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Abstract: In recent decades, the land surface temperature/vegetation index (LST/NDVI) 

feature space has been widely used to estimate actual evapotranspiration (ETa) or 

evaporative fraction (EF, defined as the ratio of latent heat flux to surface available 

energy). Traditionally, it is essential to pre-process satellite top of atmosphere (TOA) 

radiances to obtain LST before estimating EF. However, pre-processing TOA radiances is a 

cumbersome task including corrections for atmospheric, adjacency and directional effects. 

Based on the contextual relationship between LST and NDVI, some studies proposed the 

direct use of TOA radiances instead of satellite retrieved LST products to estimate EF, and 

found that use of TOA radiances is applicable in some regional studies. The purpose of the 

present study is to test the robustness of the TOA radiances based EF estimation scheme 

over different climatic and surface conditions. Flux measurements from 16 FLUXNET  

(a global network of eddy covariance towers) sites were used to validate the Moderate 

Resolution Imaging Spectro radiometer (MODIS) TOA radiances estimated daytime EF. It 

is found that the EF estimates perform well across a wide variety of climate and biome 

types—Grasslands, crops, cropland/natural vegetation mosaic, closed shrublands, mixed 

forest, deciduous broadleaf forest, and savannas. The overall mean bias error (BIAS), mean 

absolute difference (MAD), root mean square difference (RMSD) and correlation 

coefficient (R) values for all the sites are 0.018, 0.147, 0.178 and 0.590, respectively, 

which are comparable with published results in the literature. We conclude that the direct 

use of measured TOA radiances instead of LST to estimate daytime EF can avoid complex 

atmospheric corrections associated with the satellite derived products, and would facilitate 

the relevant applications where minimum pre-processing is important. 
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1. Introduction 

Mapping of the land surface heat fluxes and modeling the mass and energy interactions between 

land and atmosphere are significant for better understanding the mechanism of climate change, and 

plays a crucial role in hydrological, agricultural and meteorological studies [1,2]. The complicated 

physical mechanisms such as turbulent transport, the feedback in the soil-plant-atmosphere continuum 

and the heterogeneity of land surface all combine to make estimation of energy balance components a 

challenge [3,4]. Nevertheless, much work has been done in surface turbulent fluxes and partitioning 

among energy balance components [5–7]. As one fundamental parameter of surface heat fluxes, the 

evaporative fraction (EF, defined as the ratio of latent heat flux to available energy) represents the 

surface control on latent heat and sensible heat fluxes portioning [8,9]. Considering the spatial and 

temporal variability of the EF characteristic, satellite remote sensing is recognized as a promising 

technique to provide reasonable EF estimates over large areas and continents [10]. The approaches 

proposed in the literature use either empirical or physically based schemes [11–13]. 

One popular method among them is using the relationship between land surface temperature (LST) 

and normalized difference vegetation index (NDVI) [14]. If the satellite derived LST and NDVI over 

heterogeneous areas are plotted, the shape of the pixel envelope resembles a physically meaningful 

triangular or trapezoidal feature space (Figure 1). The physical properties encapsulated in the 

LST/NDVI space are simple: The LST has low sensitivity over vegetated areas, but increased 

sensitivity over bare soil regions. The wet edge presents high EF because it has high thermal inertia 

and strong evaporative cooling. In contrast, the lowest EF occurs at dry edge due to its weakest 

evaporative cooling [15,16]. The LST/NDVI method is unique in interpreting the spatial variations of 

LST and NDVI to infer EF without largely depending on information from ground-based observations. 

Due to its simplicity and relatively high accuracy, this type of approach has already been widely 

accepted and used [17–19]. The main limitation of the triangle method is that a large number of pixels 

over a flat area with a wide range of soil wetness and fractional vegetation cover are required to make 

sure that the dry and wet limits exist in the triangular space, and at the same time relatively uniform 

atmospheric forcing [20–22]. For a detailed description and discussion of the LST/NDVI  

triangle feature space method, the reader is referred to the reviews given by Carlson et al. [23] and  

Petropoulos et al. [24]. 

