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Abstract: Extracting digital elevation models (DTMs) from LiDAR data under forest canopy

is a challenging task. This is because the forest canopy tends to block a portion of the LiDAR

pulses from reaching the ground, hence introducing gaps in the data. This paper presents an

algorithm for DTM extraction from LiDAR data under forest canopy. The algorithm copes

with the challenge of low data density by generating a series of coarse DTMs by using

the few ground points available and using trend surfaces to interpolate missing elevation

values in the vicinity of the available points. This process generates a cloud of ground points

from which the final DTM is generated. The algorithm has been compared to two other

algorithms proposed in the literature in three different test sites with varying degrees of

difficulty. Results show that the algorithm presented in this paper is more tolerant to low data

density compared to the other two algorithms. The results further show that with decreasing

point density, the differences between the three algorithms dramatically increased from about

0.5 m to over 10 m.

Keywords: DTM extraction; airborne LiDAR; biomass estimation; tree height estimation

1. Introduction

Airborne light detection and ranging (LiDAR) is an active remote sensing technology that uses

aircraft-mounted laser scanning systems in conjunction with a positioning and orientation system (POS)
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for ranging purposes [1]. The system measures the distance between the laser scanner and reflected

objects on the ground (or the ground itself) by considering the round-trip time taken by a laser pulse to

travel from the sensor to the reflecting surface and back.

The use of airborne LiDAR technology (hereafter, simply referred to as LiDAR) in forestry

applications has been increasing constantly in the past decade. This increasing trend in the use of LiDAR

technology in forestry applications can be attributed to both promising results obtained in applications

of LiDAR technology to forestry (e.g., [2–7]) and the maturity of the LiDAR technology over time; for

example, increased pulse rates and the introduction of full-waveform LiDAR [8]. Unlike conventional

LiDAR sensors, which can record up to four returns from multiple targets, full-waveform LiDAR sensors

can sample and record the entire echo waveform for each laser pulse [9]. This capability makes them

able to collect more information about the physical characteristics of the reflecting objects. This feature

has been exploited in generating DTMs from LiDAR data with notable improvements in terms of DTM

accuracy compared to conventional LiDAR sensors [9,10].

On the other hand, LiDAR data acquisition costs per unit area have gone down significantly, especially

for projects covering large areas (large-scale acquisitions) [11]. However, this cost-effectiveness of

LiDAR is a trade-off between cost and point density; to cover large areas at minimal costs flying

altitude needs to be relatively higher, leading to low point densities. Furthermore, recently, it has been

shown [12] that it is possible to minimize the number of field plots required for calibrating regression

models used to estimate various forest parameters. This innovation can help to cut the cost of LiDAR

campaigns for forest inventory purposes that feature both LiDAR collection and calibration plot

measurement by up to one half.

This section presents the state-of-the-art in applications of LiDAR in forestry activities, particularly

tree height estimation and DTM extraction. Challenges encountered in extracting DTMs from LiDAR

data in forested terrain are also discussed.

1.1. LiDAR-Based Forest Inventory

LiDAR has been used extensively to estimate various forest parameters pertaining to forest

inventory [13]. One particular parameter that has received substantial attention is tree height, i.e., mean

tree-height, dominant tree height or individual tree heights [14,15]. This is because tree height is an input

for estimating other forest parameters, such as biomass and tree volume [16].

A common technique that has been used for tree height estimation involves the estimation of

two models from LiDAR data, namely, the digital terrain model (DTM) and the digital surface

model (DSM) from which the canopy height model (CHM) is derived as their difference

(i.e., CHM = DSM − DTM). Using this technique, for example, [15] were able to estimate

individual tree heights of sugi plantations in three kinds of terrain: steep slope, gentle slope

and gentle, yet rough, terrain. Tree height estimates from this study correlated very well with

field-measured tree heights with coefficient of determination (R2) values of 0.857, 0.923 and

0.955, respectively, for the three terrain types. Similarly, [17] conducted a study to assess

the suitability of small-footprint LiDAR technology for estimating ground elevation and tree
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heights in tropical landscapes. In this study, individual tree heights were underestimated with

a mean absolute error (MAE) of 2.33 m.

Other methods related to tree height estimation, which do not require the use of DTMs, have also

been proposed. These are referred to as indirect methods [14].

For example, [18] used a DTM-free method to estimate the mean tree height in a hinoki cypress

forest using small footprint LiDAR. The method is based on the assumption that a hypothetical surface

passing through predominant tree tops is nearly parallel to the ground (and, hence, the DTM). In this

method, the difference in elevation between the hypothetical surface and ground points is assumed to

be an estimator of the mean tree height. Although test results showed that tree heights derived using

the method correlated well with field measured values (R2 = 0.94), the method was not tested on

other forest types and different terrain. Therefore, the suitability of the method to other forest types and

different kinds of terrain remains unknown.

