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Abstract: The use of spectral features to estimate leaf area index (LAI) is generally 

considered a challenging task for hyperspectral data. In this study, the hyperspectral 

reflectance of winter wheat was selected to optimize the selection of spectral features and to 

evaluate their performance in modeling LAI at various growth stages during 2008 and 2009. 

We extracted hyperspectral features using different techniques, including reflectance spectra 

and first derivative spectra, absorption and reflectance position and vegetation indices.  

In order to find the best subset of features with the best predictive accuracy, partial least 

squares regression (PLSR) and variable importance in projection (VIP) were applied to 

estimated LAI values. The results indicated that the red edge–NIR spectral region  

(680 nm–1300 nm) was the most sensitive to LAI. Most features in this region exhibited a 

high correlation with LAI and had higher VIP values, especially the first derivative 

waveband at 750 nm (r = 0.900, VIP = 1.144). Adding a large number of features would not 
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significantly improve the accuracy of the PLSR model. The PLSR model based on the 

fourteen features with the highest VIP values predicted LAI with a mean bootstrapped R2 

value of 0.880 and a mean RMSE of 0.943 on the validation dataset and produced an 

estimated LAI result better than that, including the entire 54-feature dataset with a mean R2 

of 0.875 and a mean RMSE of 0.965. The results of this study thus suggest that the use of 

only a few of the best features by VIP values is sufficient for LAI estimation. 

Keywords: hyperspectral remote sensing; leaf area index (LAI); spectral feature;  

partial least squares regression 

 

1. Introduction 

Defined as one-half of the total green leaf area (all-sided) per unit ground surface area [1], the leaf 

area index (LAI) is an important parameter and is commonly applied in environmental studies 

examining growth monitoring, yield estimation, evapotranspiration, radiation extinction, carbon cycling 

and climate [2–5]. Direct measurement of the LAI via the use of destructive field measurements is 

extremely labor intensive, tedious and limited to experimental plots. Remote sensing techniques have 

been recognized as a reliable method to provide a fast, non-destructive and relatively cheap way to 

measure LAI on different scales [6,7]. 

Hyperspectral remote sensing can produce hundreds or even thousands of narrow, contiguous spectral 

bands, which may provide crucial additional information, potentially representing a significant improvement 

over broad bands in quantifying biophysical and biochemical variables, such as LAI [8,9]. However, 

hyperspectral data are much more complex than multispectral data. Although they provide a vast amount 

of information, most adjacent wavebands are redundant and often highly correlated [10]. It is therefore 

essential to determine the best spectral features derived from hyperspectral data in order to accurately 

quantify LAI. 

Various methods have been proposed, applied and improved in recent decades for the extraction of 

the spectral features of hyperspectral information. These selection techniques can be classified into three 

broad groups. (i) Waveband features: Compared with broad bands, narrow bands in specific portions of the 

spectrum are known to improve discrimination capabilities for various vegetation. Thenkabail et al. [10] 

determined 22 optimal hyperspectral wavebands with which to best characterize vegetation and 

agricultural crops over the spectral range of 400–2500 nm. Becker et al. [11] used second-derivative 

analysis to identify eight optimal spectral bands in the visible-NIR wavelength region that appeared to 

contain the majority of the coastal wetland information content of the full spectral resolution.  

Wang et al. [12] employed three methods, including correlation coefficient-based, vegetation 

index-based and the stepwise regression method to select 15 suitable wavebands for paddy rice LAI 

estimation. (ii) Spectral position features: Reflectance and absorption features that characterize hyperspectral 

data are also related to specific physical and chemical crop characteristics [13]. Pu et al. [14] found strong 

correlations between forest LAI and various red-edge parameters, including the red-edge position (REP) 

and the red-well position (RWP). Spectral features in the shortwave infrared (SWIR) regions (as well as 

those in the near-infrared) are also important in predicting LAI [9,15]. (iii) Vegetation indices: Spectral 
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vegetation indices are mathematical combinations of different spectral bands, mostly in the visible and 

near-infrared regions of the electromagnetic spectrum. Although the normalized difference vegetation 

index (NDVI) is by far the most well-known and widely used method of estimating LAI [16], it is 

sensitive to soil and saturates at a relatively low LAI level. In contrast, VIs, such as the soil adjusted 

vegetation index (SAVI; [17]), second modified SAVI (MSAVI2; [18]), renormalized difference 

vegetation index (RDVI; [19]) and triangular vegetation index (TVI; [20]), have now been devised to 

improve LAI estimation. It also has been demonstrated that VIs with red-edge bands are good 

predictors of widely variable green LAI, such as CIRed-edge [21,22]. 

The above-mentioned studies have made important progresses in detecting canopy information via 

the use of hyperspectral remote sensing. However, the research that systematically summarizes and 

analyzes the different spectral features of hyperspectral remote sensing data in terms of their 

performance in estimating LAI is rare, with the analysis of a single feature typically not sufficient to 

explore such rich information. Several studies have focused on statistical techniques, such as stepwise 

multiple linear regression (SMLR), which makes use of the information provided by several spectral 

features to estimate biochemical and biophysical vegetation properties [23,24]. In either case, 

multi-collinearity is a common problem inherent to hyperspectral datasets [25].  