The notable advantage of this method is that it needs only satellite data to retrieve EF with minimum 

requirements of model inputs and ancillary data [25]. However, when satellite data are used to 

represent traditionally ground-based measurement, such as LST, correcting satellite data based on 

radiative transfer theory are necessary. Because the information received by the satellite sensors is 

TOA (Top of Atmosphere) radiances that are affected by viewing angles and atmospheric variables [26]. 

This actually poses great challenges for the remote sensing community to develop different correction 

procedures to eliminate the atmospheric attenuation effects [27]. Although much effort has been 
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devoted to establish sophisticated and streamlined data correction procedures, these procedures are 

troublesome and need independent observation data to satisfy the mathematical and physical 

constraints. These limitations practically increase the operational difficulty. Under this background, 

several studies focus on the EF estimation from the TOA radiances rather than satellite products, and 

found that use of TOA radiances is adequate to estimate EF [28–30]. The feasibility of estimating EF 

using TOA radiances stems from the contextual relationship between LST and NDVI. For applications 

that depend on contextual information from remote sensing, absolute radiometric calibration to remote 

sensing data is thought to be unnecessary [31,32]. A recent study by Peng et al. [33] investigated the 

general possibility of estimating Normalized Difference Temperature Index (NDTI, a key parameter 

for EF estimation) from TOA radiances through a physical understanding of Planck radiation law and 

radiative transfer equation, and performed a detailed sensitivity analysis of NDTI on surface and 

atmosphere variability. They concluded that the TOA radiances based estimates have similar level of 

accuracy as obtained using atmospherically corrected data products. However, as indicated by  

Peng et al. [28,33], more validation work of TOA radiances retrieved EF against ground-based 

measurements over different climatic and surface conditions still needs to be carried out. 

Figure 1. Conceptual diagram of the LST/NDVI scatter plot.  

 

The main objective of this study is to evaluate the applicability and robustness of the TOA 

radiances based daytime EF estimation scheme through comparison with measurements from  

16 FLUXNET (a global network of eddy covariance towers) sites, which have already been widely 

used for validation of estimates from remote sensing [34,35]. These sites represent a wide range of 

climates and biome types—grasslands, crops, cropland/natural vegetation mosaic, closed shrublands, 

mixed forest, deciduous broadleaf forest, and savannas. 
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2. Materials and Methodology 

2.1. Remote Sensing Data 

Moderate Resolution Imaging Spectro radiometer (MODIS) is the primary satellite sensor in the 

NASA Earth Observing System (EOS) for land, ocean and atmosphere research [36]. Specifically, the 

Terra-MODIS Collection 5 data products used in this study mainly include MOD021KM, MOD03, 

MOD09GA and MOD35_L2. The MOD021KM (band 31) and MOD03 datasets are used to provide 

geolocated and calibrated thermal band TOA radiance. In addition, the MOD09GA product contains 

surface reflectance that is used to calculate NDVI in this study. It should be noted that the MODIS data 

used in this work were transformed from Hierarchical Data Format-Earth Observation System  

(HDF-EOS) swath format to a Universal Transverse Mercator (UTM) projected GeoTIFF image and 

resampleed for 1 km pixel size. A prerequisite for the applicability of the LST/NDVI method are 

homogeneous atmospheric conditions and flat topography. A square domain was therefore defined 

around each flux tower site and was used as the study area for the subsequent processing. The size of 

each domain is about 60,000 km
2
, representing a wide range of fractional vegetation cover and soil 

wetness. On the basis of MOD35_L2 cloud mask product, the clear sky condition was identified when 

larger than 85% of the study domain being clear. The number of clear sky days (clear sky at MODIS 

overpass time) for each flux site is shown in Table 1. 

2.2. FLUXNET Observations 

The publicly available FLUXNET observations were used to validate TOA radiances estimated EF. 

