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Abstract: This paper presents a method for mapping the nitrogen (N) status in a maize 

field using hyperspectral remote sensing imagery. An airborne survey was conducted with 

an AISA Eagle hyperspectral sensor over an experimental farm where maize (Zea mays L.) 

was grown with two N fertilization levels (0 and 100 kg N ha−1) in four replicates. Leaf  

and canopy field data were collected during the flight. The nitrogen (N) status has been 

estimated in this work based on the Nitrogen Nutrition Index (NNI), defined as the ratio 

between the leaf actual N concentration (%Na) of the crop and the minimum N content 

required for the maximum biomass production (critical N concentration (%Nc)) calculated 

through the dry mass at the time of the flight (Wflight). The inputs required to calculate  

the NNI (i.e., %Na and Wflight) have been estimated through regression analyses between  

field data and remotely sensed vegetation indices. MCARI/MTVI2 (Modified Chlorophyll 
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Absorption Ratio Index/Modified Triangular Vegetation Index 2) showed the best 

performances in estimating the %Na (R2 = 0.59) and MTVI2 in estimating the Wflight  

(R2 = 0.80). The %Na and the Wflight were then mapped and used to compute the NNI map 

over the entire field. The NNI map agreed with the NNI estimated using field data through 

traditional destructive measurements (R2 = 0.70) confirming the potential of using remotely 

sensed indices to assess the crop N condition. Finally, a method to derive a pixel based 

variable rate N fertilization map was proposed as the difference between the actual N content 

and the optimal N content. We think that the proposed operational methodology is promising 

for precision farming since it represents an innovative attempt to derive a variable rate 

N fertilization map based on the actual crop N status from an aerial hyperspectral image. 

Keywords: Nitrogen Nutrition Index; nitrogen concentration; airborne; hyperspectral; 

precision farming; vegetation indices; variable rate fertilization; Zea mays L. 

 

1. Introduction 

Nutrients and various chemicals are usually supplied to agricultural soils to improve the crop yield. 

Excessive use of fertilizers (including nitrogen, N) should be avoided to minimize environmental 

impacts. In fact, although N fertilization improves plant development, the fate of the non-absorbed 

portion arouses concerns due to leaching phenomena and to the emissions in the atmosphere [1]  

of greenhouse gases such as dinitrogen monoxide (N2O). However, even if the use of N fertilizers can  

be reduced without significantly influence the final yield [2], farmers often administer N supplies  

in excess in order to avoid any N deficit and assure profits at the end of the season [3]. To avoid such 

an excessive fertilization, one of the most important steps at European level was the Nitrate Directive 

(91/676/EEC) in 1991 concerning the protection of ground and surface waters against pollution  

caused by nitrates (NO3−) from agricultural sources. This directive imposed the identification of  

waters containing more than 50 mg L−1 of NO3− (or that could contain this concentration if no action is  

taken to reverse the trend), and the adoption of action programmes on these vulnerable areas. The last 

European Commission report on the implementation of this directive for the period 2008–2011 states 

that the consumption of chemical fertilizers is decreasing. 

A tool for the in-season detection of N deficient areas is needed in order to administer the fertilizers 

only where necessary. In this context, the concept of critical N concentration (%Nc) [4,5] was proposed 

as the minimum N concentration in shoots required to produce the maximum aerial biomass at a  

given time. The %Nc declines exponentially as a function of aboveground dry mass accumulation (W). 

Species-specific relationships between %Nc and W have been proposed as references to be compared 

with actual %Nc and W measurements to derive the crop-specific N needs at each growth stage. 

Nitrogen needs are formalized by means of the Nitrogen Nutrition Index (NNI) [6,7] defined as the 

ratio between the actual leaf N concentration (%Na) measured in the field at a specific growth stage 

and the %Nc predicted by the reference function %Nc = f(W). NNI values close to 1 indicate plants not 

limited by N availability, while values lower or higher than 1 indicate N deficiency or excessive 

fertilization, respectively [6]. 
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NNI is traditionally calculated through field measurements that are quite time consuming. As a 

result, a reduced number of plants is usually sampled and the spatial heterogeneity of N needs is poorly 

represented. The estimation of the NNI based on spectral data has been proven feasible using field 

spectrometers operated on the ground [8] or mounted on tractors [9]. However the possibility to detect 

the N status using remotely rather than proximal sensed information has still to be tested [10].  