Partial least squares regression (PLSR) is a data compression technique that reduces a large number of 

collinear variables to a few non-correlated latent variables or factors [26–28]. A number of studies have 

shown that PLSR is a powerful tool able to extract significant signals and to create reliable  

models [8,29–32], and it has the potential to accurately predict LAI. Although these previous studies 

employed all available spectral wavelengths simultaneously for PLSR, others have revealed that the use 

of only a few features is sufficient to extract and discriminate essential information and  

characteristics [10]. As the use of full spectral subsets or the greatest available amount of spectral 

information would likely not improve retrieval performance, but simply increase computation time [24], 

it may therefore be more effective to obtain the most accurate biophysical vegetation data possible to 

build the model.  

The objectives of this study were to: (1) systematically summarize the spectral features of 

hyperspectral canopy reflectance in terms of three aspects: feature wavebands, feature positions and 

vegetation indices; (2) evaluate every feature’s potential for LAI estimation; and (3) identify optimal 

features (and their numbers) for LAI estimation via PLSR. 

2. Materials and Methods 

2.1. Study Area 

The study was conducted in suburban Beijing, China, in an area characterized by a northern 

temperate monsoon climate. The experimental fields were located in Tongzhou District 

(39°36′–40°02′N, 116°32′–116°56′E) and Shunyi District (40°00′–40°18′N, 116°28′–116°58′E) on flat 

terrain, with the predominant soil texture being a fine clay loam. The types of wheat analyzed included 

Nongda 211 (erectophile), Zhongyou 206 (middle), Jingdong 8 (middle) and Jing 9428 (planophile). 
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2.2. In situ Data Collection 

The experiment was carried out during different years and growth stages of winter wheat, including:  

1 April 2008, and 2 April 2009 (tillering); 15 April 2008, and 13 April 2009 (jointing); 29 April 2008, 

and 30 April 2009 (heading); and 15 May 2008, and 18 May 2009 (anthesis). For each experimental 

point, winter wheat canopy spectral measurements were taken from 0.5 m × 0.5 m plots randomly 

selected in the central 30 m × 30 m field.  

An ASD FieldSpec Pro spectrometer (Analytical Spectral Devices, Boulder, CO, USA) was used  

to measure canopy reflected radiances in the field. This instrument records reflectance in the range 

between 350 and 1050 nm, with a sampling interval of 1.40 nm, and between 1050 and 2500 nm, with a 

sampling interval of 2 nm. Spectral data were interpolated to a spectral band width of 1 nm using the 

ASD software. The instrument also has a 25° fiber optic field of view. Spectral measurements operated 

at a nadir of 1.3 m above the winter wheat canopy. All spectral measurements were made during 

cloud-free periods ±2 h from solar noon, between 10:00 a.m. and 2:00 p.m. local time. Prior to each 

reflectance measurement, the radiance of a 40 cm × 40 cm BaSO4 standard panel was recorded under the 

same illumination conditions to convert the spectral radiance measurements into reflectance. Vegetation 

reflectance measurements were obtained by averaging 20 scans at optimized integration times. Due to 

severe noise associated with water absorption, the spectral regions of 1350–1480 nm, 1781–1990 nm 

and 2400–2500 nm were also excluded from the analysis. A moving Savitzky–Golay filter [33] with a 

frame-size of 17 data points and a second polynomial was employed to smooth the spectra. 

All of the plants within a 0.25 m2 area of winter wheat in each experimental point were harvested 

immediately after the spectral measurement, with the samples placed in black plastic bags and 

transported to the laboratory for subsequent analysis. In the lab, plants were dissected into green leaves, 

dead leaves, stems and roots. The green leaves were used to measure the leaf area by a leaf area meter 

(Li-Cor 3100, LICOR, Inc., Lincoln, NE, USA). Table 1 shows summary statistics of green LAI 

measured. The LAI range for the calibration dataset in 2009 is from 0.40 to 7.49, with the average of 

3.07 and a standard deviation of 1.86. Similarly, the statistical parameters for the validation dataset in 

2008 are 0.21–8.85, 3.69 and 2.45, respectively. 

Table 1. Descriptive statistics of LAI in two years’ data. 

Dataset Year Samples Max Min Mean Standard Deviation 

Calibration dataset 2009 76 7.49 0.40 3.07 1.86 

Validation dataset 2008 71 8.85 0.21 3.69 2.45 

2.3. Spectral Features of Hyperspectral Information 

2.3.1. Spectral Waveband Features 

Both reflectance spectra and first derivative spectra were studied in order to select waveband 

features. The first derivative of reflectance was calculated from each reflectance spectrum using the 

following equation: 

(i ) ( j 1) ( j)FDS (R R ) /λ λ + λ= − Δλ (1)
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where FDS is the first derivative of reflectance at wavelength midpoint i between wavebands j and j + 1, 

Rλ(j) is the reflectance at waveband j, Rλ(j+1) is the reflectance at waveband j + 1 and Δλ the difference in 

wavelength between j and j + 1. 

2.3.2. Spectral Position Features 

Figure 1 shows three absorption (560–760 nm, 920–1080 nm and 1120–1280 nm) and six reflectance 

positions (500–670 nm, 780–970 nm, 980–1200 nm, 1200–1350 nm, 1480–1720 nm and 2000–2300 nm) 

for winter wheat, used for the extraction of absorption and reflectance feature parameters. Continuum 

removal was applied throughout the full spectrum in order to enhance the differences in absorption and 

reflectance [34]. The three parameters proposed were employed in the present study at every absorption and 

reflectance position: (1) depth; (2) area; and (3) normalized depth [35,36]. 