In another study, [19] studied the effect of the laser beam footprint and LiDAR data sampling density

on tree height estimates in a pine stand. The study used footprints in the range 0.75–3.0 m, and tree

heights were underestimated by 2.1–3.7 m due to the lack of calibration using field data.

Forest parameters (e.g., average tree height, basal area, etc.,) and associated derivatives (e.g., DTMs

and CHMs) from LiDAR data are the inputs used to establish high-level information about forests.

This information includes, for example, above-ground biomass and carbon content (e.g., [7,20,21]). On

the other hand, LiDAR-derived DTMs and DSMs have been used to monitor forest height and crown

diameter changes, due to growth (e.g., [6]) and deforestation [22].

1.2. DTM Extraction in Forested Terrain

Generally, DTM extraction is a two-stage process [4,23,24]. In the first stage, called ground filtering,

ground points (points from LiDAR pulses reflected from the ground surface) are separated from

vegetation points (points from LiDAR pulses reflected from the canopy and low-lying vegetation). In

the second stage, the DTM is generated by estimating ground elevations at places where there are no

data through interpolation techniques.

Several general-purpose algorithms for ground filtering and DTM interpolation have been proposed

in the literature (e.g., [25–27]). Using a variety of filtering techniques (e.g., mathematical morphology,

linear prediction and slope information), some of these algorithms are dedicated to either ground filtering

or DTM interpolation, while others combine the two stages into one algorithm. DTM extraction in

forested terrain, however, is unique, due to the presence of the canopy (which limits the penetration

of LiDAR pulses) and the complex terrain normally present in forests. Most general-purpose DTM

interpolation algorithms perform poorly under these conditions. Consequently, specialized algorithms

have been developed specifically for this purpose (e.g., [3–5,28–30]).

In the algorithm proposed in [4], for example, filtering of non-ground points for DTM generation

is done by creating a surface from below the point cloud base on triangulated irregular network (TIN)

structures. This surface is then allowed to fluctuate within certain values based on, for example, active

contour models or a constrained spline function, such that ground points are included in the surface.
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In another example [3], filtering of non-ground points is done iteratively by fitting a surface to the data

points and assigning weights to each point based on the residual the point’s elevation residual from the

surface. In each iteration, points with large negative residuals (below the surface) receive more weight

and attract the surface towards them, while points with large residuals (above the surface) are eliminated.

Despite the development of these specialized algorithms, DTM extraction in forested terrain remains

to be a challenging task. This is partly due to the fact that no single algorithm can perform well in all kinds

of situations (data and terrain type), on the one hand, and the heterogeneous nature of terrain and LiDAR

data typical of forested terrain on the other. For example, an experimental comparison of ground filtering

algorithms [31] revealed that while most algorithms perform similarly in less demanding situations (e.g.,

flat terrain and the absence of discontinuity in the terrain), significant differences were observed in the

performance of the algorithms with increasing terrain complexity, the presence of large objects, such as

buildings, and the presence of vegetation cover.

1.3. Challenges in DTM Extraction in Forested Terrain

Despite the development of specialized algorithms to solve the problem of DTM extraction in forested

terrain, DTM extraction in forested terrain still faces some challenges. For example, [31,32] point

out many factors that affect the process of DTM extraction in forested terrain. These factors include,

for example, flight altitude above ground level, forest cover (canopy thickness), the date (season) the

LiDAR data was collected, terrain slope and scan angle [33–35]. These factors have a direct effect on the

penetration rate of LiDAR pulses through the forest canopy and, hence, affect the number of ground hits.

Flight altitude, for example, affects the point density in the data, i.e., the higher the flight altitude

above ground level, the lower the point density. For example, in the study carried out by [32], flight

altitudes of 400, 800 and 1500 m led to point spacing of 0.80, 1.6 and 3.0 m, respectively.

Similarly, canopy thickness and the season of data collection affect the density of the collected

data. Thicker canopies tend to block most of the LiDAR pulses, thus preventing them from reaching

the ground. In some extreme cases, the penetration rate of LiDAR pulses can be so low that DTM

extraction becomes extremely difficult. For example, in a study by [36], to determine the penetration

rate of small-footprint LiDAR in a closed canopy, middle-aged (40–50 years) hinoki cypress, out of

the 107,427 points/ha transmitted, only 1% managed to reach the ground. The density of the LiDAR point

cloud tends to decrease from the top of the canopy downwards. This decrease is the result of most of

the LiDAR pulses being blocked by the thick canopy.