The precise and effective remotely sensed estimation of the NNI input parameters (i.e., %Na and W) 

would provide a cost-effective detailed spatial characterization in order to produce maps of crop 

nutritional deficit. 

Several studies demonstrated that leaf chlorophyll concentration can be estimated through 

hyperspectral vegetation indices based on the visible and red edge (680–760 nm) spectral domains [11–15]. 

Hyperspectral sensors are characterized by a high number of narrow and contiguous acquisition  

bands that allow a better description of specific portions of the electromagnetic spectrum compared to 

broadband sensors and, thus, better performances in biochemical parameter estimation [16]. The 

correlation between leaf pigments and leaf N incorporated in chlorophyll molecular structure [17,18] 

justified the use of vegetation indices for the determination of plant N condition [19–24]. Moreover, 

hyperspectral data have been also successfully used to estimate aboveground biomass accumulation, 

the second input required for NNI computation, using combinations of visible and near infrared 

reflectance in the form of simple or normalized ratios [25,26]. Nevertheless, the use of remote sensing 

to monitor crops in precision farming is still limited although its high potentiality in providing spatially 

detailed information to support site-specific management. This approach would result in reduced 

economic costs for farmers and a reduced impact on environmental resources. 

In this study we used hyperspectral remote sensing imagery to estimate the N concentration and the 

dry mass on the basis of relationships with field data acquired during the flight. An airborne campaign 

was conducted with an AISA Eagle (Specim, Oulu, Finland) hyperspectral sensor over an experimental 

maize field. The main goals were (i) to determine crop specific N needs from airborne data through the 

calculation of the NNI map and (ii) to quantify the N deficit or surplus in different areas with respect  

to a reference optimal N content to provide variable rate N fertilization maps. We finally proposed an 

empirical method based on the comparison of the N content accumulated in the aboveground dry mass 

in each pixel with the one found in the pixels identified as in optimal conditions by the NNI map. 

2. Materials and Methods 

2.1. Experimental Design 

The experiment was conducted at the Vittorio Tadini experimental farm (44°58ʹ49.0ʹʹN, 

9°40ʹ48.50ʹʹE, elevation 87 m a.s.l.) located in Gariga di Podenzano (PC) in Northern Italy. 

Twenty-four maize (Zea mays L.) plots sized 15 m × 16.5 m were organized in four replicates 

(blocks), as depicted in Figure 1. In each block, two N fertilization levels (i.e., 0 kg N ha−1 and  

100 kg N ha−1) and three water levels (i.e., rainfed, water deficit imposed between stem elongation  

and flowering and full irrigation) were randomly assigned to each plot. The water stress effects were 

investigated in another study [27]. In this study, different water treatments were considered to have the 

effect of enhancing plant status variability, as it is expected in actual agricultural fields. 
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The field was sown on 3 June 2010, and N fertilizer was applied manually twenty-one days after 

sowing. Other information concerning the experimental management plan is reported in Table 1. 

Figure 1. Experimental field location in Northern Italy and treatment scheme. Light  

green represents the not fertilized maize plots (N0) and dark green the plots treated  

with 100 kg N ha−1 (N1). The irrigation levels are shown as small circles in rainfed plots 

(IRR0), medium circles in water deficit plots (IRR1) and large circles in full irrigation 

plots (IRR2). 

 

Table 1. Field management plan. 

Date Days after Sowing Action 

03/06/2010 0 Maize sowing 
08/06/2010 5 Start emergence 
10/06/2010 7 End emergence 
14/06/2010 11 Weeding (3 L ha−1 Gardoprim) 
24/06/2010 21 N fertilization 
25/06/2010 22 Hoeing 
20/07/2010 47 AISA flight 
13/09/2010 102 Harvest 

2.2. Field Data 

A field campaign was conducted contemporary to the flight on the 20 July 2010. At the time of the 

flight plants were in their pre-flowering stem elongation stage [28] with an average of 10 leaves expanded. 