Figure 1. Three absorption (A) and six reflectance (R) characteristics of the wheat canopy spectrum. 

 

For the three absorption positions, each absorption depth feature (A_Depthi) was defined as: 

' i min
i i min

ci min

R ( )
A_Depth 1 R ( ) 1

R ( )

λ= − λ = −
λ

 (2)

where continuum-removed reflectance R୧́ሺλ୫୧୬ሻ is obtained by dividing the minimum reflectance 

value R୧ሺλ୫୧୬ሻ  in the absorption position by the continuum line Rci(λmin) at the corresponding 

wavelength and i is the number of absorption positions (i = 1,2,3). 

The absorption area feature (A_Areai) was calculated as the area bounded by the reflectance spectrum 

and continuum line in each absorption region as followsj: 

Ei

Si
i ci iA _ Area (R ( ) R ( ))d

λ

λ
= λ − λ λ  (3)

where Rci(λ) and Ri(λ) are, respectively, the reflectance of the continuum line and reflectance at the 

corresponding wavelength λ in the absorption region and λSi and λEi are the start and end wavelengths, 

respectively, in each absorption region. 

The normalized absorption depth (A_NDi) was calculated by dividing the absorption depth feature by 

the absorption area feature, as follows: 
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i
i

i

A _ Depth
A _ ND

A _ Area
=  (4)

For the six reflectance positions, each reflectance depth feature (R_Depthi) was defined as: 

' ci max
i i max

i max

R ( )
R _ Depth 1 R ( ) 1

R ( )

λ= − λ = −
λ

 (5)

where the continuum-removed reflectance Ri(λmax) is obtained by dividing the maximum reflectance 

value Ri(λmax) in the reflectance position by the inner continuum line Rci(λmax) at the corresponding 

wavelength and i is the number of reflectance positions (i = 1,2,3,4,5,6). 

The reflectance area feature (R_Areai) was calculated as the area bounded by the reflectance 

spectrum and inner continuum line in the reflectance region as follows: 

Ei

Si
i i ciR _ Area (R ( ) R ( ))d

λ

λ
= λ − λ λ  (6)

where Rci(λ) and Ri(λ) are the reflectance of the inner continuum line and reflectance, respectively, at the 

corresponding wavelength λ in the reflectance region and λSi and λEi are, respectively, the start and end 

wavelengths in each reflectance region. 

The normalized reflectance depth (R_NDi) was calculated by dividing the reflectance depth feature 

by the reflectance area feature, as follows: 

i
i

i

R _ Depth
R _ ND

R _ Area
=  (7)

After a literature review, other spectral position-based variables obtained from first derivative  

spectra [37] were also used in this study and are listed in Table 2. 

Table 2. Spectral features derived from first derivative spectra. 

Title Definition and Description 

Db Maximum value of 1st derivative with blue edge (490–530 nm) 

λb Wavelength at Db 

Dy Maximum value of 1st derivative with yellow edge (550–582 nm) 

λy Wavelength at Dy 

Dr Maximum value of 1st derivative with red edge (680–780 nm) 

λr Wavelength at Dr 

Rg Maximum reflectance with green peak (510–560 nm) 

λg Wavelength at Rg 

Ro Lowest reflectance with red well (640–680 nm) 

λo Wavelength at Ro 

SDb Sum of 1st derivative values within blue edge 

SDy Sum of 1st derivative values within yellow edge 

SDr Sum of 1st derivative values within red well 

2.3.3. Vegetation Index Features 

Many different optical indices have been reported in the literature and have proven to be well 

correlated with vegetation parameters. A total of twenty-four vegetation indices were employed in the 
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present study (Table 3 [16–20,38–56]). The atmospherically-resistant vegetation index (ARVI), DVI, 

EVI, green normalized difference vegetation index (GNDVI), modified nonlinear vegetation index 

(MNLI), MSAVI2, modified simple ratio (MSR), NDVI, nonlinear vegetation index (NLI), 

optimization of SAVI (OSAVI), RDVI, ratio vegetation index (RVI), SAVI, three gradient difference 

vegetation index (TGDVI), TVI and modified triangular vegetation index (MTVI2) were calculated 

using simulated reflectance bands of the Moderate Resolution Imaging Spectrometer (MODIS) (blue: 

459–479 nm; green: 545–565 nm; red: 620–670 nm; NIR: 841–876 nm). The reflectance spectra were 

also resampled to the spectral bands of the Medium Resolution Imaging Spectrometer (MERIS) 

(green: 555–565 nm; red: 660–670 nm; red edge: 703–712 nm; NIR: 750–760 nm) using the MERIS 

spectral response function for calculating red edge indices, such as red edge NDVI, CIRed-edge and 

MTCI. As for the SWIR region, water indices (WI, NDWI, normalized difference infrared index 

(NDII), disease water stress index (DSWI) and standardized LAI-determining index (sLAIDI*)) were 

also tested.  

Table 3. Vegetation indices compiled from the literature. 

Vegetation Index Formulas Ref. 