Through a suit of instruments, the flux towers can measure half-hourly averaged fluxes (net radiation, 

soil heat flux, latent heat flux and sensible heat flux) and meteorological data (e.g., air temperature, 

precipitation). The relevant FLUXNET methodologies and summaries could be found in the research 

of Aubinet et al. [37] and Baldocchi et al. [38]. In this study, 16 FLUXNET sites were selected mainly 

according to the following criteria: (1) the land cover for the 1 km
2
 area centered on the flux tower is 

homogeneous; (2) the land cover for a 10,000 km
2
 area encompassing the flux tower is heterogeneous 

with a range of fractional vegetation cover, and the terrain of the area is also flat. More information 

about these sites is given in Table 1 [39–52]. 

These sites are located across Europe, North America and Africa and cover a broad range of  

land cover types (Table 1). According to the IGBP (International Geosphere-Biosphere Program) 

classification scheme, the sites are classified into seven main groups: grasslands, crops, cropland/natural 

vegetation mosaic, closed shrublands, mixed forest, deciduous broadleaf forest, and savannas. Further 

details about these sites are provided by the corresponding publications and references therein. 

The eddy covariance technique is known to have problems with energy balance closure [53–55]. 

Therefore, the eddy covariance measured heat fluxes need to be corrected for energy balance closure 

.One commonly used approach is the Bowen ratio method, which repartitions the mismatch in the 

energy budget closure in accordance to the Bowen ratio observed. Thus, the basic assumption is that 

the error in the budget closure can be distributed proportional to the ratio of the turbulent fluxes [54].  

Since this method is relatively simple and accurate, and has been successfully used by many 
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applications [56–58], we also applied the method in the present study to correct the eddy covariance 

measured latent and sensible heat fluxes. 

Table 1. Details about the FULXNET sites used in this study, Elev in the table refers  

to elevation. 

Site Location Biome Type Latitude Longitude Elev (m) Years Sample Days Reference 

USARM United States Grasslands 36.6058 −97.4888 314 2003–2006 105 [39] 

CASF2 Canada Grasslands 54.2539 −105.878 520 2003–2005 81 [40] 

DEGri Germany Grasslands 50.9495 13.5125 385 2004–2009 175 [41] 

CHOe1 Switzerland Grasslands 47.2856 7.7321 450 2002–2003 54 [42] 

USNe2 United States Croplands 41.1649 −96.4701 362 2001–2005 112 [43] 

USNe3 United States Croplands 41.1797 −96.4396 363 2001–2005 115 [43] 

USBkg United States Croplands 44.3453 −96.8362 510 2004–2006 130 [44] 

USGoo United States 

Cropland/Natural 

Vegetation 

Mosaic 

34.2547 −89.8735 87 2002–2006 252 [45] 

CASF3 Canada 
Closed 

Shrublands 
54.0916 −106.005 540 2003–2005 81 [40] 

USWCr United States 
Deciduous 

Broadleaf Forest 
45.8059 −90.0799 520 2000–2006 297 [46] 

DEHai Germany 
Deciduous 

Broadleaf Forest 
51.0793 10.452 430 2003–2007 142 [47] 

ITRo1 Italy 
Deciduous 

Broadleaf Forest 
42.4081 11.93 235 2000–2006 251 [48] 

USMMS United States Mixed Forest 39.3231 −86.4131 275 2000–2005 189 [49] 

ITNon Italy Mixed Forest 44.6898 11.0887 25 2001–2003 106 [50] 

DEMeh Germany Mixed Forest 51.2753 10.6555 286 2003–2006 110 [51] 

BWMa1 Botswana Savannas −19.917 23.5603 950 2000–2001 211 [52] 

2.3. Methodology 

According to the definition of EF, the instantaneous EF (dimensionless) calculated from instantaneous 

flux tower measurements can be written as: 

( ) ( )
( )

( ) ( ) ( ) ( )n

LE t LE t
EF t

R t G t LE t H t
 

 
 (1) 

where Rn is the surface net radiation (W·m
−2

), G is the ground heat flux (W·m
−2

), LE is latent heat flux 

(W·m
−2

) and H the sensible heat flux (W·m
−2

) at time t. Meanwhile, the daytime EF is determined 

using the following equation [10]: 
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where the time difference t2 − t1 refers to the time from 8:00 LT to 17:00 LT in the present study.  