All measurements were taken in an area of 3 m × 3 m centered in the plots. Measurements were 

collected through destructive (i.e., actual N concentration (%Na), plant dry mass and grain production) 

and non-destructive (i.e., foliar measurements reported in Table 2 and Leaf Area Index (LAI)) methods. 

The micro-Kjeldahl method was used to measure the %Na from leaf samples collected immediately 
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after the image acquisition from four plants per plot. Plant dry mass was measured immediately after 

the image acquisition (Wflight) in plot centers and at harvest (Wend). The %Na and the Wflight were used 

for the estimation of the NNI in the field (NNIfield). 

Table 2. Non-destructive foliar measurements acquired in each plot center. Relative 

chlorophyll content (Cab), photosynthetic yield (ΔF/Fm') and instantaneous CO2 assimilation 

(Ai) were acquired on the last fully expanded leaf. Each measure is the average of  

three acquisitions. 

Parameter Leaves Sampled in Each Plot N° Blocks, N° Plots 

Cab 10 4, 24 
ΔF/Fm' 15 4, 24 

Ai 3 1, 6 

The non-destructive measurements were acquired on the last fully expanded leaf. Relative 

chlorophyll content (Cab) was measured with a SPAD-502 meter (Minolta, Tokyo, Japan) [29]. 

Instantaneous CO2 assimilation (Ai) was recorded with a CIRAS-1 (PP-Systems, Amesbury, MA, 

USA) and photosynthetic yield (ΔF/Fm') with a Photosynthesis Yield Analyzer Mini-PAM (Walz, 

Effeltrich, Germany). ΔF/Fm' represents the efficiency of electron transport by photosystem II (PSII) 

under steady-state conditions of actual irradiance. Higher ΔF/Fm' values are typical of healthier leaves: 

ΔF is the difference between Fm', the maximal fluorescence yield of the sample under environment 

illumination and Ft, the fluorescence yield under environment illumination measured before the 

saturation pulse [30]. LAI (Leaf Area Index) is the measure of the green area per soil unit area, and 

was estimated in each plot center using a linear ceptometer in the PAR (Photosynthetically Active 

Radiation) domain (SunScan Canopy Analysis System, Delta-T devices, Burwell, UK). LAI estimation 

with such a device requires the measurement of incident (direct and diffuse) and transmitted radiation. 

The incident radiation was measured from about 0.5 m above the top of the canopy in each plot. The 

direct to diffuse radiation ratio was then estimated by conducting a second incident radiation 

measurement after shadowing about 1/4 of the probe sensors (100 cm long) according to [31]. Seven 

LAI measurements were then conducted and averaged along a transect crossing two consecutive crop 

rows, by measuring the transmitted solar radiation at ground level and exploiting the SunScan internal 

software for LAI estimation [31]. For the LAI estimation from such measurements, leaf absorption in 

the PAR domain was assumed equal to 0.85, while the ellipsoidal leaf angle distribution parameter was 

set to 1.37 [32]. 

2.3. Nitrogen Nutrition Index 

The NNIfield [6] was calculated with the destructive measurements conducted in plot centers 

contemporary to the flight. The NNI reported in Equation (1) is the ratio between the %Na and the %Nc 

as a percentage of dry mass. The %Na is the leaf actual N concentration measured in the field and the 

%Nc is the minimum N concentration necessary to achieve the maximum aboveground dry mass, 

expressed by Equation (2), where a and b are crop dependent constants and W (t ha−1) corresponds to 

the plant dry mass: 
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According to [33], the coefficients a and b were set equal to 3.40 and 0.37, respectively. NNI values 

close to 1 indicate plants not limited by N availability, values lower than 1 indicate N deficiency and 

values higher than 1 indicate that N accumulation occurs without an increase in crop biomass. 

2.4. Hyperspectral Data Acquisition 

A hyperspectral image was acquired at 12.37 UTC on the 20 July 2010 with the AISA Eagle sensor 

flown in the solar principal plane by the Italian Istituto Nazionale di Oceanografia e Geofisica 

Sperimentale (OGS). Acquisition parameters are given in Table 3. 