Atmospherically-resistant vegetation index (ARVI) 
NIR

NIR

RB
ARVI

RB

ρ −=
ρ +

 

RB R (B R), 1= − γ − γ =  
[38] 

Difference vegetation index (DVI) NIR RDVI = ρ − ρ  [39] 

Enhanced vegetation index (EVI) NIR R

NIR R B

EVI 2.5
6 7.5 1

ρ − ρ=
ρ + ρ − ρ +

 
[40] 

Green normalized difference vegetation index 

(GNDVI) 
NIR G

NIR G

GNDVI
ρ −ρ=
ρ +ρ

 [41] 

Modified nonlinear vegetation index (MNLI) 
2

2

NIR

NIR

1.5(ρ ρ )

ρ ρ 0.5
R

R

MNLI
−

=
+ +

 [42] 

The second modified SAVI (MSAVI2) ( )2

NIR NIR NIR R2 1 2 1 8( )
MSAVI2

2

ρ + − ρ + − ρ − ρ
=  [18] 

Modified simple ratio (MSR) 
NIR R

NIR R

1
MSR

1

ρ ρ −=
ρ ρ +

 [43] 

Normalized difference vegetation index (NDVI) 
NIR R

NIR R

NDVI
ρ − ρ=
ρ + ρ

 [44] 

Nonlinear vegetation index (NLI) 
2

2

RNIR

RNIR

NLI
ρ − ρ

=
ρ + ρ

 [45] 

Optimization of soil-adjusted vegetation index 

(OSAVI) 
NIR R

NIR R

OSAVI (1 0.16)
0.16

ρ −ρ= +
ρ +ρ +

 [46] 

Renormalized difference vegetation index (RDVI) 
NIR R

NIR R

RDVI
ρ −ρ=
ρ + ρ

 
[19] 

Ratio vegetation index (RVI) N IR

R

R V I
ρ=
ρ

 
[47] 

Soil-adjusted vegetation index (SAVI) 
NIR R

NIR R

SAVI (1 L),L 0.5
( L)

ρ − ρ= + =
ρ + ρ +

 [17] 
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Table 3. Cont. 

Notes: ρ୒୍ୖ, ρ୰ୣୢିୣୢ୥ୣ, ρ୰ୣୢ, ρ୥୰ୣୣ୬ and ρୠ୪୳ୣ are the reflectance in spectral bands of the near-infrared, red, 

green and blue light bands, respectively; ρ୧ denotes reflectance at the band i wavelength (nanometers). 

2.4. Partial Least Squares Regression 

The partial least squares regression technique generalizes and combines features of principal 

component regression (PCR) and multiple linear regression. The method is recognized as a powerful 

modeling tool with which to model relations when the number of predictor variables is large and the 

collinearity among the variables is strong [57]. The aim of PLSR is to build a linear model as follows: 

β εY X= +  (8)

where Y is a mean-centered vector of a dependent variable, X is a mean-centered matrix of independent 

variables, β is a matrix of regression coefficients, and ε is a matrix of residuals [28,58]. 

The optimal number of factors in PLSR analysis is determined by minimizing the prediction residual 

error sum of squares (PRESS) statistic. Here, the PRESS statistic is calculated via cross-validation (CV) 

prediction for each model [4,59]. The root mean squared error of cross validation (RMSCV) is also 

used to assess the predictive abilities of the PLS models.  

In order to evaluate the relative importance of variables in the PLSR model, their variable importance 

in projection (VIP) scores were computed. VIP calculates the contribution of independent variables to 

Vegetation Index Formulas Ref. 

Three gradient difference vegetation index (TGDVI) 
NIR R R G

NIR R R G

TGDVI
ρ − ρ ρ − ρ= −
λ − λ λ − λ

 [48] 

Triangular vegetation index (TVI) NIR G R GTVI 60( ) 100( )= ρ −ρ − ρ −ρ  [20] 

Modified triangular vegetation index (MTVI2) 
[ ]NIR G R G

2
NIR NIR R

1.5 (1.2( ) 2.5( ))
MTVI2

(2 1) (6 5 ) 0.5

ρ − ρ − ρ − ρ
=

ρ + − ρ − ρ −
 [16] 

Red edge NDVI 
NIR Red edge

Red edge
NIR Red edge

NDVI −
−

−

ρ − ρ
=

ρ + ρ
 

[49] 

Red-edge chlorophyll index 
NIR

Red edge
Red edge

CI 1−
−

ρ= −
ρ  

[50] 

MERIS Terrestrial Chlorophyll Index 
NIR Red edge

Red edge Red

MTCI −

−

ρ − ρ
=

ρ − ρ  
[51] 

Water Index (WI) 900 970WI /= ρ ρ  [52] 

Normalized difference water index (NDWI) 
860 1240

860 1240

NDWI
ρ − ρ=
ρ + ρ

 [53] 

Normalized difference infrared index (NDII) 
819 1600

819 1600

NDII
ρ − ρ=
ρ + ρ

 [54] 

Disease water stress index (DSWI) 
803 549

1659 681

DSWI
ρ +ρ=
ρ +ρ

 [55] 

Standardized LAI-determining index (sLAIDI*) 
1050 1250

1555
1050 1250

sLAIDI* s ( ) , s = 1
ρ −ρ= ⋅ ρ
ρ + ρ

 [56] 
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the contribution of the dependent variable, with the most influential predictors in the model selected 

according to the magnitude of their values [60]. VIP scores serve as an apt measure for identifying 

individual waveband importance and for providing valuable insight into the most effective spectral 

regions [60,61]. All calculations were carried out using MATLAB software (The Math Works, Inc., 

Natick, MA, USA). 