The daytime rather than daily was selected as study period, because the eddy covariance technique is 
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more reliable during daytime [59]. The daytime EF can also be estimated by averaging instantaneous 

EF from different time periods. The two approaches would have similar results if EF is stable during 

daytime [10,60]. In practice, the latter approach is more sensitive to the errors in LE and H 

measurements when they have low absolute values during early morning and late afternoon. 

On the basis of the LST/NDVI feature space obtained from plotting remotely sensed LST against 

NDVI, the parameterization of instantaneous EF using TOA radiances is given as follows: 

 
(3) 

where Δ is the slope of saturated vapor pressure at the air temperature (kPa·K
−1

) and γ is  

the psychrometric constant (kPa·K
−1

) [61]. ϕ combines the effects of Budyko–Thornthwaite–Mather 

wetness parameter and Priestley Taylor coefficient, which accounts for aerodynamic and canopy 

resistances [62]. In this study, ϕ is calculated using TOA radiances rather than LST products: 

 
(4) 

where ϕmax is the maximum ϕ without surface water stress and often set to 1.26 [63]. Ls is the observed 

TOA radiance for a given pixel whose NDVI value is NDVIi, Lmax and Lmin are the corresponding 

highest and smallest TOA radiance which have the same NDVIi value. In order to obtain the value of ϕ 

for each pixel, a three-step linear interpolation scheme based on the LST/NDVI triangle (Figure 1) is 

used in the following manner [14]: (1) determine the dry and wet edges in the triangular space; (2) the 

global minimum and maximum ϕ are respectively set to ϕmin = 0 for the driest bare soil pixel and 

ϕmax = 1.26 for the densely vegetated pixel with largest NDVI and lowest TOA radiance, then ϕ
i
min is 

linearly interpolated for each NDVI interval (NDVIi) between ϕmin and ϕmax, and ϕ
i
max for each NDVIi 

is obtained from the lowest TOA radiance pixel with that NDVI interval (ϕ
i
max is generally set to 

ϕ
i
max = ϕmax =1.26); (3) ϕi value within each NDVI interval is interpolated between the lowest TOA 

radiance pixel and highest TOA radiance pixel. Consequently, the ϕ value for each pixel can be 

calculated using Equation (4). 

2.4. Algorithm Evaluation 

A number of quantitative indices, including mean bias error (BIAS), mean absolute difference (MAD), 

root mean square difference (RMSD), relative error (RE) and correlation coefficient (R) are selected in 

this study to evaluate the model performance [64]. Furthermore, the results were also compared with 

published studies. 

3. Results and Discussion 

3.1. Energy Imbalance of Flux Tower Measurements 

The energy closure of the flux tower measurements was investigated for the selected clear sky case 

days. Figure 2 shows the comparisons of observed daytime average available energy Rn − G against 

measured turbulent fluxes LE + H after correction for energy balance closure for all the FLUXNET 
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sites except CASF2 and CASF3, because these two sites both have no G measurements. The closure 

ratio CR = (LE + H)/(Rn − G) varies from 0.57 to 0.98 with residual energy E = Rn − LE − H − G 

ranging from −136.53 to − 8.83 W/m
2
 at all the sites. Overall, the S (slope) and R from the linear least 

squares regression for observed LE + H and Rn − G are 0.70 and 0.79, respectively. It can also be seen 

that the measured LE + H fluxes are generally less than Rn − G for all these sites with the averaged 

closure ratio CRm of 0.78 and mean residual energy Em of 78.14 W/m
2
. Similar results were reported 

by Wilson et al. [55] and Foken [65]. However, the causes of the lack of energy balance closure are 

still under discussion and might be related to systematic bias in instrumentation, neglected energy 

sinks, landscape heterogeneity and mismatch in source areas. 