Table 3. Sensor characteristics and spectral region covered. FWHM is the Full Width at 

Half Maximum, IFOV is the Instantaneous Field Of View. 

Sensor 
Spectral 

Range (nm) 
Number 
of Bands 

FWHM 
(nm) 

Spatial 
Resolution (m) 

IFOV 
(mrad) 

Flight Time 
(UTC) 

Height 
(m) 

AISA Eagle 394–968 244 3.3 1.0 0.5 12:37 2000 

The AISA image was georeferenced with CaliGeo software (Specim, Oulu, Finland) using data 

from the GPS/IMU unit onboard. The image was atmospherically corrected by the empirical  

line approach using ground reflectance spectra measured in field at the time of the flight [34] by means 

of a FieldSpec Pro portable spectroradiometer (ASD, Boulder, CO, USA). The empirical line approach 

is used to force image radiance (L) to match selected field reflectance spectra by means of a linear 

regression for each acquisition band. Two 6 m × 6 m calibration panels (white and black Odyssey 

material (Kayospruce, Fareham, UK)) were measured. Homogeneous targets with lambertian 

behaviour (two soils and one asphalt) were also measured to improve the correction accuracy [35]. 

Fitting accuracy between field spectral signatures and remotely sensed data was then evaluated in each 

band through the Root Mean Square Error (RMSE) and resulted in less than 1% of reflectance. 

2.5. Vegetation Index Computation 

The plot centers were located on the AISA image and mean reflectance values were extracted 

from 3 × 3 pixel areas (9 m2). Several narrowband vegetation indices were calculated. As reported in 

Table 4 [21,36–43], indices are divided into three categories on the basis of previous findings in 

literature: indices mainly related to N, to foliar pigments and to green biomass. 

Two recent indices proposed for the estimation of N content, DCNI (Double-peak Canopy Nitrogen 

Index) and MCARI/MTVI2 (Modified Chlorophyll Absorption Ratio Index/Modified Triangular 

Vegetation Index 2), were tested. The following foliar pigment indices were considered: TCARI 

(Transformed Chlorophyll Absorption in Reflectance Index), MTCI (MERIS Terrestrial Chlorophyll 

Index), and TCI (Triangular Chlorophyll Index). In addition, NDVI (Normalized Difference 

Vegetation Index) and soil adjusted vegetation indices OSAVI (Optimized Soil Adjusted Vegetation 
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Index), MSAVI (Modified Soil Adjusted Vegetation Index), and MTVI2 were tested as greenness 

indices. The combination of foliar pigment indices with soil adjusted vegetation indices was also 

tested as indicator of foliar pigments with the aim of normalizing for differences in canopy structure and 

soil contribution. 

Table 4. Narrowband vegetation indices tested in this study. Rx is the reflectance at the 

wavelength x, expressed in nm. AISA band centers used for calculations are: 550.51 (R550), 

669.55 (R670), 681.52 (R681.25), 700.72 (R700), 707.94 (R708.75), 719.96 (R720), 753.70 

(R753.75) and 799.81 (R800). 

Category Index Formula Reference 

Nitrogen (N) 
DCNI (R720 − R700)/(R700 − R670)/(R720 − R670 + 0.03) [36] 

MCARI/MTVI2 R700 − R670 − 0.2 × (R700 − R550)] × (R700/R670)/MTVI2 [21] 

Foliar pigments 

TCARI 3 × [(R700 − R670) − 0.2 × (R700 − R550) × (R700/R670)] [37] 

TCARI/OSAVI TCARI/OSAVI [37] 

TCARI/MSAVI TCARI/MSAVI [37] 

MTCI (R753.75 − R708.75)/(R708.75 − R681.25) [38] 

MTCI/MSAVI MTCI/MSAVI [39] 

TCI 1.2 × (R700 − R550) − 1.5 × (R670 − R550) × (R700/R670)
0.5 [39] 

TCI/OSAVI TCI/OSAVI [39] 

Greenness 

NDVI (R800 − R670)/(R800 + R670) [40] 