2.5. Calibration and Validation  

The 76 samples collected in 2009 were used as a calibration data set and the 71 samples collected in 

2008 as an independent validation data set. Regression analyses were performed on the former, with the 

latter then employed to conduct an empirical validation of the regression models. The performance of 

the different PLSR models was compared using the coefficient of determination (R2), root mean square 

error (RMSE) and normalized mean bias (NMB). Definitions of each metric are given below: 
n

2 2
i i

2 i 0
n n

2 2
i i

i 0 i 0

(P P) (Q Q)
R

(P P) (Q Q)

=

= =

− × −
=

− × −



 
 (9)

n
2

i i
i 0

1
RMSE (P Q )

n =

= × − (10)

n

i i
i 1

n

i
i 1

(P Q )
NMB 100%

Q

=

=

−
= ×


  
(11)

where P is the estimated values, Q represents the measured values and n is the total number of samples.  

The bootstrap process was performed on the independent validation data to assess the robustness of 

the regression models. The validation data set was bootstrapped with replacement for n = 1000 times. 

The mean and 95% confidence levels of R2 values, as well as RMSE values for the validation data 

were calculated and recorded [62,63]. 

3. Results 

3.1. Optimal Spectral Features in Three Datasets 

3.1.1. Optimal Spectral Waveband Feature Dataset 

Spectral reflectance data and their first derivative spectra were correlated with measured LAI 

values using both 2008 and 2009 data sets (Figure 2). Figure 2a reveals negative correlation coefficients 

in the blue (503 nm), red (661 nm) and shortwave infrared regions (1990–2400 nm) and a positive 

correlation coefficient in the near infrared region (740–1300 nm). The strongest correlations occur  

at 439 nm, 554 nm, 750 nm, 948 nm, 1030 nm, 1147 nm, 1236 nm, 1295 nm, 1602 nm and 1745 nm for 

the first derivative spectra (Figure 2b). The ten best wavebands in both reflectance spectra and first 

derivative spectra were then selected for establishing an optimal spectral waveband dataset (Table 4).  
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Figure 2. Correlation analysis of reflectance spectra (a) and first derivative spectra (b) 

against LAI for each wavelength. 

(a) (b) 

Table 4. Correlations between optimal spectral waveband features and LAI in different years. 

Reflectance Spectra First Derivative Spectra 

Number Wavelength 2009-r/2008-r Number Wavelength 2009-r/2008-r 

SP1 503 nm −0.560 **/−0.558 ** FD1 439 nm −0.670 **/−0.679 ** 

SP2 661 nm −0.629 **/−0.649 ** FD2 554 nm −0.688 **/−0.761 ** 

SP3 770 nm 0.793 **/0.873 ** FD3 750 nm 0.891 **/0.908 ** 

SP4 868 nm 0.810 **/0.877 ** FD4 948 nm −0.850 **/−0.884 ** 

SP5 938 nm 0.789 **/0.860 ** FD5 1030 nm 0.836 **/0.824 ** 

SP6 1072 nm 0.796 **/0.844 ** FD6 1147 nm −0.846 **/−0.873 ** 

SP7 1263 nm 0.499 **/0.557 ** FD7 1236 nm 0.732 **/0.678 ** 

SP8 1993 nm −0.569 **/−0.595 ** FD8 1295 nm −0.857 **/−0.863 ** 

SP9 2022 nm −0.564 **/−0.558 ** FD9 1602 nm 0.505 **/0.459 ** 

SP10 2398 nm −0.558 **/−0.547 ** FD10 1745 nm −0.602 **/−0.517 ** 

2009-r and 2008-r: the correlation coefficients between features and LAI for the calibration data set (in 2009) 

and the validation data set (in 2008), respectively; ** correlation significant at the 0.01 level. 

3.1.2. Optimal Spectral Position Feature Dataset 

A total of 40 spectral position features were calculated using absorption position features, reflectance 

position features and other spectral position-based variables. Correlation analysis was carried out 

between these 40 spectral position features and LAI values (Table 5), with the results revealing A_Area2 

to exhibit the strongest correlation with LAI (r = 0.854). The top 10 spectral position features were then 

selected in order to establish an optimal spectral position feature dataset: R_Area2, R_Area3, R_Area4, 

A_Area1, A_ND1, A_Area2, A_Area3, A_ND3, Dr and SDr. 

3.1.3. Vegetation Index Dataset 

We studied the correlations between 24 vegetation indices (VIs) and LAI (Table 6), with the results 

indicating significant relationships existing between LAI and all spectral parameters. A vegetation index 

dataset was then established based on these vegetation indices. 
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Table 5. Correlations between spectral position features and LAI in different years. 