On the other hand, if data is collected during leaf-off season, there will be a higher penetration rate

for the LiDAR pulses than if the data were collected during the leaf-on season [32]. This is because in

the leaf-off season, there are numerous gaps in the canopy for the LiDAR pulses to penetrate.

Terrain slope also poses a big challenge for most DTM interpolation and ground filtering algorithms.

Many studies assessing the effect of terrain slope on DTM accuracy showed that DTM accuracy tends to

deteriorate with increasing terrain slope (e.g., [32,37,38]).

The scan angle has also been found to have an impact on the penetration rate of LiDAR pulses through

forest canopies. Depending on the thickness of the canopy cover, studies [33,35,36] have shown that a

scan angle of 8–15 degrees is required in order to maximize the number of ground hits.
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The extent to which LiDAR is being used in forestry activities today suggests that it is the future of

forest inventorying. Unfortunately, the area of LiDAR data processing, especially in forested and steep

terrain, has not advanced as much as the LiDAR technology itself has. This difference makes the area of

LiDAR data processing, particularly ground filtering and DTM extraction in forested terrain, deserving

of further investigation. In this paper, we propose an algorithm for DTM extraction in forested terrain

from LiDAR data. The algorithm builds on the recent work by [39] and addresses the limitations of the

algorithm presented therein, namely, the lack of overlapping between adjacent patches, which leads to

ridges in the DTM, and gaps in the DTM caused by a lack of enough points to fit a model and along the

edges of non-rectangular patches (tiles).

Therefore, this study had three main objectives. These objectives were to:

(i) overcome the problems of low data density and the lack of overlapping between DTM patches by

iteratively generating a series of coarse DTMs (repeated sampling) using patch widths of varying

sizes and combining the coarse DTMs to form the final DTM;

(ii) develop an interpolation strategy for estimating elevation values at places where both spline and

trend surface interpolation fail (gap-filling); and

(iii) compare the performance of the proposed algorithm with two other algorithms for generating

DTMs in forested terrain using data sets from three different tropical test sites, which are

characterized by both low point density and varying degrees of terrain roughness.

This approach has the advantage that it helps to deal with low data density by creating a cloud of

elevation values using the available data, from which the final DTM is generated. Moreover, in places of

extremely low numbers of ground points, approximation is done using a suitable gap-filling algorithm.

2. Material and Methods

2.1. Study Area

This study spans three test sites on three different continents, namely Nepal (Site 1), Brazil (Site 2)

and Ghana (Site 3). The three forest types studied in the article were chosen on the principle that they

represent typical dense tropical forest types on three different continents. All three LiDAR samples have

been collected for a different purpose, as described below.

2.1.1. Site 1

This site consists of three watersheds, namely, Kayarkhola, Charnawati and Ludikhola. The three

watersheds cover an area of approximately 27,789 ha. The terrain in the site is predominantly

mountainous and complex, consisting of steep slopes and valleys. Altitude in the area varies from 245 m

(Kayarkhola) to 3549 m (Charnawati). The average slope in the area is 29.7%, while the maximum slope

is 57.3%. The percentage of ground hits in this site is approximately 29.3%.

This site is part of a pilot project for measuring and monitoring carbon stocks in community forests.

The aim of the project is to design and set up a governance and payment system for Nepal’s community

forest management under the Reducing Emissions from Deforestation and Forest Degradation (REDD)

payment scheme for developing countries.
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The forest tested in the current article lies on mountainous highland and represents steep orographic

variation under a dense canopy. The forest itself is looked after by a local community forest program and

has grown from a degraded state into a high biomass forest.

2.1.2. Site 2

This site is part of the Brazilian Amazon. The terrain in the area is predominantly flat with thick forest

cover. The point density of LiDAR capture is quite high, amounting to some 14 points per m2. Despite

such unusually high point density and the corresponding relatively low flying altitude, the number of

ground hits is quite low, thereby making DTM generation a challenge. The percentage of ground hits in

this site is approximately 2.2%.

The forest in this site is by far the densest of all three, but like much of the Amazonian Forest, it lies

on relatively flat land, with local undulation only. The Brazilian sample is from a natural forest, and it

was collected for studying the ability of LiDAR to penetrate a very dense, multi-storied canopy. A very

high point density was used in the LiDAR capture in order to make sure that at least some pulses hit

the ground.

2.1.3. Site 3

The third site is in southwestern Ghana and represents a West African tropical forest in hilly terrain.

The forest is dense, even if the current patch is relatively flat. The percentage of ground hits in this site

is approximately 4.54%.

This site is part of a forest and land use inventory scheme for the Ghanaian Forestry Commission

(see [40]). It represents a West African closed canopy forest that was inventoried for the sake of land use

change analysis. The overall terrain is rugged, but with much less steepness than in the Nepalese case.