OSAVI (R800 − R670)/(R800 + R670 + 0.16) [41] 

MSAVI 0.5 × {2 × R800 + 1 −[(2 × R800 + 1)2 − 8 × (R800 − R670)]
0.5} [42] 

MTVI2 
1.5 × [1.2 × (R800 − R550) − 2.5 × (R670 − R550)]/ 

{(2 × R800 + 1)2 − [6 × R800 − 5 × (R670)
0.5] − 0.5}0.5 

[43] 

2.6. NNI and Variable Rate N Fertilization Maps 

The regression analyses between field data and vegetation indices allowed the selection of the best 

indices for the estimation of the NNI input parameters (i.e., %Na and W). 

Once the NNI map was calculated, we proposed an empirical method to quantify the N deficit or 

surplus in the field (Nstatus) expressed as (g N m−2). For this purpose, the actual N content accumulated 

in the aboveground biomass (Nw) was calculated at pixel level as %Na × W (g m−2). The optimal Nw 

(Nw_opt) was calculated as the mean Nw value of pixels with NNI close to 1 (i.e., optimal NNI value). 

Nstatus was then calculated as the difference between Nw and Nw_opt. 

This allowed to map the Nstatus at the time of the flight overpass: positive values of Nstatus indicated 

areas characterized by N surplus, otherwise negative values of Nstatus indicated N deficit. The N deficit 

represents the amount of N to be prescribed in order to provide the optimal N content to improve the 

maize production. 
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2.7. Statistical Analyses 

The statistical differences between biochemical and physiological parameters measured in N0  

and N1 plots were tested through the Student t test. Relationships between field data and vegetation 

indices were evaluated by Ordinary Least Squares (OLS) regression analyses in order to determine 

best indices for %Na and Wflight estimation on the basis of the higher coefficient of determination (R2). 

Different fitting function models were tested (i.e., linear, power, logarithmic, and exponential). 

3. Results 

3.1. Field Data 

The statistical difference between biochemical and physiological parameters measured in N0 and 

N1 plots was tested. As expected higher average values occurred in N1 plots, even though differences 

between treatments were not always significant. Results are reported in Table 5. 

Table 5. Statistical analyses (t test) on fertilization effect on field parameters measured  

in maize plot centers. Mean value, standard deviation and p value are reported. In case of 

statistical significance bold letters indicate different groups (p < 0.05). Analyses were 

performed on 4 blocks (24 plots), except for Ai (1 block, 6 plots). 

Time Field Data N0 N1 p Value  

Contemporary to  

AISA flight 

%Na (%) 2.07 ± 0.34 2.32 ± 0.30 0.079 

NNIfield 1.03 ± 0.19 1.16 ± 0.17 0.087 

Cab 49.04 ± 4.29 b 52.62 ± 3.08 a 0.028 

ΔF/Fm' 0.355 ± 0.042 0.364 ± 0.033 0.535 

Ai (μmol CO2 m
−2 s−1) 36.710 ± 5.102 37.489 ± 6.407 0.877 

LAI (m2 m−2) 2.27 ± 0.72 2.60 ± 0.67 0.262 

Wflight (kg m−2) 0.41 ± 0.05 0.42 ± 0.05 0.626 

Harvest 
Grain (kg m−2) 0.56 ± 0.17 b 0.71 ± 0.17 a 0.043 

Wharvest (kg m−2) 1.24 ± 0.24 b 1.48 ± 0.27 a 0.031 

The only parameter affected by N supplied to the maize plots at the time of the flight was Cab  

(p = 0.028). Dry mass (Wflight) differences between fertilizations were in fact not significant, meaning 

that differences in N supplies did not affect plant development at this stage. Instead, some differences 

occurred at the end of the experiment in Wharvest (p = 0.031) and in grain production (p = 0.043). 