3.2. Can Near Noon Instantaneous EF Represent Daytime EF? 

The EF has been found to be stable during daylight hours in many studies [11,66,67], making it 

possible to extrapolate instantaneous EF values to daytime scale. In this study, the instantaneous EF at 

MODIS overpass time was used to represent daytime EF value. To examine the feasibility of this 

assumption, the FLUXNET measurements were used to respectively estimate instantaneous and 

daytime EF using Equations (1) and (2). Figure 3 shows the comparison between the instantaneous EF 

at the time of MODIS overpass and the daytime EF for all the FLUXNET sites in our study. Table 2 

presents the BIAS, MAD, RMSD, RE and R values for every FLUXNET site. It can be seen that these 

statistical indices values range from −0.035 to −0.011 for BIAS, from 0.023 to 0.050 for MAD, 

from 0.031 to 0.084 for RMSD, from −7.19% to −2.82% for RE and from 0.931 to 0.996 for R. On the 

whole, a good agreement and negligible bias between the instantaneous and daytime EF is obtained with 

BIAS = −0.020, MAD = 0.031, RMSD = 0.042 and RE (Relative Error) = −4.47% for all the sites. 

Besides, it can be observed that R = 0.977 (Table 2). These statistics results indicate the reliability of 

using EF constant assumption to estimate daytime EF without incurring substantial errors. 

Figure 2. Comparison of the observed available energy (Rn − G) against the sum of latent 

heat and sensible fluxes (LE + H) after correction for energy balance closure for all the 

FLUXNET sites. CRm, Em and 1:1 line represent the averaged closure ratio, mean residual 

energy and perfect agreement, respectively. 
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Table 2. Statistical results for the comparisons between instantaneous EF at MODIS 

overpass time and daytime average EF. 

Site BIAS MAD RMSD Relative Error(%) R 

USARM −0.019 0.029 0.036 −5.33 0.990 

CASF2 −0.016 0.025 0.032 −4.28 0.989 

DEGri −0.019 0.032 0.041 −2.82 0.961 

CHOe1 −0.033 0.036 0.045 −4.63 0.973 

USNe2 −0.020 0.027 0.032 −4.33 0.996 

USNe3 −0.024 0.030 0.035 −5.47 0.995 

USBkg −0.027 0.034 0.048 −4.01 0.978 

USGoo −0.018 0.023 0.031 −3.25 0.991 

CASF3 −0.011 0.033 0.046 −2.89 0.952 

USWCr −0.017 0.032 0.042 −3.78 0.988 

DEHai −0.013 0.033 0.041 −3.14 0.964 

ITRo1 −0.017 0.032 0.042 −4.85 0.968 

USMMS −0.021 0.032 0.042 −4.71 0.991 

ITNon −0.035 0.050 0.084 −7.19 0.931 

DEMeh −0.021 0.029 0.036 −4.47 0.985 

BWMa1 −0.016 0.025 0.035 −6.33 0.980 

All sites −0.020 0.031 0.042 −4.47 0.977 

3.3. Evaluation of Daytime EF from MODIS TOA Radiances 

The MODIS TOA radiances estimated daytime EF is evaluated with FLUXNET measured daytime EF. 

The comparison results are illustrated by Figure 4. In general, the derived EF agrees well with  

tower-measured EF with data points distributed around the dashed 1:1 line without a significant 

discrepancy. The grasslands, croplands, cropland/natural vegetation mosaic and mixed forest show 

good accuracy, whereas the savannas have slightly poorer performance. It may be attributed to its lack 

of full range of vegetation cover and surface temperature. The implicit assumption of the triangle 

method is that ETa primarily depends on soil moisture and vegetation cover. This assumption requires 

a heterogeneous area with a full range of possible soil moisture and vegetation fraction values, and  

at the same time relatively uniform atmospheric forcing [20]. The poor performance of savannas 

further demonstrate the limitation of triangle method. 