Forests in the sample are not protected and are used for a variety of purposes by the local population.

2.2. Test Data

Test data used in this study consist of three LiDAR data sets from each of the test sites together with

plot-level field measurements of tree heights except for Site 2, where tree height measurement from

the ground is not possible.

2.2.1. LiDAR Data

The data were collected to support a LiDAR-assisted Multiresource Programme (LAMP), which is

a large-scale method for carbon stock mapping that combines LiDAR sampling and satellite imagery

to produce accurate carbon stock maps of areas of interest (see [41]). Table 1 shows a summary of

the parameters of interest about the LiDAR data. Flying altitude refers to the vertical distance of the

aircraft from the ground level and should be maintained throughout the flight mission. Because of this

requirement, a helicopter is the only way to fly in Site 1, since a fixed wing aircraft cannot rise fast

enough to maintain a constant flying altitude and follow the quickly undulating terrain. The data was

provided courtesy of Arbonaut Ltd. (Joensuu, Finland) in association with the International Center
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for Integrated Mountain Development (ICIMOD) (Site 1) of Nepal in raw LASer file format (LAS)

(ver. 1.2) format.

Table 1. Parameters of the LiDAR data used in this study.

Parameter
Value

Site 1 Site 2 Site 3

Projection UTM UTM UTM

Datum WGS84 WGS84 WGS84

Aerial platform Helicopter Helicopter Fixed wing aircraft

Flying altitude 2200 m AGL 850 m AGL 1300 m AGL

Flying speed 80 knots 124 knots 120 knots

Sensor type Leica ALS-50 II Leica ALS-50 II Leica ALS-50 II

Scan angle 20 degrees Unknown 13.5 degrees

Sensor pulse rate 52.9 Khz 115.8 Khz 81 Khz

Sensor scan speed 20.4 lines/s Unknown 47.6 lines/s

Average pulse density 0.8 points/m2 14 points/m2 2 points/m2

Swath width at ground level 1601.47 m 350 m 644 m

Beam footprint at ground level 50 cm Unknown 31 cm

Date collected March 2011–April 2011 September 2011 December 2011–January 2012

2.2.2. Field Measurements

In addition to the LiDAR data, field measurements consisting of tree height estimates for 80 circular

plots (radius = 12.62 m) in Site 1 were used. There were no field measurements for Sites 2 and 3.

The height of each tree with a diameter at breast height of 5 cm was measured using Vertex IV and

Transponder T3 measuring devices.

2.3. Methods

The proposed method for ground filtering and DTM interpolation can be broken down into five steps:

(1) repeated DTM sampling; (2) generating gridded DTM samples; (3) generating initial DTM; (4) filling

gaps; and (5) generating final DTM. These steps are detailed below.

2.3.1. Repeated DTM Sampling

The repeated DTM sampling step generates a series of DTMs using varying patch widths. The aim

of this step is to generate several elevation samples at each candidate DTM location (cell) from which

the best are selected to form the final DTM.

Input to this step is the original LiDAR point cloud (in ASCII xyz format). Using the method for

ground filtering and DTM interpolation proposed by [39], a series of DTMs is generated using patch

widths of varying sizes (see Figure 1).
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Figure 1. Example from Site 1 illustrating repeated sampling of elevation values at DTM

locations by repeating DTM interpolation using increasing patch widths ranging from 50 to

80 m at increments of 10 m. (a) Patch width = 50; (b) Patch width = 60; (c) Patch width = 70;

(d) Patch width = 80.

(a) (b)

(c) (d)

This procedure results in repeated sampling of elevation values at each candidate DTM location

(cell), while, at the same time, creating an overlapping effect between the DTM patches of varying

widths. The patch widths used in this study were 50, 60, 70 and 80 m. These values were found to work

well in all three test sites and were found by experimenting with values between 30 and 100 m using

a ten-meter increment.

While generating the individual DTMs in the repeated DTM sampling step, there are times when

the algorithm may fail due to a very low number of data points or gaps in the input data (see [39] for

details). When this happens during the repeated sampling step, corresponding areas are labeled with a

large negative value, so that they can be identified later. We call these bad areas. The magnitude of the

value used is roughly twice the average elevation value in the data (see Section 2.3.3 for details).

The output of the repeated DTM sampling step is a series of N DTMs with points created using patch

widths of varying widths, where N is the number of sample DTMs created.