Spectral  

Position 

2009-r/ 

2008-r 

Spectral  

Position 

2009-r  

/2008-r 

Spectral 

Position 

2009-r  

/2008-r 

Spectral  

Position 

2009-r  

/2008-r 

R_Depth1 0.682 **/0.762 ** R_Area4 0.786 **/0.846 ** A_ND1 −0.765 **/−0.825 ** λb 0.009/−0.040 

R_Area1 −0.004/0.390 ** R_ND4 −0.372 **/−0.143 A_Depth2 0.655 **/0.783 ** λy 0.002/0.182 

R_ND1 0.467 **/0.276 R_Depth5 0.641 **/0.603 ** A_Area2 0.854 **/0.903 ** λr 0.602 **/0.658 ** 

R_Depth2 0.502 **/0.674 * R_Area5 0.400 **/0.582 ** A_ND2 −0.663 **/−0.775 ** Rg −0.382 **/−0.229 * 

R_Area2 0.825 **/0.904 ** R_ND5 0.128/0.049 A_Depth3 0.599 **/0.723 ** λg −0.629 **/−0.610 ** 

R_ND2 −0.466 **/-0.280 R_Depth6 0.612 **/0.596 ** A_Area3 0.830 **/0.890 ** Ro −0.629 **/−0.600 ** 

R_Depth3 0.639 **/0.535 ** R_Area6 0.021/0.311 ** A_ND3 −0.716 **/−0.857 ** λo 0.130/0.102 

R_Area3 0.849 **/0.900 ** R_ND6 0.389 **/0.286 * Db 0.172/0.489 ** SDb 0.014/0.340 ** 

R_ND3 −0.643 **/-0.519 ** A_Depth1 0.703 **/0.760 ** Dy −0.521 **/−0.314 ** SDy −0.621 **/−0.784 ** 

R_Depth4 0.465 **/0.507 ** A_Area1 0.844 **/0.906 ** Dr 0.825 **/0.841 ** SDr 0.835 **/0.862 ** 

2009-r and 2008-r: the correlation coefficients between features and LAI for the calibration data set (in 2009) 

and the validation data set (in 2008), respectively; * correlation significant at the 0.05 level; ** correlation 

significant at the 0.01 level. 

Table 6. Correlation between vegetation indices and LAI in different years. 

VIs 2009-r/2008-r VIs 2009-r/2008-r VIs 2009-r/2008-r 

NDVI 0.724 **/0.768 ** MSR 0.840 **/0.901 ** NDVIRed-edge 0.712 **/0.763 ** 

RVI 0.857 **/0.906** NLI 0.772 **/0.827 ** CIRed-edge 0.856 **/0.898 ** 

SAVI 0.839 **/0.900 ** MNLI 0.852 **/0.910 ** MTCI 0.652 **/0.769 ** 

EVI 0.842 **/0.903 ** GNDVI 0.746 **/0.745 ** WI 0.712 **/0.804 ** 

ARVI 0.671 **/0.730 ** DVI 0.839 **/0.905 ** NDWI 0.710 **/0.784 ** 

TVI 0.835 **/0.905 ** OASVI 0.815 **/0.871 ** DSWI 0.768 **/0.761 ** 

TGDVI 0.833 **/0.905 ** RDVI 0.842 **/0.901 ** NDII 0.710 **/0.735 ** 

MASVI2 0.849 **/0.901 ** MTVI2 0.849 **/0.894 ** sLAIDI* 0.830 **/0.903 ** 

2009-r and 2008-r: the correlation coefficients between features and LAI for the calibration data set (in 2009) 

and the validation data set (in 2008), respectively; ** correlation significant at the 0.01 level. 

3.2. Best Features and Models 

The 20 spectral waveband features, 10 spectral position features and 24 vegetation indices were then 

combined into a single dataset in order to assess its collective strength in predicting LAI. Every VIP 

value of the 54 spectral features was calculated and ranked in descending order (i.e., from highest to 

lowest; Figure 3), ranging from 1.144 to 0.746. A high VIP value indicated that the spectral feature was 

of major importance in estimating LAI and also had the greater coefficient of determination in  

two years’ data. The best spectral feature was found to be FD3 (the first derivative at a wavelength of  

750 nm). Most intermediate variables have similar R2 to FD3, but their VIP values were smaller. 

Waveband features in the visible and SWIR regions had the lowest VIP values. 

In order to identify the predictive accuracies when different numbers of features were analyzed via 

PLSR, we tested a forward variable selection procedure on the VIP-selected features. This process 

involved ranking the VIP features based on their VIP scores and then iteratively adding the best ranked 

indices in a new PLS model. Firstly, the three best VIP spectral features were employed to predict LAI 

via PLSR. Then, the four best VIP spectral features were analyzed, and so on, until all of the features had 
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been used to predict LAI. For each stage of the forward selection procedure, the coefficients of 

determination of the first ten PLS factors and the optimal components were recorded (Figure 4). 

Figure 3. Variable importance in projection (VIP) and R2 for each spectral feature. 

 

Figure 4. Variation in the coefficient of determination for different numbers of spectral 

features analyzed via partial least squares regression (PLSR). Note: The black horizontal 

dashes represent the coefficients of determination of the first ten PLS factors for different 

numbers of spectral features. Each optimal PLS factor is marked as a red circle, and the 

corresponding RMSECV is marked as green triangles. 

 

PLSR searched the sensitive information from a different number of spectral features based on VIP 

values in descending order. The addition of more spectral features resulted in a decrease in the 

coefficient of determination of the first PLS factor and an increase in that of the tenth PLS factor.  

The optimum number of factors for use in the PLSR models was estimated via cross-validation, with the 

optimum number of PLS factors for the different datasets being four or five. The final R2 values ranged 

from 0.805 to 0.849, with the top 30 features exhibiting the highest R2 values (R2 = 0.849). However, the 

increase in R2 after the addition of more features was unremarkable; only a minor decrease in the number 

of VIP features was required in order to improve LAI estimation and to influence the final results.  