Table 3 gives a comprehensive summary of the statistical metrics for each FLUXNET site. It can be 

observed that the BIAS values range from −0.08 to 0.12. The RMSD values vary from 0.103 to 0.224, 

and the R values appear to be low to high ranging from −0.280 to 0.846. The overall BIAS, MAD, 

RMSD and R values for all the sites are 0.018, 0.147, 0.178 and 0.590, respectively. This suggests  

the feasibility of estimating EF with MODIS TOA radiances alone. If we excluded the results  

of savannas, the BIAS, MAD and RMSD are further reduced to 0.006, 0.138, and 0.168 with a better  

R of 0.648. The LST/NDVI feature space has already extensively been used to estimate EF.  

The performance of this method has also been reported in the literature and it has been shown that EF 

estimates based on TOA radiances result in comparable results than using products of geophysical 

surface variables [28,68]. Table 4 summarizes the statistics of the differences between satellite 

products derived EF and observed EF from previous published studies. It can be seen that the 
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statistical results found in this study are comparable to those reported previously. It further suggests 

that using TOA radiances can provide reasonable estimation accuracy for EF, while requiring less 

input data and preprocessing like in classical LST/NDVI feature space approaches. 

Figure 3. Comparisons of MODIS overpass time EF and daytime average EF for all the 

FLUXNET sites. 

 

Table 3. Statistical results for the comparisons between estimated and observed EF for 

each FLUXNET site. 

Site Biome Type BIAS MAD RMSD R 

USARM Grasslands 0.004 0.129 0.153 0.741 

CASF2 Grasslands 0.077 0.160 0.190 0.524 

DEGri Grasslands −0.035 0.141 0.182 0.382 

CHOe1 Grasslands −0.013 0.080 0.103 0.714 

USNe2 Croplands 0.011 0.150 0.177 0.787 

USNe3 Croplands −0.003 0.115 0.140 0.846 

USBkg Croplands −0.080 0.133 0.160 0.790 

USGoo Cropland/Natural Vegetation Mosaic 0.007 0.133 0.166 0.786 

CASF3 Closed Shrublands 0.020 0.143 0.172 0.369 

USWCr Deciduous Broadleaf Forest 0.028 0.142 0.172 0.702 

DEHai Deciduous Broadleaf Forest 0.120 0.184 0.224 0.400 

ITRo1 Deciduous Broadleaf Forest −0.052 0.161 0.202 0.365 

USMMS Mixed Forest −0.024 0.132 0.167 0.780 

ITNon Mixed Forest −0.002 0.145 0.173 0.725 

DEMeh Mixed Forest 0.033 0.118 0.142 0.807 

BWMa1 Savannas 0.194 0.289 0.327 −0.280 

All sites  0.018 0.147 0.178 0.590 
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Table 4. Accuracy assessment of the LST/NDVI feature space method used to derive EF 

in the literature. 

Reference Sensor Used BIAS (Mean Value) RMSD (Mean Value) R (Mean Value) 

[13] MODIS −0.130–0.100 (0.010) 0.110–0.280 (0.170) 0.100–0.900 (0.710) 

[29] MODIS, AVHRR −0.069–0.088 (0.009) 0.081–0.188 (0.130) 0.442–0.768 (0.580) 

[10] MODIS −0.182–0.131 (−0.018) 0.077–0.244 (0.157) −0.634–0.89 (0.437) 

[19] MSG SEVIRI −0.040–0.120 (0.060) 0.130–0.190 (0.160) 0.350–0.640 (0.510) 

[68] AVHRR −0.038–0.154 (0.049) 0.119–0.242 (0.158) −0.868–0.037 (−0.414) 

[25] MODIS −0.039–0.067 (0.057) 0.100–0.125 (0.112) 0.338–0.648 (0.496) 

This study MODIS −0.08–0.12 (0.018) 0.103–0.224 (0.178) −0.280–0.846 (0.590) 