2.3.2. Generating Gridded DTM Samples

In this step, a regular grid of desired spatial resolution is generated from each of the sample DTMs

generated in the previous step. The purpose of this step is to create candidate DTM locations at the

desired resolution, which are common to all the DTM samples and can be aligned easily. Generating

gridded DTM samples is done by first creating a grid of regularly spaced points (spaced according to
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the desired final DTM resolution) in the x-y plane. Next, the created grid is superimposed on each of the

sampled DTMs from the previous step, and for each point (x, y) in the regular grid, an elevation value is

assigned from the elevation of the closest point in the sampled DTM.

This step produces N gridded DTM samples, each with the same number of aligned grid points (DTM

locations), but with possibly different elevation values at corresponding grid points.

2.3.3. Generating Initial DTM

The initial DTM is generated by merging the N gridded DTM samples obtained in the previous

step. The merging is done by taking the median of the elevation values from corresponding DTM

locations in the gridded DTM samples. For example, in this study, four DTM samples were used,

therefore the elevation values at DTM locations in the initial DTM were assigned by taking the median

of four elevation values from corresponding DTM locations in the four gridded sample DTMs. Figure 2

illustrates how the merging is done.

Figure 2. Generating the initial DTM: DTM samples obtained by repeated sampling (A) are

converted into gridded DTM samples at the same resolution (B) from which the initial DTM

(C) is obtained by taking the median of corresponding DTM locations. W represents the

patch width in meters used to generate each of the sample DTMs.
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When generating the initial DTM by combining the sample DTMs, there are two possible cases:

(1) the number of sample DTMs to be combined is odd; and (2) the number of sample DTMs to be

combined is even. If the former case prevails, the median of elevation values at corresponding DTM

locations happens to be the middle value. In this case, this value is assigned to the corresponding DTM

location in the initial DTM regardless of whether this value is a legitimate elevation value or the large

negative value used for labeling bad regions. If the latter case prevails, however, the median value will

be the average of the two middle elevation values. In this case, it may happen that one or both of

the middle values is the special large negative value used for labeling bad regions. It is important at

this point to ensure that the resulting median value calculated is negative in order to preserve the identity

of bad regions. To meet this condition, the value used for labeling bad regions is chosen to be a negative

number with a magnitude of at least twice the average elevation value in the test data. This ensures that if

Case 2 prevails, bad regions retain negative elevation values, so that they can be identified in later steps

of the algorithm.

The generating initial DTM step results into an initial gridded DTM. The DTM contains negative

elevation values (gaps in the DTM) at places where elevation values could not be estimated in the

previous steps due to limited number of data points or gaps in the data. The next step is to estimate

the elevation values at those places (hereafter referred to as bad regions).

2.3.4. Filling Gaps

In the gap filling step, bad regions in the DTM are filled (repaired) by interpolation. The bad regions

can occur at three places in a DTM: (1) completely embedded in the DTM; (2) on the edge of the DTM;

and (3) on the corner of the DTM. Figure 3 shows the three possibilities.

Figure 3. Possible locations for bad regions in a DTM.



Remote Sens. 2014, 6 6534

The method described here repairs the bad regions that are completely embedded into the DTM and

those occurring on the edges. There is not enough information to reliably repair the bad regions occurring

at the corners. To repair the bad regions, the following steps are taken:

(i) locate the next bad DTM location to be repaired;

(ii) locate the coordinates of the first valid DTM location above the current bad point in the current

column (see Figure 4); if none exists, take the x and y coordinates of the topmost point and assign

a large positive value (L) for the z coordinate (elevation) and form the top point Pt : (xt, yt, zt);

Here, we use the terms above and below with respect to the positions of the points in the

vertical direction and the terms left and right with respect to the position of the points in the

horizontal direction.

(iii) Locate the coordinates of the first valid DTM location below the current bad point in the current

column (see Figure 4); if none exists, take the x and y coordinates of the bottom most point and

assign a large positive value for the z coordinate and form the bottom point Pb : (xb, yb, zb);

(iv) Locate the coordinates of the first valid DTM location on the left of the current bad point in the

current row (see Figure 4); if none exists take the x and y coordinates of the leftmost point and

assign a large positive value for the z coordinate and form the left point Pl : (xl, yl, zl);

(v) locate the coordinates of the first valid DTM location on the right of the current bad point in the

current row (see Figure 4); if none exists take the x and y coordinates of the rightmost point and

assign a large positive value for the z coordinate and form the right point Pr : (xr, yr, zr);

(vi) Determine if the bad DTM location is in a bad region lying on a corner by checking if any of

the following conditions are true: zt = zr = L, or zt = zl = L, or zb = zl = L, or zb = zr = L;

if any of these conditions hold, go to Step (i);

(vii) Determine which direction (vertical or horizontal) has a larger slope (steeper) by comparing the

magnitudes of the slopes of the lines segments PbPt and PlPr;

(viii) If the vertical direction is steeper, use the line segment PlPr to interpolate the elevation value at

the current bad point, otherwise use the line segment PbPt.