As analysis of Figure 4 reveals, the dataset comprising 14 spectral features was sufficient to reach an  

R2 value (R2 = 0.842) in the plateau region of the graph, beyond which only very small increases in  

R2 could be observed. The RMSECV varied between 0.731 and 0.812, with the smallest value in the top 

14 features. Therefore, these 14 spectral variables were finally used to construct a PLSR model that had 

both fewer spectral features and more accurate estimates. 
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3.3. Calibration and Validation 

PLSR analyses were conducted using the optimal waveband feature dataset, the optimal position 

feature dataset, the vegetation index dataset, the all-feature dataset and the 14 best features dataset.  

Table 7 shows the results produced by these models for both calibration and validation samples. Among 

the three different optimal spectral feature datasets, the PLSR model based on the 24-variable vegetation 

index dataset produced the highest estimation accuracy. The PLSR model based on the 10-variable 

optimal position feature dataset exhibited only intermediate accuracy, with that based on the 20-variable 

optimal waveband feature dataset being associated with the lowest level of accuracy. However, these 

three models with different features were able to extract spectral information and produce similar LAI 

estimation results. The PLSR model based on the combination of all features produced estimation 

accuracies for both the calibration sample (R2 = 0.845, RMSE = 0.733) and the validation sample  

(R2 = 0.878, RMSE = 0.940). The best feature dataset constructed via VIP forward selection, which 

reduced the number of spectral features from 54 to 14, produced a similar estimation accuracy with that 

of the all-feature dataset in the calibration dataset (R2 = 0.842, RMSE = 0.731). The 14 best feature 

dataset using the developed regression equation from the calibration data set yielded higher R2 to the 

all-feature dataset in the independent data set (R2 = 0.881, RMSE = 0.937). The prediction results of 

estimation models tended to be underestimated (NMBs less 0). The NMBs of the best feature model 

tended to be lower than that of the all dataset model for both calibration and validation analyses. 

Table 7. Performance of the PLSR models in predicting LAI based on the use of different 

datasets. NMB, normalized mean bias. 

PLSR Models 
No. of 

Variables 

No. of 

Factors 

Calibration (n = 76) Validation (n = 71) 

R2 RMSE NMB R2 RMSE NMB 

Optimal waveband feature model 20 3 0.803 0.843 −6.59% 0.844 1.209 −13.48% 

Optimal position feature model 10 4 0.804 0.826 −3.34% 0.861 1.161 −12.36% 

Vegetation index model 21 3 0.813 0.794 −3.15% 0.847 0.972 −10.1% 

All-feature model 54 5 0.841 0.735 −2.77% 0.878 0.940 −7.52% 

Best feature model 14 5 0.842 0.731 −1.20% 0.881 0.937 −5.23% 

To assess the capability of the results, the bootstrap process was adopted. Figure 5 shows the 

normal distribution of the R2 values calculated from the predicted and measured LAI in the 

independent data set by the bootstrapping methodology. Table 8 details the mean bootstrapped 

regression results in the form of the mean R2 values, as well as the mean RMSE using PLS models.  

The best feature model performed the best with a mean R2 of 0.880 and a mean RMSE of 0.943.  

Table 8. Bootstrap methods for PLS models in the independent data set. 

PLS Models Mean R2 Mean RMSE Standard Error 95% Confidence Limit 

Optimal waveband feature model 0.844 1.206 0.029 0.002 

Optimal position feature model 0.866 1.155 0.025 0.002 

Vegetation index model 0.849 0.974 0.021 0.001 

All-feature model 0.875 0.965 0.018 0.001 

Best feature model 0.880 0.943 0.020 0.001 
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Figure 5. Histograms showing the frequency of R2 values between the measured and 

predicted LAI for the independent dataset. (a) Optimal waveband feature model,  

(b) Optimal position feature model, (c) Vegetation Index model, (d) All feature model,  

(e) Best feature model.  

(a) (b) 

(c) (d) 

(e) 
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4. Discussion 

To obtain adequate information from hyperspectral data, many features were identified based on 

spectral wavebands, spectral positions and vegetation indices. Additionally, the correlations between 

these features and wheat LAI values were studied. The analysis of the spectral waveband features 

revealed important features correlating with LAI across a broad range. However, compared to the 

performance of data produced via first derivative analysis, as well as absorption and reflectance position 

features and vegetation indices, the spectral features exhibited lower correlation coefficients, due to the 

influence of external factors, such as underlying soil brightness, leaf angle distribution and leaf optical 

properties [15,24].  

The red-edge region is characterized by a sharp rise in the reflectance of green vegetation between the 

local minimum reflectance band in the red spectral region and the maximum reflectance band in the NIR 

spectral region. This region is considered to contain more information regarding biomass quantity and 

LAI than other parts of the electromagnetic spectrum [64,65]. In this study, many spectral features 

identified in the red-edge region had high precision and were more accurate (i.e., FD3, CIRed-edge and 

A_Area1). FD3 was the first derivative at a wavelength of 750 nm and had both the strongest correlation 

with LAI (R2 = 0.800) and the highest VIP value (VIP = 1.144) of all features. This confirmed previous 

findings by Wang et al. [12] with 723 nm and Thenkabail et al. [10] with 735 nm. CIRed-edge led to an R2 

of 0.766 and a VIP of 1.121, which was more sensitive to LAI variability than the NDVI. Viña [21] also 

showed that the CIRed-edge exhibited low sensitivity to soil background effects, and it constitutes a 

simple, yet robust tool for the remote and synoptic estimation of green LAI. 