In terms of error assessment, most discrepancies between estimated and measured EF are less than 0.2, 

presented in Figure 4. On the basis of semi-empirical error analysis, Jiang et al. [69] found that the 

upper bounds of absolute error and relative error in LST/NDVI estimated EF are less than 0.25%  

and 33.3%, respectively. As precipitation could introduce a large error of EF estimation through 

enhancing soil moisture and leaf interception, we used plus symbols to indicate the days contaminated 

by precipitation which occurred before satellite overpass. Besides, Wang and Dickinson [7] found that 

the LST/NDVI method is most suitable for a growing season in middle latitude areas. Because the key 

assumption of triangle method is that the ETa is negatively correlated with surface temperature.  

Figure 4. Comparisons of daytime estimated and observed EF at FLUXNET sites for 

different biome types: (a) Grasslands; (b) Croplands; (c) Cropland/Natural Vegetation 

Mosaic; (d) Closed Shrublands; (e) Deciduous Broadleaf Forest; (f) Mixed Forest; 

(g) Savannas. Dashed line is the 1:1 line. Grey area represents that the discrepancies 

between estimated and observed EF are less than 0.2. The points with plus markers are the 

samples contaminated by precipitation. The x marker indicates those samples outside the  

growing season. 

 
(a) 

 
(b) 
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However, the ETa in high latitudes and cold areas is generally positively correlated with  

temperature [70,71]. In other words, the range of vegetation index should be large enough, and the soil 

moisture rather than air temperature or available energy is the key control of EF. It means the sample 

days that are not during growing season will have more uncertainties, which is in accordance with our 

results. In Figure 4, the points with x markers are the samples days outside the growing season. 

Furthermore, the use of TOA radiances itself can introduce slight errors, as Peng et al. [33] found that 

NDTI can be estimated from TOA radiances with an accuracy of 90%. Other sources of uncertainty of 

our results could be related to the scale discrepancy between the FLUXNET footprint measurements 

and satellite pixel estimates [35,72,73], the relative error between instantaneous EF and daily EF, as well 

as the linear parameterization of ϕ (without inclusion of wind speed and surface humidity) within the 

LST/NDVI feature space. Considering the simplicity and acceptable accuracy level of the LST/NDVI 
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method, we conclude that the use of TOA radiances appears to be adequate for the estimation of EF, 

and would facilitate direct use of remote sensing data for the situations (e.g., multi-sensor studies, data 

assimilation) where minimum pre-processing is important. 

4. Conclusions 

The evaporative fraction (EF, defined as the ratio of latent heat flux to surface available energy)  

has been estimated from top of atmosphere (TOA) radiances instead of satellite retrieved land  

surface temperature (LST) products in some regional studies. In order to comprehensively examine  

the robustness of the TOA radiances based EF estimation scheme over different climate and surface 

conditions, flux measurements from 16 FLUXNET (a global network of eddy covariance towers) sites 

were used to validate the daytime EF estimated from Moderate Resolution Imaging Spectro radiometer 

(MODIS) TOA radiances. It was found that the EF estimated from TOA radiances perform well across 

a wide variety of climate conditions and biome types. The accuracy level is also comparable with 

published results in the literature. Besides, using FLUXNET measurements, the instantaneous EF  

is also found to be applicable for representing daytime EF, without incurring substantial errors. 

Overall, the present study, together with the work by Peng et al. [28,33] demonstrated that  

the direct use of measured TOA radiances instead of satellite retrieved LST products to estimate EF  

is feasible and applicable. The notable advantage of this approach is that no atmospheric corrections 

are required. This would facilitate data assimilation and multi-sensor studies due to minimal  

pre-processing requirements. The problem of using polar-orbiting satellites data such as MODIS is the 

temporal gaps due to cloud cover. One possible solution is utilizing the geostationary satellites data 

with high temporal resolution. Future work will examine the full capacities of the TOA radiances 

approach for geostationary satellites data. 
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