The value of L is chosen, such that the slope between the current bad DTM location and the topmost

DTM location is considerably larger than the slope between the current DTM location and any other

valid DTM location in the DTM. In this study, a value of 10,000 was used, and it was about ten times

larger than the average elevation in the data.

The reason for using a line segment in the less steeper direction for estimation is to detect bad regions

located on the edges and corners of the DTM and to take appropriate action. This is achieved by the use

of the large dummy elevation value described above. For example, if a bad region to be filled is located

on either the top or bottom edges of the DTM, then the slope in the vertical direction will be larger than

that in the horizontal direction (due to a large elevation value assigned), making the algorithm resort to

using a horizontal line segment for estimation. On the other hand, if the bad region is located on either

the left of right edges of the DTM, vertical line segments are used for estimation.
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Figure 4. Locating valid DTM locations when repairing bad regions in a DTM: (a) the case

when the bad region is completely embedded into the DTM and all of the required points

(Pt, Pr, Pb, and Pl) exist; (b) the case when the bad region lies on the border of the DTM and

one of the required points is missing; (c) the case when the bad region lies on the corner of the

DTM and either of the pair of the required points {Pt, Pr}, {Pl, Pt}, {Pl, Pb} or {Pb, Pr}

is missing. The darkest square at the center represents the DTM location, which is currently

being estimated within a bad region (the darker squares); the light squares bordering the bad

region represent valid DTM locations used for estimation.

(a) (b)

(c)

Estimating Unknown Elevation Values

After the four points Pt, Pr, Pb and Pl, as well as the direction of a gentle slope have been determined,

estimation of the elevation value at the current bad DTM location is done. First, the direction vector vd

is computed using either Equation (1) or Equation (2).

vd = Pr − Pl (1)

vd = Pt − Pb (2)

Next, using the equation of a line in 3D,

p = p0 + tvd (3)
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where p is a general point on the line, p0 is a known point on the line, t is a parameter and v is a direction

vector; the value of the parameter t for line segments PbPt and PlPr is determined using Equation (3)

above and available information, i.e., the values of the x and y coordinates of the current bad location

and either Pl or Pr if a horizontal line segment is used for estimation; and either Pt or Pb if a vertical line

segment is used for estimation. Thus, t is calculated using Equation (4).

t =
x− xt

vd,x

(4)

where x represents the value of the x-coordinate at the current bad location, xt represents the x-coordinate

of the top point, Pt, and vd,x represents the x-coordinate of the direction vector, vd. Alternatively, the

same result can be obtained by using the y-coordinates of the vectors involved in Equation (3).

After the value of the parameter t for the interpolating line has been determined, it is used to estimate

the elevation value at the current bad location. The estimation is done by using the z-coordinates of the

vectors in Equation (3) and using Equation (5).

z = zt + tvd,z (5)

where z is the elevation value being estimated, zt is the z-coordinate of the top point, Pt, and vd,z

represents the z-coordinate of the direction vector, vd. Here, the vertical line segment PbPt is being used

with Pt as the known point. In a similar fashion, the bottom point Pb can be used or either of the points

{Pl, Pr} may be used in case a horizontal line is used for estimation.

2.3.5. Generating the Final DTM

The final step in generating the DTM is to detect and remove jumps (spikes) in the DTM. This is a

two-step process. In the first step, jumps are detected and marked, and in the second step, the jumps are

removed (repaired). To detect jumps, each DTM location’s elevation is compared with the elevation of

its 8 neighbors (for DTM locations not lying on the border) or 5 neighbors (for DTM locations lying on

the border) (see Figure 5).

Figure 5. Two kinds of neighborhoods used to detect jumps in a DTM: (a) 8 neighborhoods;

(b) 5 neighborhoods. The asterisk represents the DTM location being tested.

(a) (b)

A DTM location is marked as a jump if it fails the test:

R < T
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where:

R =

s∑

i=1

|Zi − Zc|

and Zi represents the elevation value of the neighboring points, Zc represents the elevation value of the

point being tested, s is the upper limit of the summation (8 for the non-border location and 5 for the

border locations) and T is a threshold. The value of R is very sensitive to terrain slope, thus a suitable

value for T that works well for a particular area and data has to be determined experimentally. In this

study, the value of T roughly equal to R

s
was found to be suitable in each test area.

After the jumps have been detected and marked, the next step is to repair them. This is done by treating

the jumps as small gaps in the DTM and to repair them using the method for filling gaps described in

the previous section. Figure 6 illustrates how jumps are detected and repaired.