In the NIR region (800–1300 nm), reflectance spectra and first derivative spectra (SP4, SP5, FD4 and 

FD5), absorption and reflectance features (R_Area3, A_Area3, A_Area2, R_Area2 and R_Area4) and 

most vegetation indices (RVI, EVI, DVI and MTVI2) performed more effectively. The reflectance in 

this spectral region is mainly influenced by the arrangement of cells within the mesophyll layer of 

leaves, as well as by canopy structure, especially the number of vertical leaf layers. NIR water 

absorption regions are also sensitive to leaf moisture content [12].  

The advantage of vegetation indices is that they can be used to obtain relevant information rapidly 

and easily, and the underlying mechanisms are well-understood [66]. For the 24 VIs examined in this 

study, NDVI had a lower accuracy than most of the studied vegetation indices. The obtained results are 

in agreement with those found elsewhere in the literature [5,16,42]. Most modified vegetation indices 

were better than their respective originals, including: MNLI vs. NLI, MSAVI2 vs. SAVI and  

RDVI vs. DVI, which is consistent with previous studies [18,19,42]. Some vegetation indices based on 

three discrete bands also produced strong correlation, including the following: EVI, TVI, TGDVI, 

MTVI2 and sLAIDI*, which take advantage of sensitive spectral regions to reduce external factor and 

are highly sensitive to LAI [16,56].  

The PLSR approach is considered to be the most useful explorative tool with which to unravel the 

relationship between canopy spectral reflectance and grass characteristics at the canopy scale. It is able 

to effectively address strong collinearity and noise in dependent variables [24]. Although the parameter 

number of the optimal spectral waveband dataset was double that of the optimal spectral position 

dataset, the prediction accuracy of the 10-variable optimal position feature model performed better than 

that of the 20-variable optimal waveband feature model. Indeed, the all-feature (54 variables) dataset 
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yielded a lower level of accuracy than the top 30 variables dataset. The results therefore indicate that the 

continuous addition of variables may not always improve LAI estimation accuracy. Indeed, the inclusion 

of an increasing number of less important spectral features in PLSR models can negatively influence 

prediction accuracy [22,26]. 

The calculated VIP scores provided an insight into the usefulness of each variable in the PLS model. 

The spectral dataset containing the top 14 variables was able to achieve a high level of estimation 

accuracy with the use of fewer spectral features; the subsequent inclusion of additional features resulted 

in only a minor improvement in model accuracy. These 14 features included the red-edge region (FD3), 

the NIR region (FD5, FD6, FD4, FD8, A_Area2, A_Area3, R_Area2 and R_Area3) and the best 

vegetation indices (RVI, CIRed-dege, MSR, MNLI and MTVI2); these were also the best features in the 

three datasets employed for LAI estimation discussed above. The presented results demonstrate the 

potential of PLSR and VIP techniques in identifying important variables for the estimation of LAI. It is 

important to select appropriate features and to determine the optimal variable number(s). Selecting only 

the very best features selected by VIP values may therefore be sufficient in terms of exploring the rich 

information available for LAI estimation, with the use of whole feature and/or full spectrum datasets 

being unnecessary. This finding is in agreement with that of [25], who identified the most significant 

indices (chosen via VIP) producing the best PLS model prediction of T. peregrinus damage. 

5. Conclusions 

In order to select suitable spectral features for LAI estimation, different features based on spectral 

wavebands, spectral positions and vegetation indices were evaluated, with all exhibiting the same 

changing tendency in two years of hyperspectral data. The best features in three different spectral feature 

groups exhibited a similar correlation with LAI. Derivative analysis, a combination of vegetation index, 

as well as absorption and reflectance position features generally proved to be better predictors of LAI 

variability. Spectral features in the red-edge and NIR regions were the most sensitive for predicting LAI. 

The first derivative at a wavelength of 750 nm exhibited the highest correlation with LAI for all features.  

PLSR and VIP analyses were conducted on spectral feature data to estimate LAI and to identify the 

subset of features with the best predictive accuracy. Our findings suggest that LAI estimation accuracy 

could be improved by employing the most sensitive spectral features in conjunction with PLSR models. 

The application of these methods made it possible to extract sufficient signals covering the full spectral 

range of information, reducing the dimensionality of the hyperspectral data and improving the steady 

estimation accuracy of winter wheat LAI. The 14 features with the highest VIP values provided a higher 

level of accuracy in predicting LAI than the entire 54-feature dataset. The validation of the new model 

indicated that the best feature model performed the best with the mean R2 of 0.880 and the mean 

RMSE of 0.943.  

Compared to other multivariate statistical models, such as principal component regression (PCR) 

and stepwise multiple linear regression (SMLR), PLSR outperformed other techniques in estimating 

canopy chlorophyll content, vegetation water content, nitrogen content, LAI, and so on [24,67,68]. 

However, some methods, such as support vector machines (SVM) and artificial neural networks 

(ANNs), are also useful for nonlinear models and vegetation canopy property estimations. To evaluate 

applications of these features and models proposed in this study, other vegetation types and the 

radiative transfer model approach will be conducted. 
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