As expected, the known relationship between N and chlorophyll content [19,36] was confirmed  

in our data, since a statistically significant relationship (p < 0.05) was found between %Na and Cab  

(R2 = 0.56). However, contrary to Cab, significant differences between N treatments were not detected 

in %Na (p = 0.079) and NNIfield (p = 0.087). 
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3.2. Vegetation Indices Regressions 

Regression analyses between field data and vegetation indices were performed to select the indices 

providing the best results in mapping %Na and W, which are the input parameters for the NNI 

computation. The coefficients of determination and the significance of the linear regression models are 

reported in Table 6; the R2 of power, logarithmic or exponential models is reported only when it was 

higher than the linear one. 

Table 6. Regression analyses between vegetation indices and field data measured in the  

24 plot centers: photosynthetic yield (ΔF/Fm'), actual N concentration (%Na), relative 

chlorophyll content (Cab), Leaf Area Index (LAI) and dry mass (Wflight) measured during 

the flight. Coefficient of determination (R2) and significance (*** p < 0.001, ** p < 0.010, 

* p < 0.05) are reported. Linear models were used if not specified with abbreviations in 

parenthesis: power (pw) or logarithmic (ln). 

Category Index ΔF/Fm' %Na Cab LAI Wflight

Nitrogen (N) 
DCNI 0.19 * 0.52 (pw) *** 0.68 ***  0.22 * n.s. 

MCARI/MTVI2 n.s. 0.59 ***  0.69 ***  n.s. n.s. 

Foliar 
pigments 

TCARI n.s. 0.22 * 0.43 ***  n.s. n.s. 
TCARI/OSAVI n.s. 0.59 (ln) ***  0.66 *** 0.21 * n.s. 
TCARI/MSAVI 0.27 ** 0.54 (ln) ***  0.58 ***  0.37 ** 0.29 ** 

MTCI 0.38 ** 0.38 (pw) **  0.48 *** 0.50 *** 0.44 *** 
MTCI/MSAVI n.s. 0.33 (pw) **  0.56 (pw) *** n.s. n.s. 

TCI n.s. n.s. 0.21 * 0.23 * 0.42 *** 
TCI/OSAVI n.s. 0.40 *** 0.56 *** n.s. n.s. 

Greenness 

NDVI 0.48 *** n.s. n.s. 0.69 ***  0.77 *** 
OSAVI 0.48 *** n.s. n.s. 0.69 *** 0.79 *** 
MSAVI 0.47 *** n.s. n.s. 0.67 *** 0.79 *** 
MTVI2 0.47 *** n.s. n.s. 0.66 *** 0.80 *** 

Combined chlorophyll indices (i.e., MCARI/MTVI2, TCARI/OSAVI, TCARI/MSAVI, 

TCI/OSAVI) were better related with Cab and %Na than traditional chlorophyll vegetation indices, due 

to the minimization of structural effects and soil contributions. 

The MCARI/MTVI2 showed the best performances in estimating both Cab (R2 = 0.69) and %Na  

(R2 = 0.59) while it was not significantly related to LAI. This suggested that MCARI/MTVI2 was the 

most suitable for %Na detection since it was not affected by canopy structure. The linear function 

obtained is reported in Figure 2a. All the greenness indices were well related to Wflight (R
2 > 0.70). Soil 

adjusted indices (OSAVI, MSAVI, and MTVI2) performed slightly better than the traditional NDVI, 

since they were able to minimize the soil background effects on reflectance in case of low fractional 

cover. Among these the MTVI2 (R2 = 0.80) was selected for the dry mass estimation (Figure 2b). 
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Figure 2. Linear regressions between field data and vegetation indices. (a) %Na and 

MCARI/MTVI2 (R2 = 0.59). (b) Wflight and MTVI2 (R2 = 0.80). 

 

3.3. NNI and Variable Rate N Fertilization Maps 

The NNI map in Figure 3a was obtained through the combination of the input parameters 

(Equations (1) and (2)) estimated remotely with the relationships in Figure 2. The NNI range was 

divided in five classes represented with colors from red (low NNI values) to dark green (high NNI 

values) centered around the optimal NNI value (NNI = 1). As reported in Table 7, pixels showing N 

deficit (NNI ≤ 0.9) represented the 23% of the entire field, pixels with optimal N supply (0.9 < NNI ≤ 1.1) 

represented the 23% while pixels with N surplus (NNI > 1.1) represented the 54%. 