Figure 6. Detecting and repairing jumps in the DTM: (a) original DTM section; (b) locations

detected as jumps marked (light spots); (c) jumps repaired using the gap-filling approach

described in the previous section. The width of each DTM section is approximately 350 m.

(a) (b)

(c)

3. Results and Discussion

In this section, we present the performance results of the proposed algorithm. First, we show how the

proposed iterative approach helps to overcome the shortcomings reported in [39], namely, border effects

(poor overlapping between patches) and gaps in the DTM in places of extremely low data or the presence

of gaps in the data; second, we present results of the relative performance of the proposed algorithm

compared with two existing algorithms for the extraction of DTMs from LiDAR data in forested terrain

proposed in the literature in [3,4]. We chose to compare our method with these algorithms, because they

are in widespread use by the forestry community, both in research and industry.
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3.1. Minimizing Border Effects

Test results showed that by using patch widths of varying sizes, the problem of a lack of overlap

between patches is significantly reduced. As opposed to using only one DTM sample, the use of several

DTM samples (repeated sampling) results in the creation of several elevation samples at every DTM

location. These elevation samples are produced from DTM samples of different patch widths, thus

creating an overlapping effect between the patches of the DTM samples. Figure 7 shows how four DTM

samples generated using patch widths varying from 50–80 m at a ten-meter increment are combined to

produce the final DTM. Note how the border effects appearing in the four DTM samples are significantly

reduced after combining the DTM samples.

Figure 7. Combining four DTMs (a) Patch width = 50; (b) Patch width = 60; (c) Patch

width = 70; (d) Patch width = 80 generated using different patch widths to produce the final

DTM (e) After combining and removing jumps. Each DTM sample measures approximately

350 m in width.

(a) (b)

(c) (d)

(e)
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Similarly, repeated sampling of elevation values using DTM samples of increasing patch widths helps

to overcome the problem of gaps in the DTM resulting from either gaps in the data or low data densities

at certain places (due to closed canopy). This problem can be solved in two ways. First, as the patch

size is increased, gaps of a relatively small area compared to the patch width get embedded completely

or partially into the much larger patches. This is contrary to using a fixed patch width, where small

gaps often emerge. Second, gaps in the data are handled by using the gap-filling procedure described in

the previous section. This procedure is used to fill gaps that remain before the final DTM is produced.

Figures 8 and 9 show how the gap filling algorithm works.

Figure 8. Filling gaps in a DTM on a level surface on a steep slope: (a) original terrain before

a gap is introduced; (b) after a 40 m by 40 m gap has been introduced; (c) after the gap has

been repaired; (d) a difference model showing the error in estimation between the original

and estimated elevation values. The slope at this location is approximately 37%.

(a) (b)

(c) (d)

The difference model in Figure 8 shows that the gap filling algorithm works well on flat surfaces (both

on slopes and flat terrain), while the accuracy deteriorates with increasing terrain curvature (Figure 9).

This is expected behavior, as a substantial amount of information is lost when a hole is located on curved

terrain compared to when a hole of the same size is located on flat terrain.
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Figure 9. Filling gaps in a DTM on a curved surface on a steep slope: (a) original terrain

before a gap is introduced; (b) after a 40 m by 40 m gap has been introduced; (c) after the gap

has been repaired; (d) a difference model showing the error in estimation between the original

and estimated elevation values. The slope at this location is approximately 33%.

(a) (b)

(c) (d)

3.2. Comparison with Field Measurements

To assess the accuracy of the algorithm, tree height estimates computed using the algorithm were

compared to field-measured tree heights. Computed heights were obtained by first extracting the LiDAR

points corresponding to each plot, and the height of the tallest tree in each plot was assumed to correspond

to the average of the highest ten LiDAR points.

While comparison of tree heights estimates computed using the algorithm in Site 1 showed a slight

improvement against field measurements (RMSE = 1.65 m compared to an RMSE of 1.92 m reported

in [39]), the proposed algorithm has shown a significant improvement in dealing with gaps in the data,

as well as a low number of ground points. Moreover, the slight improvement in RMSE can be explained

by the fact that the field measurements were collected in areas accessible by field measurement crews,

i.e., areas with less complex terrain and moderate canopy cover.
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3.3. Comparison with Existing Algorithms

We compared the proposed algorithm with algorithms proposed in [3,4]. The comparison was

quantitative and was aimed at observing the relative performance of the three algorithms in different

kinds of forest cover and terrain type, i.e., the three test sites. This is due to a lack of field ground control

data (reference DTMs) in the three test sites. In the following discussion, we are going to refer to the

three algorithms as follows. The algorithm proposed by Karl Kraus as KK; the algorithm proposed by

Peter Axelsson as PA; and the algorithm proposed in this paper by MA (Maguya Almasi).

