. Legends Translation 

One major problem of our method is subjective definition of land type legend conversion. Any two 

classes in different legends cannot be identical, and probably have overlapped definitions. Legend 

homogenization always produces errors. Detailed comparison of different legends is complicated and 

beyond this research. Consequently, we defined our legends translation rules according to the previous 

comparison researches [36–38] with some modifications.  

First of all, to tackle the legend mismatch problem we defined the state probability vector to make it 

possible to convert from one class into multiple classes without losing information. Furthermore, we 

assumed that any land cover product may make mistakes (Assumption 1) to weaken the noise in land 

cover information. All these techniques can reduce the error cause by legend conversion. However, the 

rules described by the state probability vector are far from precise. More information is required to make 

it more accurate—rather than the equi-probable distribution found in this study—which requires that 

more researches be carried out on the quantitative relationship between different land cover legends.  

5.3. Effects of Land Cover Changes 

Uncertainties in synGLC mostly come from two sources: land cover changes and inaccuracies of 

land cover products. How these two factors affect the fusing method and the synGLC is important for 

understanding the reliability of our method and the accuracy of synGLC. However, due to the lack of 

sufficient land cover data in long time series, we cannot directly assess the effects of land cover changes.  

By simple comparison of GLCC, GLC2000 and MODIS, Jung et al. [23] concluded that land cover 

change between 1993 and 2000 cannot explain their inconsistencies. In our research, inconsistency 

percentages among land cover products range from 23% to 30%, excluding area of ocean. Additionally, 

their accuracies range from 45% (GLCC) to 61% (MCD12Q1). In contrast, the uncertainties stemmed 

from land cover changes are relatively smaller. For example, only 8.6% of land in the United States 

experienced changes from 1973 to 2000 [40]. Interannual variations derived from MODIS land cover 

time series is about 10%, which is higher than actual global land cover change [14].  

Given the facts above, we can surmise that the principal source of uncertainties in SynGLC was 

inaccuracy in land cover classification and the effects of land cover changes are ignorable. Our method 

mainly focuses on handling inconsistencies among land cover maps and achieving an optimal estimate.  
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5.4. Strength of Our Method 

Although there are so many limitations, a significant advantage of our method is its remarkable 

extensibility. It can fuse land cover maps with different spatial resolutions and different legends by 

adjusting the state vector and parameters of resampling accordingly. Even other land surface parameters 

(such as leaf attributes, LAI) can be integrated if they are related to land cover and can be translated  

into a state probability vector of land cover classes. This method can synergize the regional land cover 

maps into the global map by defining the state vector of no data pixel as a uniformly distributed one. In 

that way, all the available regional land cover maps can be fused into a global one to make use of all 

available information. 

In addition, our method can integrate both old (such as UMDLC) and new (such as GlobCover2009) 

land cover products and generate the average state of global land cover during the whole time range of 

input products. It is important for land surface models that are run with a constant land cover parameter. 

Besides, weight coefficients in Equations (1) and (2) can be modified according to research interests. 

They directly affect the prior land cover map      and     , which will be used to generate a posterior 

map. Therefore, the different weight coefficients would bring different biases into the synergetic land 

cover map. Such biases maybe compensate the inaccuracy in land cover products if increasing the weights 

of land cover maps with high accuracy. In addition, such biases can be used to estimate the land cover map 

over a certain time span, by increasing the weighting of land cover maps within the time range. 

6. Conclusions 

In this paper, we demonstrated a technique based on Bayes theory to generate hybrid global land 

cover map by blending the existing products with different legends and spatial resolutions. Our method 

was simple and viable with thhree reasonable assumptions and definitions of the state probability vector. 

Based on this method, our synGLC map was validated to have the best overall performance with an 

average accuracy of 56.89% and average ranking of 2.5, which was the most unbiased land cover map 

compared with existing global land cover maps.  

The remarkable extensibility of this method makes it possible to take advantage of all available 

information. With more and more land cover datasets available for different regions, it is expected to 

become increasingly useful to take advantage of all existing maps. Although the limitations from the 

legend conversion and the three assumptions of true state are considerable, however, they can be reduced by 

further researches on land cover legends and the increasing accessibility of independent reference data. 
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