A good agreement (R2 = 0.70, p < 0.001) was found between the mean NNI estimated for each 

parcel from remote sensing and the NNIfield, showing that the remote estimation of NNI is coherent 

with the traditional one measured in the field. 

The suitability of the NNI map to detect the N status was also evaluated analysing the  

statistical difference between plots treated with different N amounts: the mean NNI value in N0 plots  

(NNI = 0.99 ± 0.23) was statistically different from the mean NNI value in N1 (NNI = 1.21 ± 0.17)  

(p = 0.016). It was observed that in general the field was not in a critical N deficit condition since 

mean values in N0 and N1 plots were both in the range of optimal N supply (i.e., NNI close to 1). 

The optimal N content (Nw_opt) was computed as the mean Nw from the optimal NNI pixels  

(0.9 < NNI ≤ 1.1) and was found equal to 8.3 g N m−2. This value was used together with the Nw in 

each pixel to estimate the Nstatus. Results are reported in Table 7 for each NNI class. The Nstatus 

calculated at pixel level was converted in variable rate N fertilization (kg N ha−1) as reported in  

Figure 3b. The variable rate N fertilization quantity should allow to obtain a Nstatus equal to zero in 

each N deficient pixel, in order to reproduce the Nstatus typical of optimal areas. The suggested rate is 

shown only for pixels belonging to N deficient areas (i.e., NNI ≤ 0.9). 
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Table 7. NNI (Nitrogen Nutrition Index) classes, corresponding area, description of the 

area with respect to the Nstatus, actual N content accumulated in the aboveground biomass 

(Nw) and Nstatus mean values (g N m−2). 

NNI Class Area (m2, % Field) Description Nw (g N m−2) Nstatus (g N m−2) 

NNI ≤ 0.7 499, 9% 
N Deficit  

4.8 ± 0.8 −3.5 ± 1.7 
0.7 < NNI ≤ 0.9 818, 14% 6.6 ± 0.7 −1.7 ± 1.6 
0.9 < NNI ≤ 1.1 1310, 23% N optimal  8.3 ± 0.9 - 
1.1 < NNI ≤ 1.3 1756, 30% 

N surplus  
9.9 ± 0.9 1.7 ± 1.8 

NNI > 1.3  1370, 24% 11.9 ± 1.1 3.6 ± 1.1 

Figure 3. Maps obtained over the maize experimental field. (a) NNI (Nitrogen Nutrition 

Index) map obtained from remotely sensed data. Classes were defined around the optimal 

NNI value (NNI = 1). (b) Variable rate N fertilization map (kg N ha−1) on the basis of the 

Nstatus value in each pixel. The suggested rate is shown only for pixels belonging to N 

deficient areas (i.e., NNI ≤ 0.9). 

 

4. Discussions 

As observed from the field data, the availability of different N amounts did not lead to prominent 

visual or structural effects at the time of the image acquisition, allowing the investigation of a method 

for N deficiency detection in an early phase. In fact, at the time of the flight, statistically significant 

differences related to N supplies were observed only for Cab while the canopy structure parameters 

were unaffected. 
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Remote sensing techniques have been already used to monitor leaf chlorophyll and N concentration 

in agriculture in the context of precision farming practices: several studies conducted on maize crops 

report leaf chlorophyll concentration [37,39] as well as leaf N concentration maps [36,44] reproducing 

the spatial patterns related to different N supplies and soil conditions. Other studies focused on  

the estimation of crop density from aerial imagery [45,46] and from sensors onboard agricultural 

machineries to drive fertilization rates in real time [47,48]. Recently [9] showed that spectral data 

collected on wheat with a tractor mounted field spectrometer were related to the NNI measured in the 

field. These spectral systems analyse the areas surrounding the tractor and may be a useful tool in 

small or medium-sized fields. However, when the field extension is considerably larger, aerial tools 

may become necessary. Although the attention toward precision farming techniques is increasing, 

studies providing methods to obtain variable rate N fertilization maps based on remote sensing data are 

still limited. Among remote sensing techniques it is worth mentioning the recent development of 

UAVs (Unmanned Aerial Vehicles) in agricultural applications allowing the collection of multispectral 

and hyperspectral imagery at sub-metric spatial resolution [49–52]. 