In our tests, we used the implementation of KK available in the FUSION software package (see [42])

and that of PA found in the Terrascan software package (see [43]). For details about parameters used

to generate the test DTMs from the two software packages; see Appendix A and B. Figures 10–12

show a comparison of the three algorithms. The comparison is based on the differences in elevation

between the DTMs and the smoothness of the DTMs, and the area covered measures approximately

0.16 square kilometers.

Figure 10. Comparing DTMs produced by (a) Karl Kraus (KK), (b) Peter Axelsson (PA) and

(c) Maguya Almasi (MA) at Site 1. The width of the DTM section is approximately 400 m.

(d) Difference model: KK −MA; (e) Difference model: PA−MA.

(a) (b)

(c)
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Figure 10. Cont.

(d) (e)

Figure 11. Comparing DTMs produced by (a) Karl Kraus (KK), (b) Peter Axelsson (PA) and

(c) Maguya Almasi (MA) at Site 2. The width of the DTM section is approximately 400 m.

(d) Difference model: KK −MA; (e) Difference model: PA−MA.

(a) (b)

(c)
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Figure 11. Cont.

(d) (e)

Figure 12. Comparing DTMs produced by (a) Karl Kraus (KK), (b) Peter Axelsson (PA) and

(c) Maguya Almasi (MA) at Site 3. The width of the DTM section is approximately 400 m.

(d) Difference model: KK −MA; (e) Difference model: PA−MA.

(a) (b)

(c)
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Figure 12. Cont.

(d) (e)

Figure 10 shows that the biggest differences in elevation among the three algorithms occur in Site

1. This observation can be attributed to the fact that, of the three test sites, Site 1 encompasses the

most challenging combination of terrain and data for ground filtering algorithms, i.e., it has terrain with

steep slopes and low data density. Here, KK seems to perform poorly, whereas PA and MA seem to

agree for the most part, with a consistent difference of about 1 m, except for a few places where there

is a difference of more than 5 m. These places are the ones in which KK seems to suffer the most (see

Figure 10a). The big difference in elevation at these places is due to the closed canopy, which blocks most

of the LiDAR pulses. This fools algorithms into misclassifying LiDAR returns from tree branches as

ground returns.

In Site 2 PA and MA agree significantly, while KK still presents a significant discrepancy, although

not as significant as that observed in Site 1. These differences between the two sites can be attributed to

the fact that Site 2 is predominantly flat, less complex terrain. Similar results are observed in Site 3 for

PA and MA, while KK continues to deviate.

4. Conclusions

This paper has presented an algorithm for extracting DTMs from LiDAR data in challenging forested

terrain. The algorithm overcomes the challenge of low data density under forest canopies by iteratively

generating a series of coarse DTMs, which are then combined to form the final DTM.

A comparison with traditional DTM extraction algorithms showed that the performance of the

algorithm presented in this paper remained consistent with decreasing data density, while the

performance of the traditional DTM extraction algorithms deteriorated with decreasing point density.

The main limitation of the proposed algorithm is its inability to reproduce small artifacts in the terrain

(e.g., small hills). This is especially true with extremely low data densities, where the sizes of the

patches used for local interpolation have to be large enough to get the right amount of ground points

for interpolation. Under the challenging circumstances of our three test sites, the quality of the DTM

produced clearly outweighs the loss of small features in the terrain. Overall, comparing the ground hit

percentages of the three test sites and the challenge they pose to DTM extraction algorithms, it appears

that terrain complexity is more detrimental to DTM quality than point density: the Nepalese test site has
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the most complex terrain, but almost ten times the number of ground hits of the other two test sites, yet

it produced the biggest absolute differences between the DTMs.

The proposed algorithm will therefore serve as a base for a new generation of algorithms for DTM

extraction in challenging forested terrain. Further work needs to be done to improve the gap-filling

method, to find a more robust way to combine the sample DTMs and to conduct further tests on

the algorithm.
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Appendix

A. Parameters Used to Generate Test DTMs in Terrascan

The following parameters were used to generate the test DTMs used for comparison in this study:

Class: 2 (ground)

Value: triangulated model

Export: whole area

Grid spacing: 1 m

Maximum triangle length: 700 m

Model buffer: 100 m

Outside points: skip

Z decimals: 0.123

B. Parameters Used to Generate Test DTMs in FUSION

The following command was used to generate the test DTMs used in this study from FUSION:

Ground filtering:

groundfilter/gparam:−1/wparam:2/tolerance:0.1/iterations:10 <output laser data (LDA) file> 2 <input

LAS file>

DTM generation:

gridsurfacecreate/median:8/spike:20 <output DTM file> 2 M M 1 12 2 2 <input LDA file>
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