The possibility to map the NNI from airborne hyperspectral data found limited application so far; 

therefore, this study represents an innovative attempt to produce a variable rate N fertilization map.  

It should be noted that the integration of radiometric data and crop models addressed in other studies [53] 

would constitute an approach able to consider also climate and soil conditions. 

Our methodology allowed to merge the information about actual N concentration and dry mass 

identifying the areas where both parameters were low: a site-specific management was suggested over 

the 23% of the field, instead of an extensive fertilization. It must be noted that the proposed pragmatic 

approach to determine the Nstatus requires that a number of pixels with NNI close to 1 are present in  

the scene. 

Since no recovery fertilization occurred after the flight, the deficiencies remained until the end of 

the growing season as shown by the differences in grain production. Even though a good agreement 

between NNI map and treatments was generally found, we observed some NNI values higher than 1 in 

few N0 plots, indicating N surplus: this could be due to nutrient residuals from previous agricultural 

practices. Furthermore, some low NNI values were observed in correspondence of water stressed  

plots (rainfed plots) even if supplied with N. This evidenced that in case water was a limiting factor 

plants were not able to use efficiently the supplied N and this affected the regular plant development. 

Remotely sensed indicators of water stress (i.e., canopy temperature, passive fluorescence, and PRI) 

able to highlight conditions of critical water supply [27,54] might be integrated with the NNI to produce 

N and water variable rate maps. 

In this way, knowing the amount of fertilizer administered to each parcel and the current water 

status, it would be possible to evaluate if the observed N deficit is due to a lack of fertilization or irrigation. 

The Nstatus was quantified with reference to the average Nw shown by pixels in optimal conditions 

according to the NNI map (0.9 < NNI ≤ 1.1). The deficit found in the plant Nstatus was used to prescribe 

the amount of N that should be applied to the soil by the farmer; further investigation would be needed 

in order to predict the N availability for plants when fertilizers are applied to the soil, considering  

the losses mainly due to water leakage. Moreover, further studies should address a higher number of 

fertilization supplies to better evaluate the proposed method effectiveness. 
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5. Conclusions 

This study proved that airborne hyperspectral imagery can be used to detect N deficient areas  

in maize crops. The parameters of interest for the production of the NNI (Nitrogen Nutrition Index)  

map (i.e., the leaf actual N concentration (%Na) and the dry mass (Wflight)) were successfully estimated 

with indices MCARI/MTVI2 (R2 = 0.69) and MTVI2 (R2 = 0.80), respectively. The obtained  

map constitutes an innovative attempt to calculate the NNI from airborne data over an entire  

field and allowed to distinguish areas characterized by different N availability (i.e., deficit, optimal  

and surplus). The good agreement between the NNI calculated from remote sensing and the NNI  

from field measurement (R2 = 0.70) supports the use of aerial data instead of traditional time 

consuming measurements. 

The NNI map represented a crucial step for the production of a variable rate N fertilization map  

to be used for a rational management of the field, based on the comparison between the N accumulated 

in the aboveground biomass in each pixel (Nw) and the mean value of N found in optimal areas 

calculated through the NNI map (Nw_opt). The difference between Nw and Nw_opt (Nstatus) allowed to 

identify N deficit areas in correspondence of pixels where the Nstatus assumed a negative value. Only 

the 23% of the field was identified as N deficient and the maximum suggested fertilization rate was 

equal to 50 kg N ha−1. It is worth noting that the presence of vegetation in optimal conditions in the 

scene is necessary to compute Nw_opt and consequently Nstatus. This makes the method hardly applicable 

in field characterized by a widespread N deficiency where N optimal areas cannot be identified. 

The method presented in this study allowed to define the minimum amount of N to apply without 

decreasing crop production and at the same time avoiding excessive fertilization in order to guarantee  

a proper management of the environmental resources in agricultural practices. Furthermore, the 

availability of measurements repeated over time could offer a valuable tool for a more sustainable field 

management during the growing season. 
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